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Abstract. We estimate the threshold value of the perturbarion strength needed to cause
magnetic field-line stochasticity in the peripheral region of a Tokamak with an ergodic
magnetic limiter, accoriding ro a Hamiltonian descriprion for field lines. We model the
limiter action as a periodic sequence of impulsive excirations. Two global stochasticity
prescriptions are used: Chirtkov’s overlapping criterion and the renormalization scheme
of Escande, Doveill and Benkadda.

1 Introduction

There are various plasma magnetic confinement schemes devised for fusion
applications, and the Tokamak is one of the most promising candidates to achieve
this goal in the future. Tokamaks are basically toroidal pinches in which a plasma
column is formed by ohmic heating produced by electric fields generated by
transformer coils., The plasma torus is then confined by the superposition of two
basic ficlds: a toroidal magnetic field produced by coils wound around the
Tokamak, and a poloidal field generated by the plasma column iwself. The
combination of these fields yields helical magnetic field lines (Wesson, 1987).

Several drift as well as field curvature effects, however, lead to complicated
particle motions in the plasma, even though it is supposed to be in a macroscopic
equilibrium state. Plasma—wall interactions occur frequently as a result of colli-
sions between the Tokamak inner metallic wall and particles which escape from
the plasma and cross the vacuum region that surrounds it.

One of the main technological problems in the operation of Tokamaks is the
control of these plasma—wall interactions. The quality of the confinement is
affected by impurities released from the inner wall due to localized heat and
particle loadings. Much effort has been devoted in recent years to reduce these
interactions, in order to decrease the impurity content in the plasma core. The
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ergodic magnetic limiter (EML) is such a device, since its main purpose is to
create a ‘cold’ boundary layer of stochastic magnetic field lincs in the peripheral
region of the Tokamak (Feneberg, 1977; Karger & Lackner, 1977). The words
‘ergodic’, ‘stochastic” and ‘chaotic” will be used here as synonyms, according to
the current usage in the Tokamak literature.

Theoretical studies suggest that a stochastic field can enhance heat and particle
diffusion in this region, so as to uniformize these loadings on the metallic wall
(Engelhardt & Feneberg, 1978). A number of experiments involving EML action
in various Tokamaks, such as TEXT (McCool ¢r al., 1989), CSTN-II (Takamura
et al., 1987) and TORE SUPRA (Grosman et al., 1995), have shown a decrease
of intrinsic impurity levels consistent with a lower edge clectron temperature,
while interior values are not significantly affected.

A recent design for EML consists of one or more grid-shaped coils wound
around the torus, cach of them with toroidally oricnted wires conducting a current
in opposite senses for adjacent segments (see Fig. 1(a)). The magnetic field
generated by these currents falls down rapidly with the distance from the wall, and
can interact with the equilibrium magnetic field in order to create chains of
magnetic islands in the peripheral region of the torus. Magnetic islands arc
field-line structures of tubular shape that wind around the plasma. A cross-section
of these islands reveals a phase portrait (actually a Poincaré map of the field lines)
very similar to pendulum trajectories in phase space (Greene & Johnson, 1965).

Since EML action is a symmetry-breaking perturbation, these islands are
expected to have a thin region of stochastic field lines in the neigbourhood of their
separatrices (Lichtenberg & Lieberman, 1983). Large-scale stochasticity is
achieved by mecans of the interaction between the outermost island chains. Due to
the fast radial decrease of the perturbarion field, only these ‘external’ islands have
a significant width. So, the inner region of the plasma column is not supposed to
be noticeably affected by the process. This is actually necessary since stochasticity
would destroy the plasma core.

Some recent works have been devoted to describing theoretically EML. action
on Tokamaks from this point of view. Martin and Taylor (1984) have proposed a
model in which magnetic field-line behaviour is described by a Poincaré mapping,
by taking a given transversal surface of section. Their mapping is locally approxi-
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Fig. 1. Essential geometry of the Tokamak and EML.: (a) toroidal geometry; (b) cylindrical geometry.
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mated by the well-known Chirikov—Taylor standard map, and the threshold of

stochasticity was estimated through a perturbative scheme. DeGrassie and co-
ers (Yu & DeGrassie, 1986) have improved this mapping, adding torodicity
=fects and considering a more sophisicated design for EML rings.

The model of Martin and Taylor (1984) was revisited by Viana and Caldas
'1962), by means of a flux-function approach to the magnetic island generatlon
and destruction through global stochasticity. The stochasticity threshold was
computed through Chirikov’s overlapping criterion, which prescribes the touch of
neighbouring separatrices as the critical condition to ergodize ficld lines berween
these islands (Chirikov, 1979).

A different theoretical framework for the magnetic field structure investigation is
the Hamiltonian description for field-line flow. Even for a magnctostatic equi-
librium, we can parameterize this flow by means of a spatial ignorable coordinate,
i.e. when the equilibrium magnetic ficld exhibits symmetry with respect to it. This
parameter plays the role of time in Hamilton’s equations, the other variables being
field-line coordinates as well. These technigues enable us to use the powerful
methods of Hamiltonian dynamics, such as Kolmogorov—Arnold—Moser (KAM)
theory, adiabatic invariance, perturbation theory and so on.

In this paper, we present a Hamiltonian description of field lines for a model
very similar to that proposed by Martin and Taylor (1984). The ficld-line
Hamiltonian will be split into two parts: one is the integrable part, physically
nterpreted as the equilibrium configuration; and the other is a non-integrable
part, characterizing the effect of perturbing magnetic fields generated by EML on
the equilibrium Tokamak field. The EML perturbation is supposed to be of an
impulsive character, i.e. a sequence of periodic delta function pulses. The near-
integrable Hamiltonian so obtained shows various resonant terms, from which we
take the two main harmonics, in order to describe the two outermost magnetic
islands which interact to generate stochasticity.

The resulting expression can be transformed into the so-called paradigm
Hamiltonian, in such a way that two different criteria are applied to estimate the
stochasticity threshold, namely the Chirikov and the Escande—Doveil-Benkadda
(EDB) criteria (Escande, 1985). The EDB criterion gives an accurate result for
the stochasticity threshold, since it analyzes the phase-space region between the
wo resonances in smaller scales, working as a renormalization scheme. The onset
of global stochasticity is achieved when the last KAM torus (or magnetic surface)

etween the magnetic islands is destroyed. We have compared these two criteria
and verify that both furnish almost the same result, provided Chirikov’s prescrip-
tion is empirically corrected (by means of the so-called ‘two-thirds rule’).

This paper is organized as follows. In Section 2, we outline the equilibrium and
EML field models to be used. In Section 3 the Hamiltonian description for field
lines is presented, with particular emphasis on the model concerned in this work.
The following section discusses the global stochasticity criteria to be considered,
a:d Section 5 presents some numerical results for a tvplcal small Tokamak. The
lzst section is devoted to our conclusions,

b

> Equilibrium and limiter fields

We suppose a Tokamak with major (minor) radius R,(b), and with a large
aspect ratio (b/R, « 1), such that it can be considered in a first approximation
2 periodic cylinder of length 27R,, (Figs 1(a) and (b)). According to the model
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Fig. 2. Rectangular coordinates describing the edge of a Tokamak with an EML.,

proposed by Martin and Taylor (1984), we use a particular coordinate system,
devised to describe only the peripheral region of the toroidal chamber. Denot-
ing by (r, 0) the polar coordinates on a surface of section @ = constant (¢
being the toroidal angle), coordinates in this ‘slab geometry’ are defined as

x=bb, y=b—r, z2=R,p (1)
in such a way that we neglect the poloidal and toroidal curvatures as well.
The arc length measured on the Tokamak edge is represented by x, with
0 < x < 2zb; while y is the radial distance measured from the inner wall. The
internal Tokamak region is denoted by y > 0; # stands for the rectified toroidal
distance on the magnetic axis, so that 0 < z < 27R,. Obviously, the validity of
this rectangular coordinate system is restricted to a region close to the wall
(y| « b).

The Tokamak equilibrium field is modelled by a cylindrical plasma column,
conducting a total current I,.. The dertails of the current density profile will not
be taken into account here, because we are intending to describe the peripheral
region of the torus only. In this case, the field components are B® =
(B (r), 0, B.), where B_ = B, = constant is a uniform toroidal field. A simple
application of Ampére’s law gives for the poloidal field component B®(y) =
Lo o 27 (b— ). '

In this paper, we are considering only one EML ring, consisting of a unique
coil, wound around the torus (Fig. 1(b)). The coil shape is designed to have
Two kinds of segments—toroidally oriented (TQ) and poloidally oriented

. There are m pairs of TO segments, equally spaced along the toroidal

Sr=cmon. Adjacent TO pieces conduct a current I in opposite senses. In terms
27 oo sleb coordinates, they lay on the xy-plane, 7b/m apart from each other

.{Ji-'

iz. 2. The role of PO picces is to enhance or decrease locally the equi-

I field B, and, since this perturbation is very tiny, we can
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~Assuming that these TO pieces are very long, the magnetic field so gener-
zted presents only x and y components, given by (Viana & Caldas, 1991)

BY (x,y) = —Me b cos | (2a)
b b
B G y) =2 e i (7 (2b)
2 b b

These expressions were derived by supposing that: (i) the penetration time of
the merallic wall is sufficiently small (typically 100 us for a plasma current of
2 ms); (ii) the dynamical plasma response is negligible (for low beta values), so
that we can deal only with vacuum fields, for which B = VOO, where O is
z scalar magnertic potential satisfying the Laplace equation V*®@%(x, v) = 0 and
proper boundary conditions at the interface v = 0. The solution is a superposi-
ton of harmonics, but for our purpose only the lowest-order mode, ¢cquation
2], 1s sufficient.

In the following calculations, we will describe the localized character of this
perturbation by supposing a periodic sequence of delta function pulses, which
modulates the magnetic ficld components in equation (2), in the form:
Bl(x, v, %) zg;‘\ (x,v)d(=z/27nR,). A more realistic model would assume a
square pulse waveform of length g, but a Fourier analysis shows similar results
if g« 27R,, and the mode number n (to be defined later) is not too large
‘Caldas er al., 1996).

3 Hamiltonian description

The structure of magnetic fields in a static and non-symmetric configuration can
be studied by means of a Hamiltonian description for field lines. It is based on the
similarity between the field-line equations, B x dl= 0, and Hamilton’s equations.
This analogy was first described by Kerst (1962) and later applied to various
problems involving plasma confinement schemes: Tokamaks (Hamzeh, 1974),
Stellarators (Filonenko et al., 1967), Levitrons (Freis er al., 1973) and Compact
Tori (Viana, 1995), among others.

Since the configurations to be studied are magnetostatic, the role of time is
played by a given spatial coordinate. It is normally the ignorable coordinate, i.c.
the systemn exhibits a certain symmetry with respect to it. So, the Hamilton’s
equations in this case are not actually dynamical, but rather describe the spatial
Lagrangian) structure of the magnetic field. A general formulation (in a curvilin-
car coordinate system) of this problem has been proposed by Whiteman (1977).

In the case of our rectangular coordinates (x, v, 2) describing the edge region of
the Tokamak, we call (x, y) the canonical coordinate and momentum respectively.
In the equilibrium (symmetric) case, magnetic field components do not depend on
z, thus z is our ‘time’ variable, because it parameterizes the field-line flow: given
midal conditions (xu, Vs 2, =0) the position of a field line at a later “time’ is
the parametric ecquations x=x(Xp, Vy2%32) and y=
Va» Zo3 7). The field-line equations (B + B™®) x dl =0 are cast in a Hamil-
form

dx 6H B® +B®

3
dz oy B, 3a)
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dy ¢H B

- 3
dz  ox B, (3b)

in which H(x, y, z) is the field-line Hamiltonian. It describes (in the non-symmet-
ric case) a non-autonomous, one-degree-of-freedom system, and thus is not
generally integrable.

This case opens the possibility of many dynamical features like periodic,
quasi-periodic and even chaotic behaviour. We emphasize that ‘chaos’ here is to
be intended in the Lagrangian sense: two field lines, initially very close, will
diverge exponentially in space, following the parameterization introduced by the
ignorable coordinate. So, we are speaking of a spatial phenomenon, rather than a
proper temporal evolution.

The equilibrium part of the magnetic field, however, does represent an inte-
grable system, because it has the necessary symmetry with respect to z. This
means that the corresponding Hamiltonian is a function of the momentum y only,
and (x,y) are actually action-angle variables for the system. Supposing that the
perturbation caused by the limiter is sufficiently weak, and using equations (2) and
(3), we write the field-line Hamiltonian for this model in the standard form of a
near-integrable system

H(x)y) 2) = Hﬂ(}") + Hl(xsys Z)
~2uR, (xy+2y )+Fe cos( 7 )[1 —i—2n§1 cos (Ru):J (4)

1oIp R, _ & = Mol (5)
ng ’ b ’ )"TBG

and the term within brackets stems from the Fourier decomposition of the
periodic delta function used to modulate the limiter field in the z-direction.

As the limiter field falls down exponentially with y, we are interested only in the
two outermost resonances presented by equation (4), since they generate chains of
magnetic islands in the peripheral region of the Tokamak, which will be consid-
ered for stochasticity analysis. These resonances are characterized by mode
numbers (m, #,) and (m, 1, + 1) respectively. Picking up only those resonances in
equation (4), we get to the truncated two-mode Hamiltonian

1 )i - WX MyE mx  (ny,+1)z
H{L) A = gy 42 J_ my/h (___L __D—
(x, 3, 2) 7R, (ﬂf} +2y )—l— € [cos 7 R, +cos 5 R

(6)
It is possible to obtain an analytical estimate of n, by considering that a (m, n,)
resonance generates an island centred at a magnetic (KAM) surface with a rational
rotation number. In the plasma physics literature (Greene & Johnson, 1965), it is
customary to work with a safety factor ¢ = d¢/déf so that g =m/n, for a rational
magnetic surface. Using equations (3a) and (5), and taking only the equilibrium
magnetic field, one finds that 1, may be the nearest integer to the expression

fim Y -1
4 b

where y stands for the magnetic surface radial location.
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52 “.ow, making some canonical transformations (see Appendix A for details) as
- . as rescalings (to non-dimensionalize quantities), we obtain the following
s i) —— Hezmiltonian '
AT - -
- 1
E i H,(X,Y,1) =5 Y24+ McosX+Pcos(X—1) (7N
Bl e - . ‘ . :
. I where the coefficients of the cosines were evaluated at the resonance locations,
.E__?-____L_ . _ ] j_— mzmely Y3 =0 (for M) and Y¥ =1 (for P), giving (see equations (A7) and (A8))
e et o 2m2Ry o1 4 M
= macfasr ar 2 = ol e (2], P== (8)
6B, bf e
T
N _'__f: ‘; i =nere we have defined
T -_ N 27bn,
== s The -'_—-: = m ®)
= R ——
L - T The rescaled coordinates (X, Y, 1) are related to the original variables (x,y, z)
T e through the following relations
mx  NyZ my & z
X=———, Y=—+- t=— 10
i b R, 7’ ) (10)
D < -:—_ 1 where we have used equation (A5).
£ Global stochasticity
3 The Hamiltonian (7) is usually called ‘paradigm’, since it is the simplest non-inte-
| orsble system to show local as well as global stochasticity. It can also be derived,
= mrmeasson of the for instance, through the analysis of the dynamics of a charged particle under the

E T -l - potendal of two electrostatic waves with different frequencies and amplitudes

==acmed omly in the Escande, 1985).
= e chsins of EM#Q, P=0, (7) reduces to the pendulum Hamiltonian, and the correspond-
oS el b consid- mg resonance half-width (located at Y5 =10) is
=Sl by o= —_
S AY,=2/M (an
. If M =0, P#0, equation (7) still reduces to an integrable system, although it is

= g — 1 - ums dependent, corresponding to a displaced pendulum centred at ¥ =1, and
Bz = with half-width given by

E AV, =2/P (12)

e R The case where both M and P are non-vanishing is far more complex. Integrability
= e wai® = ranons] no longer exists, but if M and P are small enough, the phase-space structure
Kmmen. 1963 . it i< comprises the coexistence of both resonances, separated by a distance Y = YT —
2 - vabl ¥’T = 1. Bur these islands are no longer well defined, because their separatrices
B B copetihon hecome a thin layer of chaotic field-line behaviour. Nevertheless, if the perturba-
B cnpwrsion gom is not sufficiently strong, there are still a large number of KAM tori between

rimary resonances. These tori, whose interceptions with a Poincaré surface of
on are curves, act as dikes, preventing large-scale excursion of the stochastic
Tzrectories lying in the local separatrix layers.

2s M and P grow together, the intermediate tori are progressively destroyed,
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as a critical value of the perturbation is not achieved, these layers are somewhat
disjoint, and no global stochasticity is attained.

By global stochasticity, we mean large-scale excursion of trajectorics, over the
entire portion of the phase-space containing the two rcsonances as well as the
intermediate region between them. It is the expected situation for EML operation.
So, we are interested in computing the critical strength of perturbation (which in
our case is related to the limiter current I, see equation (8)) necessary to achieve
this regime.

A theoretical approach to give a reliable estimate of this threshold perturbation
strength has been proposed by Chirikov (1979). Let us define a stochasticity
parameter as

_AY, +AY,
N 3%

S =2(/M+ /P) (13)

The original version of Chirikov’s criterion prescribes the touching of separatrices
in order to generate global stochasticity, that is S>S§.=1. But this value is
actually overestimated, because higher-order islands (which are not being calcu-
lated here) do interact before the primary islands rouch themselves. Another effect
that might be taken into account is the width of the separatrix stochastic layer.
Both cffects were considered in order to improve the criterion (Chirikov, 1979).

On the other hand, numerical simulations made with the help of the Chirikov—
Taylor standard map indicate that the critical value for § must be somewhat lower
than 1 (Greene, 1979). In fact, a value of S_ =%~ 0.67 has been proposed in some
recent works (Lichtenberg, 1984), known as the ‘two-thirds rule’; but it must be
emphasized that it consists of an empirical correction to the Chirikov criterion,
rather than a different criterion itself. The validity of this rule was first discussed
in Escande (1985). As P = M /e, the criterion (13) jointly with this correction gives
M, =~ 0.043 as the critical value for the resonance amplitude.

Another approach is provided by the EDB renormalization scheme (Escande ez
al., 1984; Lichtenberg & Licbcrman, 1983). We will present here only a brief
sketch of this method, more dctailed explanations being found in the original
papers. For a review, see Escande (1985). The starting point of this scheme is the
paradigm Hamiltonian (7), which we rewrite here in a slightly different form

H (%.0,1)= %]? — M, cos O, — P; cos [k, (O; —1.)] (14)

where (7, ©) are action-angle variables and %k is a ‘wavenumber’ of the perturba-
tion. As we have seen, the two primary resonances of (14) are located at 7;= 0 and
¥:= 1, with half-widths given by A¥,, = 2/M; and Afp = 2\_..f"'P,- respectively. We
focus our attention on a specific KAM torus between these resonances, namely
with ¥, = u,.

Inserting, by means of a canonical transformation, the pendulum action-angle
variables into equation (14) and Fourier analyzing the perturbing term, we recover
the Hamiltonian (14), but with its parameters rescaled.

1
H  Fie:0i0:t0) =5 e — M €080, — P,y cos [k (O, —

2 F] £i+1)]

(15)
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shiere the ‘new’ parameters (M. ;, P (s k; | 15 #;, ) are expressed in terms of the

0ld” parameters (M, P, k, u;) by a transformation. This rescaling acts as a
microscope’ in the phase-space region between the primary resonances—the
:zcondary resonances are, loosely speaking, magnified and are the new primary
=sonances of the renormalized system.

The renormalization process is then continued, such that the transformation
between the old and new parameter sets is actually a four-dimensional mapping 7.
It has two fixed points, when 7 goes to infinity: (a8) M;—=0, P,—0 (stable),
:::*:esponding to convergence to a KAM torus with rotation number g+ 1 (where

z=(1+./5)/2~1.618 is the golden number); (b) M;— o0, P,— o (unstable),

which corresponds to a cantorus.

In the parameter space (k, M, P), the analysis of the stable manifold related 10
the stable fixed point leads to a stochasticity criterion. If 2= 1 and 55 < M/P < 25,

Lic &

or s <k <4 and M/P=1, it reads
MPE='[1 4+ C(R)P? = R(k) (16)

Plots of the functions C(k) and R(k) can be found in Escande (1985). If
E=M/P=1 (the so-called ‘central casc”) this relation reduces to the practical
formula (Pettini & Torricelli-Ciamponi, 1988)

MPe=1 % 0.003 (17

which can be used, with good results, for the interval 0.7 < M/P < 1.3 or even
wider, as we shall see in the following.

5 Numerical applications

Ler us apply the theory so devéloped to a small Tokamak, like the TBR-1,
operating at the Universidade de Séo Paulo, Brazil. Its main parameters are listed
in Table 1. A typical value of m is 6 for a limiter ring. After equation (10), the
radial position of the two outermost resonances, namely the (6, 1) and (6, 2) ones,
are given in Table 2, in terms of the plasma current. Note that I is the only
parameter characterizing the equilibrium model in this work, since we have
ignored the details of the plasma current density profile.

The half-widths Ay,,,, of these two resonances are plotted in Fig. 3 as a function
of the limiter current [, with a fixed value of I, = 10 kA for the plasma current.

Table 1. Main paramecters of the TBR-I Tokamak, according to Nasci-
mento et al. (1994)

Parameter Value

Major radius (Ry) 0.35m

Minor radius (&) 0.11m
Plasma radius (a) 0.08m -
Toroidal field (B,) 0.5 T {atr magnetic axis)
Plasma current (J,,) 10.0 KA (typical value)
Safety factor (g{a)) 5.0 (at plasma edge)
Central electron temperature (T_,) 200 eV
Central electron density (,.,) 7.0% 10" m~
Pulse duration (7} 7-% ms

Filling pressure (p) 10~ * torr
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Table 2. Radial location of the resonances for n; =1 20
and some values of the plasma current I,

[4]]

I, (k&) ¥E (m) ¥ (m)

ek

10.0 0.037 0.056
13.0 0.016 0.035
16.0 0.003 0.021

I (A)

‘n

Both islands increase their width as I*2, and the resonance (6, 2) is lower than
(6, 1) by a factor of e'/2x 0.606. Evidently, taking more resonant terms in the
Hamiltonian (4) would imply more internal island chains in the Tokamak, but
their width would decrease by the same factor when »n increases, so their effect is
not significant for small values of EML current. This ensures that the inner
plasma core would not be noticeably affected by the limiter action.
As we have seen previously, the Chirikov criterion (with the two-thirds rule
yields a critical value of M, ~ 0.043 for global stochasticity resulting from interac- . 1 Critical limis
tion between the two peripheral resonances, which we take to be the (6, 1) and T global stock
(6, 2) ones. The EDB criterion, according to equation (16), gives a threshold of
M_ 7~ 0.040. The agreement between these two criteria is more clearly observed in
Fig. 4, where the critical limiter current I, is plotted against the plasma current I
for the two cases. The EDB criterion always furnishes a slightly lower value for the
threshold. For the typical value of 10 kA for plasma current, the threshold is

achieved with a EML current of less than 100 A. £ Conclusions
Moreover, the critical stochasticity parameter in the modified Chirikov prescrip-

. - . - 4 Hamiltonian desc
tion (13) is actually higher than the assumed value of S.=3. In fact, a value L dinate ‘rn-
roughly about S, = 0.70 would be necessary for the onset of stochasticity. We have - ", coort T

= the peripheral :e;

verified this fact by numerical integration of Hamilton’s equations for the
paradigm Hamiltonian (7). The theoretical explanation for this deviation is that
the two-thirds rule is strictly valid only in the ‘central case’ M/P=1 (Pertini &
Torricelli-Ciamponi, 1988), when both resonances are of equal width. As M/P=

F»e treatment of gl
rd results of

i heat diffusion =

¢~ 2.718, this empirical rule is no longer expected to be rigorously valid. This was =a
the main reason that led us to compare these two prescriptions. not a sufficient o
mentzi results have
0.012 | ; hmiter in the :
{ L-Cool et al., 1985
/ We 113\6 used T
__ 0.009 v Tead 3
é B ~
£ 0.006 T .
: mdecaie t-alue for
Tamparison betwes
0.003; =wo-thirds rule’ is
FFerent widths, N1
0 ' '::;=:uc1t\ param
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zenr to be made
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Fig. 3. Half-widths of the (6, 1) (solid line) and (6, 2} (dashed line) resonances versus limiter cuorrent
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Fig. 4. Cnocal limiter current for stochasticity generation versus plasma current, according to two
global stochasticity criteria: Chirikov (solid line) and EDB ({dashed line).

6 Conclusions

4 Hamiltonian description for field-line flow, parameterized by a spatial (ignor-
zble) coordinate has been used in this work to describe magnetic island generation
in the peripheral region of a large aspect ratio Tokamak. This formulation allows
the treatment of global stochasticity in a concise and rather elegant way, since
standard results of KAM theory can be applied, jointly with prescriptions for
estmarting the onsert of large-scale stochasticity. However, the question of particle
and heat diffusion in this region is far more complex, since field-line stochasticity
is not a sufficient condition for that (Atlee-Jackson, 1989). Nevertheless, experi-
mental results have indicated the usefulness of the cold boundary layer created by
z limiter in the control of plasma—wall interactions (Grosman er al., 1995;
3cCool et al., 1989; Takamura er al., 1987).

We have used two criteria for describing the onset of global peripheral stochas-
acity leading to this boundary layer—the modified Chirikov (with an empirical
correction) and the EDB criteria. Both indicate a critical limiter current in the
50-100.A range, for typical parameters of a small Tokamak with plasma current
in the 10 kA region. As a result, the ratio I/l is not greater than 1%, which is an
adequate value for practical operation of such a limiter device. Morcover, the
comparison between these two stochasticity criteria indicates that the use of the
‘two-thirds rule’ is not very accurate in this case, since the resonances have
different widths. Numerical evidences suggest a slightly higher value for the critical
stochasticity parameter.

Further work on this subject has to consider more appropriate geometries to
describe this problem, to include toroidicity effects for example. Another improve-
ment to be made is to include the effects caused by a plasma current density
profile, since some portion of the outer plasma column is affected by the stochastic
Soundary layer.
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Appendix A: Derivation of the paradigm Hamiltonian

The truncated Hamiltonian H®(x, v, z) which describes the two-resonance system
is expressed by cquation (6). Let us make a first canonical transformation
¢, v) — (p, ¢) by using a generating function of the second kind

mx  Haz\ b
Fl(x,p,z)z(b —R%)g @Al
0

From the transformation cquations (Goldstein, 1980) ¢ = ¢F,/cp, vy = ¢F;/cx and
HY = H® 4 §F, /¢z, we obtain the new Hamiltonian

1 .
HY(p, g, 2) =R (o?p -I—gpz) + T e me® [cos (?) + cos (%—g)—’ (A2)
o o/ _

where d = o — (2abny/m).
Making a sccond canonical transformation (p, ¢) — (p, §) through the gencrating
function
_ g
Fy(g: p) = (P - B)q (A3)

we have a Hamiltonian without the linear term in p

o g Pt . mq mqg =
H®(p, g, 2)= L4 Qe ™ot — — Al
(B, 4 2) 37F, 2 +Qe cos 5 + cos b R, (Ad)

where Q=T exp (mé /bf), and the constant term has been ignored.
Let us introduce dimensionless variables as

mp mq z
Y=—1, =—, t=— A5
b b R, (A3)
as well as a dimensionless Hamilronian
H(Z)
(A6)

= 2R )
so that, dividing the Hamiltonian (A4) by the factor (f6%);(2nR,m?) we have
H,(X,Y,1)= -;— Y24+ T(Y)cos X+ T(Y) cos (X —1) (AT)
where the non-dimensional function 7°(Y) is given by
T(Y) EZR—’;Z};’—Q Y (A8)

The two resonances exhibited by (A8) are located at ¥Y=0 and Y= 1. If these
resonances are not too wide, we approximate the amplitudes in 7(Y) to their
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values at resonance positions. A theoretical justification for this procedure is given
in (Escande, 1985). Hence

om?Roud .
M=T(Y=0)= % e for m, =n, (A9)
n
M
P=T(Y=1)=—, for n,=mn,+1 (A10)
£ .

which gives the paradigm Hamiltonian expressed by equation (7).




