Rarefied Gas Dynamics: Theory and Applications to Vacuum

Lecture 3: Gas-surface interaction

Felix Sharipov Departamento de Física, Universidade Federal do Paraná http://fisica.ufpr.br/sharipov

XLIV CBrAVIC, Short Course

São Paulo, November 25, 2023

Outline

Diffuse-specular model

Cercignani-Lampis model

Theory based on CL model

Felix Sharipov

Fundamentals

November 20, 2023 2

General form of boundary condition

$$v_n f(\boldsymbol{v}) = -\int_{v_n' \leq 0} v_n' R(\boldsymbol{v}', \boldsymbol{v}) f(\boldsymbol{v}') \mathrm{d} \boldsymbol{v}'$$

where

$$v_n \ge 0$$

	haripov

(1)

Normalization / impermeability

$$\int_{\boldsymbol{v}_n>0} R(\boldsymbol{v}'\to\boldsymbol{v})\,\mathrm{d}\boldsymbol{v}=1$$

(2)

Normalization / impermeability

$$\int_{v_n>0} R(\boldsymbol{v}' \to \boldsymbol{v}) \, \mathrm{d}\boldsymbol{v} = 1$$

Reciprocity

$$|v'_{n}| \exp\left(-\frac{mv'^{2}}{2kT_{w}}\right) R(\boldsymbol{v}' \to \boldsymbol{v})$$

$$= |v_{n}| \exp\left(-\frac{mv^{2}}{2kT_{w}}\right) R(-\boldsymbol{v} \to -\boldsymbol{v}')$$

$$(3)$$

Felix		

(2)

Diffuse-specular scattering

$$R = \alpha_d R_{diff} + (1 - \alpha_d) R_{spec}$$

$$\alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_d$$

for any kind of the property ψ

 α_d - unique accommodation coefficient for all properties.

(5)

(6)

$$R_{CL}(\boldsymbol{v}',\boldsymbol{v}) = \frac{v_n}{\pi^2 \boldsymbol{\alpha}_n \, \boldsymbol{\alpha}_t (2 - \boldsymbol{\alpha}_t) v_w^4} \\ \times \exp\left\{-\frac{[\boldsymbol{v}_t - (1 - \boldsymbol{\alpha}_t) \boldsymbol{v}_t']^2}{\boldsymbol{\alpha}_t (2 - \boldsymbol{\alpha}_t) v_w^2} - \frac{v_n^2 + (1 - \boldsymbol{\alpha}_n) v_n'^2}{\boldsymbol{\alpha}_n v_w^2}\right\} \\ \times \int_0^{2\pi} \exp\left\{\frac{2\sqrt{1 - \boldsymbol{\alpha}_n} \, v_n \, v_n' \cos \phi}{\boldsymbol{\alpha}_n v_w^2}\right\} \, \mathrm{d}\phi \tag{7}$$

$$\psi = mv_t, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_t \tag{8}$$

$$\psi = mv_t, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_t \tag{8}$$

 $0 \leq \alpha_t \leq 2$ tangential momentum accommodation coefficient (TMAC)

$$\psi = mv_t, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_t \tag{8}$$

 $0 \leq \alpha_t \leq 2$ tangential momentum accommodation coefficient (TMAC)

$$\psi = \frac{1}{2}mv_n^2$$

$$\psi = mv_t, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_t \tag{8}$$

 $0 \leq \alpha_t \leq 2$ tangential momentum accommodation coefficient (TMAC)

$$\psi = \frac{1}{2}mv_n^2, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_n \tag{9}$$

$$\psi = mv_t, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_t \tag{8}$$

 $0 \leq \alpha_t \leq 2$ tangential momentum accommodation coefficient (TMAC)

$$\psi = \frac{1}{2}mv_n^2, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_n \tag{9}$$

 $0 \leq \alpha_n \leq 1$ normal energy accommodation coefficient (NEAC)

$$\psi = mv_t, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_t \tag{8}$$

 $0 \leq \alpha_t \leq 2$ tangential momentum accommodation coefficient (TMAC)

$$\psi = \frac{1}{2}mv_n^2, \quad \alpha(\psi) = \frac{J^{incident}(\psi) - J^{reflected}(\psi)}{J^{incident}(\psi) - J^{reflected}_{diff}(\psi)} = \alpha_n \tag{9}$$

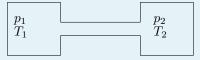
 $0 \leq \alpha_n \leq 1$ normal energy accommodation coefficient (NEAC)

$$J^{incident}(\psi) = \int_{v_n < 0} |v_n| f(\boldsymbol{v}) \psi(\boldsymbol{v}) \, \mathrm{d}\boldsymbol{v}$$
(10)

Eqs.(8) and (9) are NOT dependent on $f(\boldsymbol{v})$

Diffuse-specular vs. CL kernel

Scheme of thermo-molecular pressure difference



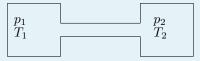
Net flow = 0

$$\frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{\gamma}$$

(11)

Diffuse-specular vs. CL kernel

Scheme of thermo-molecular pressure difference



Net flow = 0

$$\frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{\gamma}$$

(11)

Free-molecular regime, diffuse-specular scattering $\gamma = \frac{1}{2} \quad \text{for any} \quad \alpha_d \tag{12}$ Free-molecular regime, experiment

 $0.4 \leq \gamma \leq 0.5$

Podgursky, Davis, *J. Phys. Chem.* **65** 1343 (1961). Edmonds, Hobson, *J. Vac. Sci. Technol.* **2** 182 (1965). (13)

Free-molecular regime, experiment

$$0.4 \leq \gamma \leq 0.5$$

Podgursky, Davis, *J. Phys. Chem.* **65** 1343 (1961). Edmonds, Hobson, *J. Vac. Sci. Technol.* **2** 182 (1965).

Free-molecular regime, CL kernel

$$0.13 < \gamma < 1$$

when

 $0.25 \leq \alpha_n \leq 1$, and $0.25 \leq \alpha_t \leq 1.75$

Sharipov, Eur. J. Mech. B/Fluids 22 (2003)

Felix Sharipov

(13)

(14)

(15)

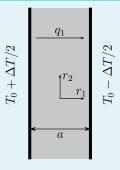
Planar Couette flow, free-molecular regime ($\delta = 0$)

$$\frac{u_{w}}{2} \int \left| \begin{array}{c} u_{m} \\ \frac{u_{m}}{2} \end{array} \right|^{\frac{r_{2}}{r_{1}}} \\ a \end{array} \right|^{\frac{r_{2}}{r_{1}}}$$

$$P_{12} = -\frac{\alpha_{t}}{2 - \alpha_{t}} \frac{pu_{w}}{\sqrt{\pi}v_{m}}, \quad v_{m} = \sqrt{\frac{2k_{\text{B}}T}{m}}$$
(16)
It depends only on α_{t}

ъ

Planar heat transfer, free-molecular regime $\delta = 0$

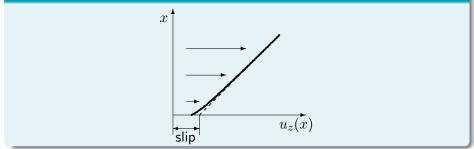


$$q_1 = -\frac{1}{2} \left[\frac{\alpha_n}{2 - \alpha_n} + \frac{\alpha_t (2 - \alpha_t)}{2 - \alpha_t (2 - \alpha_t)} \right] \frac{p \, v_m \Delta T}{\sqrt{\pi} T_0}, \quad \Delta T \ll T_0 \tag{17}$$

It depends on both α_t and α_n

1/62

Viscous slip coefficient



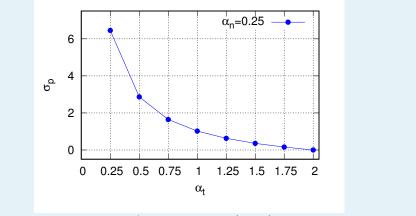
Definition

$$u_z = \sigma_{\mathsf{P}} \ell \frac{\mathsf{d} u_z}{\mathsf{d} x}$$
 at $x = 0$

(18)

 $\sigma_{\rm P}\,$ - viscous slip coefficient

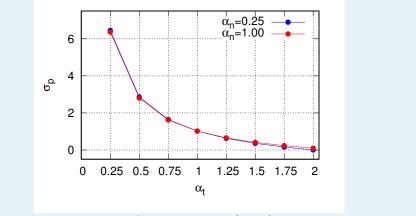
Viscous slip coefficient $\sigma_{\rm P}$



Sharipov, Eur. J. Mech. B/Fluids 22, 133 (2003)

Feli	x S	hari	pov

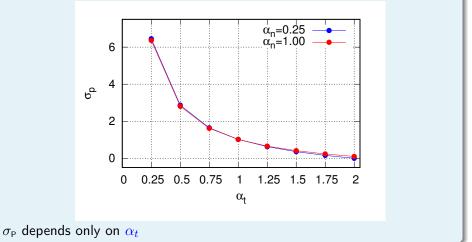
Viscous slip coefficient $\sigma_{\rm P}$



Sharipov, Eur. J. Mech. B/Fluids 22, 133 (2003)

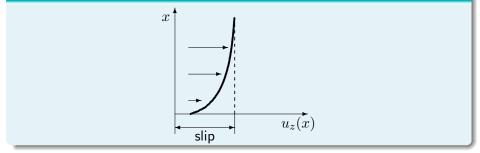
	naripov

Viscous slip coefficient $\sigma_{\rm P}$



Fel	1X	5	ha	r1	n	ov

5/62

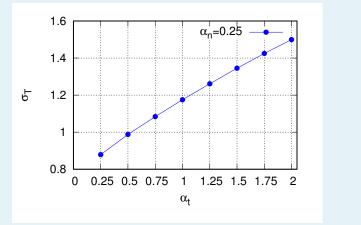


Definition

$$u_y = \sigma_{\mathsf{T}} \frac{\mu}{\varrho} \frac{\mathsf{d} \ln T}{\mathsf{d} z} \quad \text{at} \quad x = 0 \tag{19}$$

	haripov

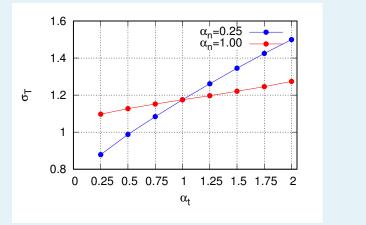
Thermal slip coefficient σ_{T}



Sharipov, Eur. J. Mech. B/Fluids 22, 133 (2003)

T 1 1 1		
Felix	S	haripov

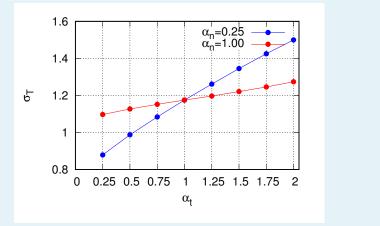
Thermal slip coefficient σ_{T}



Sharipov, Eur. J. Mech. B/Fluids 22, 133 (2003)

T 1 1 1		
Felix	S	haripov

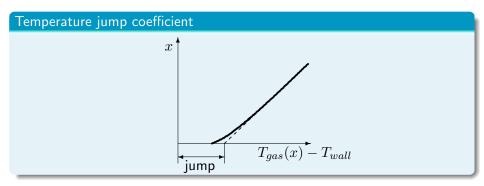
Thermal slip coefficient σ_{T}



 σ_{T} depends on both α_t and α_n

	naripov

9 / 62



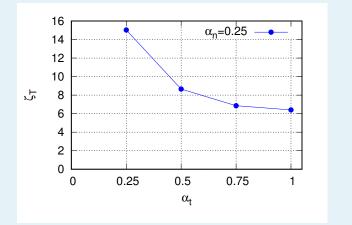
Definition

$$T_{gas} - T_{wall} + \zeta_{\rm T} \ell \frac{{\rm d}T}{{\rm d}x}$$

Felix	Sharipov	
-------	----------	--

(20)

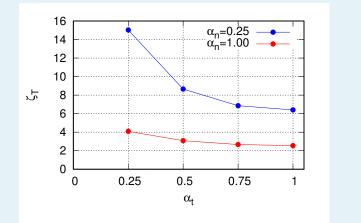
Temperature jump coefficient ζ_{T}



Sharipov, Eur. J. Mech. B/Fluids 22, 133 (2003)

Felix		

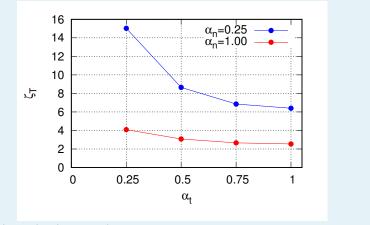
Temperature jump coefficient ζ_{T}



Sharipov, Eur. J. Mech. B/Fluids 22, 133 (2003)

		pov

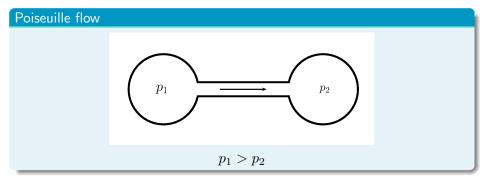
Temperature jump coefficient ζ_{T}



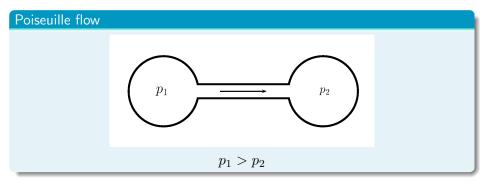
 ζ_{T} depends on both α_t and α_n

TT 11		
Felix	5	haripov

3 / 62



ъ

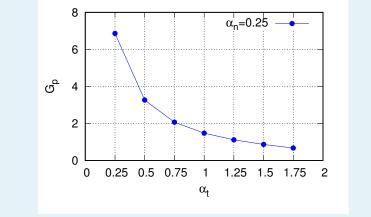


Definition

$$\dot{M} = \frac{\pi a^3}{v_m} \frac{\mathrm{d}p}{\mathrm{d}x} G_{\mathsf{P}}, \quad G_{\mathsf{P}} = G_{\mathsf{P}}(\delta), \quad \delta = \frac{pa}{\mu v_m} \tag{21}$$

Felix	5	haripov

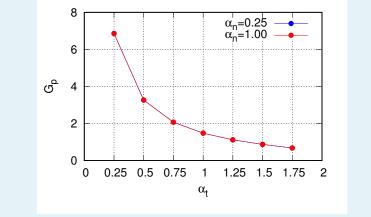
Poiseuille flow through a long circular tube. Free-molecular regime ($\delta = 0.01$)



Sharipov, Eur. J. Mech. B/Fluids 22, 145 (2003)

	haripov

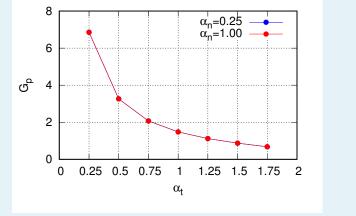
Poiseuille flow through a long circular tube. Free-molecular regime ($\delta = 0.01$)



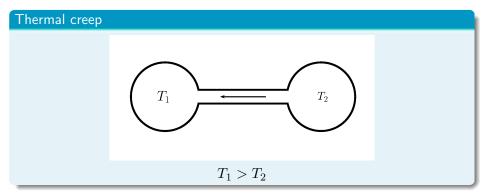
Sharipov, Eur. J. Mech. B/Fluids 22, 145 (2003)

	aripov

Poiseuille flow through a long circular tube. Free-molecular regime ($\delta = 0.01$)



 G_p depends only on α_t .



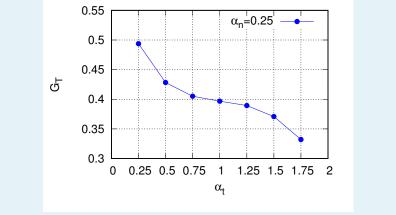
Definition

$$\dot{M} = \frac{\pi a^3 p}{v_m T} \frac{\mathrm{d}T}{\mathrm{d}x} G_{\mathrm{T}}, \quad G_{\mathrm{T}} = G_{\mathrm{T}}(\delta), \quad \delta = \frac{pa}{\mu v_m}$$

Felix Sharipov

(22)

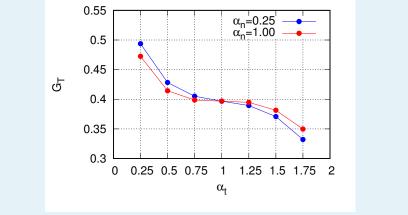
Thermal creep through a long circular tube. Free-molecular regime ($\delta = 0.01$)



Sharipov Eur. J. Mech. B/Fluids 22, 145 (2003)

He	112	5	haripov

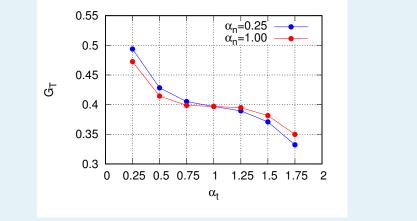
Thermal creep through a long circular tube. Free-molecular regime ($\delta = 0.01$)



Sharipov Eur. J. Mech. B/Fluids 22, 145 (2003)

Felix Sharipov

Thermal creep through a long circular tube. Free-molecular regime ($\delta = 0.01$)



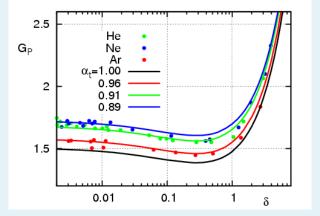
 G_T depends on both α_t and α_n

Felix Sharipov

November 20, 2023

31 / 62

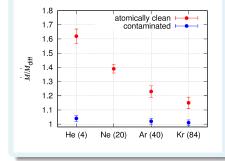
Experiment, Poiseuille flow



Exp.: Porodnov *et al. J. Fluid Mech.* **64, 417 (1974)**. Theory: Sharipov *Eur. J. Mech. B/Fluids* **22**, 145 (2003)

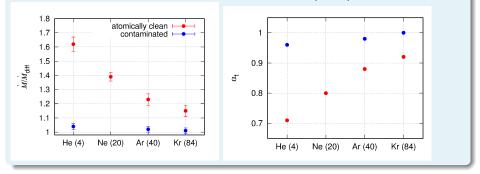
Experiment, free-molecular flow through a tube

Sazhin et al. J. Vac. Sci. Technol. A 19, 2499 (2001).



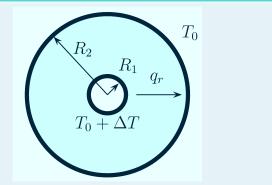
Experiment, free-molecular flow through a tube

Sazhin et al. J. Vac. Sci. Technol. A 19, 2499 (2001).



		ipov	

Heat transfer between two cylinders (Pirani sensor)



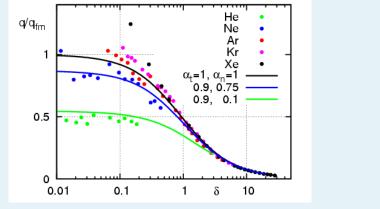
To be calculated:	
q_r heat flux	
T(r) temperature distribution	
	< □ > <i>< □</i> > 〈 三 > 〈 三 > 〈 三 >) 三 · 키익()

Felix Sharipov

Fundamentals

November 20, 2023

Heat transfer between two cylinders



Exp: Semyonov *et al. IJHMT* **27**, 1789 (1984). Theory: Sharipov & Bertoldo, *J. Vac. Sci. Technol. A* **24** 2087 (2006)

Heat transfer between two planar plates. Free-molecular regime, Eq(17)

Gas	Surface	\widetilde{q}	α_t	α_n
Не	SS ^a	$0.168 \pm 0.010^{\circ}$	0.49	0.01
	Al ^d	0.173 ± 0.010	0.51	0.01
	Pl ^e	0.230 ± 0.011	0.68	0.01
	SS-pl ^f	0.132 ± 0.009	0.40	0.01
	Al-pl ^g	0.132 ± 0.009	0.40	0.01
	Pl-pl ^h	0.198 ± 0.010	0.58	0.01
Ar	SS	0.510 ± 0.021	0.95	0.92
	Al	0.521 ± 0.021	1.0	0.93
	Pl	0.521 ± 0.021	1.0	0.93
	SS-pl	0.462 ± 0.019	0.9	0.84
	Al-pl	0.471 ± 0.019	0.9	0.85
	Pl-pl	0.500 ± 0.020	0.95	0.90

^aMachined stainless steel.

^dMachined aluminum.

eMachined platinum.

^fMachined stainless steel treated by plasma.

^gMachined aluminum treated by plasma.

^hMachined platinum treated by plasma.

Exp.: Trott *et al.*, *Rev. Sci. Instrum* **82** 035120 (2011).

Theory: Sharipov and Moldover, J. Vac. Sci. Technol. A **34** (2016).

Experiment values of temperature jump coeff. ζ_{T}

Gas	Surface	References	$\zeta_{\mathbf{T}}$	α_t	α_n
He	ETP-Cu ^a ETP-Cu	[1] [2]	6.67 ± 0.32 6.805 ± 0.022		0.037 0.027
	OFHC-Cu ^e SS ^f	[3] [4]	7.1 ± 0.2 7.1 ± 1.3	0.7 0.7	0.007 0.007
Ar	Al ^g ETP-Cu	[5] [6]	2.30 ± 0.25 2.55 ± 0.16	0.9 0.9	0.85 0.76
	ETP-Cu	[7]	2.62 ± 0.07	0.9	0.74

^aElectrolytic-tough-pitch copper.

^eOxygen-free-high-conductivity copper.

^fStainless steel.

gAluminum alloy.

[1] Gavioso et al., Metrologia 52, S274 (2015).
 [2] Pitre et al., Metrologia 52, S263 (2015).
 [3] Gavioso et al., Int. J. Thermophys. 32, 1339 (2011).
 [4] Gavioso et al. Metrologia 47, 387 (2010).
 [5] Ewing et al. Metrologia 22, 93 (1986).
 [6] Pitre et al. Int. J. Thermophys. 32, 1825 (2011).
 [7] de Podesta et al. Metrologia 50, 354 (2013).

Theory: Sharipov and Moldover, J. Vac. Sci. Technol. A **34**, 061604 (2016).

In the past, kelvin was defined via the triple point of water.

In the past, kelvin was defined via the triple point of water. Since 2019, the Boltzmann constant is fixed

$$k_{\rm B} = 1.380649 \times 10^{-23} \,{\rm J/K}$$

In the past, kelvin was defined via the triple point of water. Since 2019, the Boltzmann constant is fixed

$$k_{\rm B} = 1.380649 \times 10^{-23} \,{\rm J/K}$$

kelvin is now defined via the Boltzmann constant

(23)

In the past, kelvin was defined via the triple point of water. Since 2019, the Boltzmann constant is fixed

$$k_{\rm B} = 1.380649 \times 10^{-23} \,{\rm J/K}$$

kelvin is now defined via the Boltzmann constant

Sound speed in dilute gas

 $k_{\rm B}$ is extracted from

$$c = \sqrt{\gamma \frac{k_{\rm B}T}{m}}, \quad \gamma = \frac{c_p}{c_v} = \frac{5}{3}$$
 for noble gas (24)

(23)

Acoustic resonator

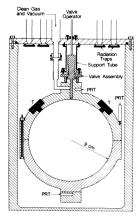


FIG. 1. Cross section of resonator and pressure vessel. The transducer assemblies are indicated by T, and the locations of the capsule thermometers are indicated by PRT. The pressure vessel is immersed in a stirred liquid bath (not shown) which is maintained at T_{c} .

Moldover et al. Phys. Rev. Letters 60, 249 (1988).

Felix Sharipov

Fundamentals

Boundary condition for temperature

$$T_g = T_s + \zeta_{\mathrm{T}} \ell \frac{\mathrm{d}T}{\mathrm{d}x_n}$$

 $\ell = \mu v_m/p$ is the equivalent free path of molecules $\ell \sim 0.1 \ \mu m$ at p = 1 atm.

(25)

Boundary condition for temperature

$$T_g = T_s + \zeta_{\rm T} \ell \frac{{\rm d}T}{{\rm d}x_n} \tag{25}$$

$$\ell = \mu v_m/p \text{ is the equivalent free path of molecules}$$

$$\ell \sim 0.1 \ \mu {\rm m \ at } p = 1 \ {\rm atm}.$$

$$\zeta_{\mathsf{T}} = \zeta_{\mathsf{T}}(\boldsymbol{\alpha}_t, \boldsymbol{\alpha}_n) \tag{26}$$

 ζ_{T} was calculated for helium and the resonator surface applying the CL kernel. (Sharipov & Moldover, *J. Vac. Sci. Technol. A* **34** (2016)).

Boundary condition for temperature

$$T_g = T_s + \zeta_{\mathsf{T}} \ell \frac{\mathsf{d}T}{\mathsf{d}x_n}$$
$$= \mu v_m / n \text{ is the equivalent free path of}$$

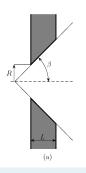
 $\ell=\mu v_m/p$ is the equivalent free path of molecules $\ell\sim 0.1~\mu{\rm m}$ at p=1 atm.

$$\zeta_{\mathsf{T}} = \zeta_{\mathsf{T}}(\boldsymbol{\alpha}_t, \boldsymbol{\alpha}_n) \tag{26}$$

 $\zeta_{\rm T}$ was calculated for helium and the resonator surface applying the CL kernel. (Sharipov & Moldover, *J. Vac. Sci. Technol. A* **34** (2016)). As a result, the experimental accuracy of $k_{\rm B}$ was significantly improved. Then, its value was fixed as $k_{\rm B} = 1.380649^{-23}$ J/K.

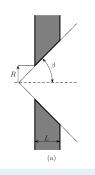
(25)

Free-molecular flow though a conical orifice



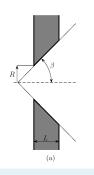
		CU		
Fe	$1\mathbf{X}$	S	hari	$\mathbf{D}\mathbf{O}\mathbf{V}$

Free-molecular flow though a conical orifice



Conductance is well known for diffuse gas-surface interaction.

Free-molecular flow though a conical orifice

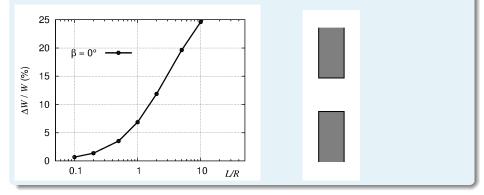


Conductance is well known for diffuse gas-surface interaction. Conductance for CL model: Sharipov & Barreto, *Vacuum* **121**, 22-25 (2015).

Felix Shari	

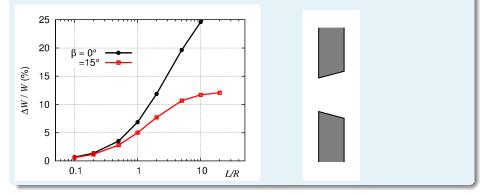
Deviation of W at $\alpha_t = 0.8$ from that at $\alpha_t = 1$

$$\Delta W = W|_{\alpha_t = 0.8} - W|_{\alpha_t = 1}$$



Deviation of W at $lpha_t=0.8$ from that at $lpha_t=1$

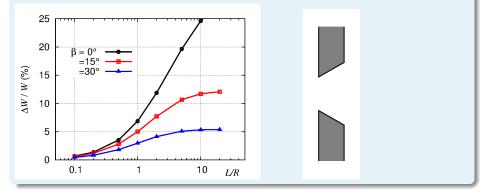
$$\Delta W = W|_{\alpha_t = 0.8} - W|_{\alpha_t = 1}$$



	hari	

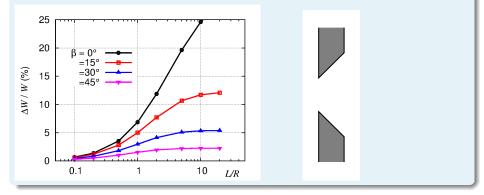
Deviation of W at $lpha_t=0.8$ from that at $lpha_t=1$

$$\Delta W = W|_{\alpha_t = 0.8} - W|_{\alpha_t = 1}$$



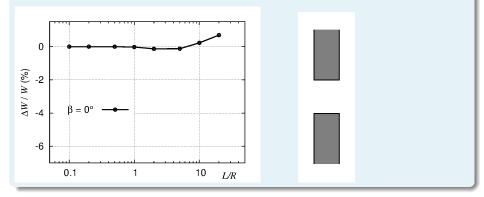
Deviation of W at $\alpha_t = 0.8$ from that at $\alpha_t = 1$

$$\Delta W = W|_{\alpha_t = 0.8} - W|_{\alpha_t = 1}$$



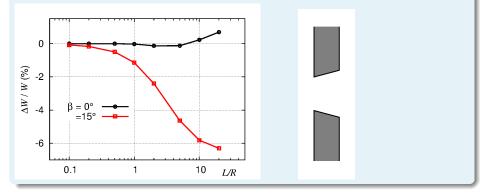
Deviation of W at $\alpha_n = 0.1$ from that at $\alpha_n = 1$

$$\Delta W = W|_{\alpha_n = 0.1} - W|_{\alpha_n = 1}$$



Deviation of W at $lpha_n=0.1$ from that at $lpha_n=1$

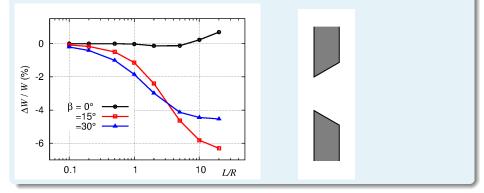
$$\Delta W = W|_{\alpha_n = 0.1} - W|_{\alpha_n = 1}$$



	harij	

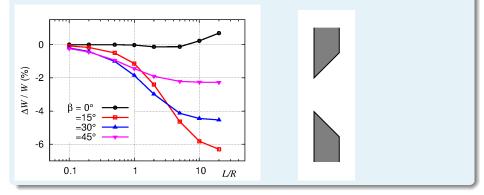
Deviation of W at $\alpha_n = 0.1$ from that at $\alpha_n = 1$

$$\Delta W = W|_{\alpha_n = 0.1} - W|_{\alpha_n = 1}$$



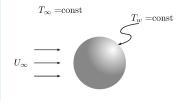
Deviation of W at $\alpha_n = 0.1$ from that at $\alpha_n = 1$

$$\Delta W = W|_{\alpha_n = 0.1} - W|_{\alpha_n = 1}$$

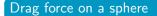


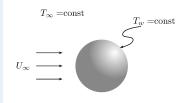
	hari	

Drag force on a sphere



	nari	





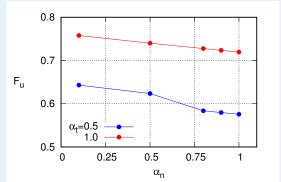
$$F = 4\pi R^2 p_{\infty} \frac{U_{\infty}}{v_0} F_u$$

$$\delta = \frac{R}{\ell_0}, \quad U_{\infty} \ll v_0$$
(27)
(28)

 $F_u = F_u(\delta, \alpha_t, \alpha_n)$ calculated via the Boltzmann equation

(29)

Drag force on a sphere at $\delta = 1$ Kalempa & Sharipov, J. Fluid Mech. 900 (2020)



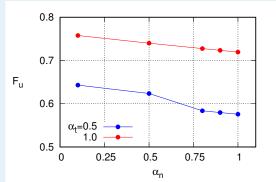
 F_u increases by increasing α_t

Felix Sl	laridov

November 20, 2023

51 / 62

Drag force on a sphere at $\delta = 1$ Kalempa & Sharipov, J. Fluid Mech. 900 (2020)

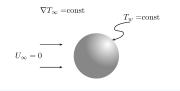


 F_u increases by increasing α_t F_u decreases by increasing α_n

Felix Sharipov

November 20, 2023

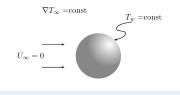
Thermophoresis on a sphere at $\delta = 1$



2/62

Thermophoresis on a sphere at $\delta = 1$

n

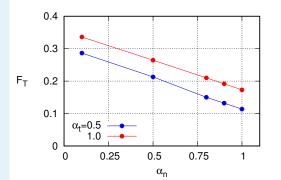


$$F = 4\pi R^2 p_{\infty} \ell_0 \left(\nabla \ln T\right) F_T$$

$$\delta = \frac{R}{\ell_0}, \quad \ell_0 = \frac{p_{\infty}}{\mu v_0} \quad v_0 = \sqrt{\frac{2k_{\mathsf{B}}T_{\infty}}{m}}$$

$$F_T = F_T(\delta, \alpha_t, \alpha_n) \quad \text{calculated via the Boltzmann equation}$$
(30)
(31)

Thermophoresis on a sphere at $\delta = 1$ Kalempa & Sharipov, J. Fluid Mech. 900 (2020)

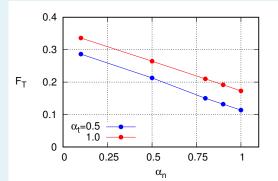


 F_T increases by increasing α_t

T 1 1	C 1	
Felix	SI	naripov

November 20, 2023

Thermophoresis on a sphere at $\delta = 1$ Kalempa & Sharipov, J. Fluid Mech. **900** (2020)



 F_T increases by increasing α_t F_T decreases by increasing α_n

Felix Sharipov

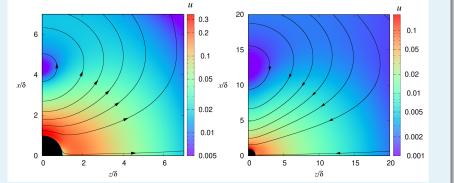
Thermophoresis. Speed u and streamlines at $\delta = 10$ and $\alpha_t = 0.5$. Kalempa & Sharipov, J. Fluid Mech. 900 (2020)

 $\alpha_n = 0.1$ $\alpha_n = 1$ и 0.3 0.2 6 0.1 4 0.05 x/δ 0.02 2 0.01 0.005 0 0 2 6 z/δ

	hari	

Thermophoresis. Speed u and streamlines at $\delta = 10$ and $\alpha_t = 0.5$. Kalempa & Sharipov, J. Fluid Mech. 900 (2020)

 $\alpha_n = 0.1$



Flow-field changes qualitatively by increasing α_n .

 $54 \, / \, 62$

Radiometric force

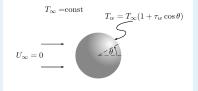
Radiometer

Felix Sharipov

Fundamentals

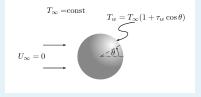
November 20, 2023

Radiometric force on a sphere



	hari	

Radiometric force on a sphere

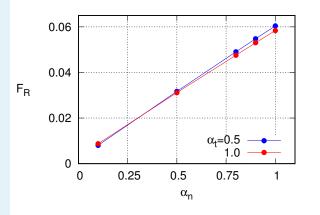


$$F = -4\pi R^2 p_{\infty} \tau_w F_R$$

$$\delta = \frac{R}{\ell_0}, \quad \ell_0 = \frac{p_{\infty}}{\mu v_0} \quad v_0 = \sqrt{\frac{2k_{\rm B}T_{\infty}}{m}}$$
(33)
(34)

 $F_R = F_R(\delta, \alpha_t, \alpha_n)$ calculated via the Boltzmann equation (35)

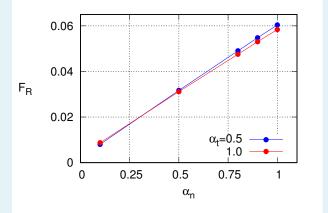
Radiometric force of sphere at $\delta = 1$ Kalempa & Sharipov, *Phys. Fluids* **33**, 073602 (2021)



 F_R weakly depends on α_t

		ipov	

Radiometric force of sphere at $\delta = 1$ Kalempa & Sharipov, *Phys. Fluids* **33**, 073602 (2021)

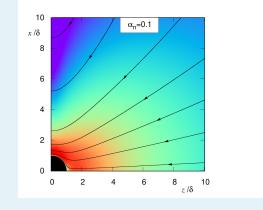


 F_R weakly depends on α_t F_R increases by increasing α_n

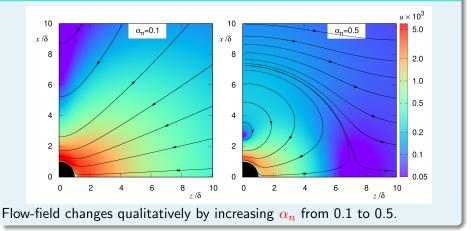
Felix Sharipov

November 20, 2023

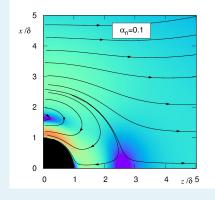
Radiometric force. Speed and streamlines at $\alpha_t = 1$ and $\delta = 0.1$. Kalempa & Sharipov, *Phys. Fluids* **33**, 073602 (2021)



Radiometric force. Speed and streamlines at $\alpha_t = 1$ and $\delta = 0.1$. Kalempa & Sharipov, *Phys. Fluids* **33**, 073602 (2021)

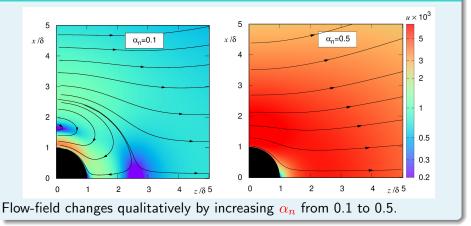


Radiometric force. Speed and streamlines at $\alpha_t = 1$ and $\delta = 1$. Kalempa & Sharipov, *Phys. Fluids* **33**, 073602 (2021)



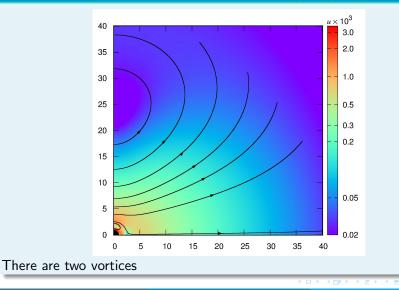
	haripov	

Radiometric force. Speed and streamlines at $\alpha_t = 1$ and $\delta = 1$. Kalempa & Sharipov, *Phys. Fluids* **33**, 073602 (2021)



Felix		

Radiometric force. Speed and streamlines at $\alpha_t = 1$, $\alpha_n = 0.1$ and $\delta = 1$. Kalempa & Sharipov, *Phys. Fluids* **33**, 073602 (2021)



Felix Sharipov

November 20, 2023

In the free-molecular regime ($\delta = 0$)

diffuse scattering ($\alpha_t = 1$ and $\alpha_n = 1$):

In the free-molecular regime ($\delta = 0$)

diffuse scattering ($\alpha_t = 1$ and $\alpha_n = 1$): the gas is at rest

In the free-molecular regime ($\delta = 0$)

diffuse scattering ($\alpha_t = 1$ and $\alpha_n = 1$): the gas is at rest

when $\alpha_n < 1$: the gas is moving

In the free-molecular regime ($\delta = 0$)

diffuse scattering ($\alpha_t = 1$ and $\alpha_n = 1$): the gas is at rest

when $\alpha_n < 1$: the gas is moving

The same behaviour was detected by Kosuge, Aoki et al. in their work:

Phys. Fluids 23 030603 (2011)

Radiometric force. Kalempa & Sharipov, Phys. Fluids 33, 073602 (2021) In the free-molecular regime ($\delta = 0$) diffuse scattering ($\alpha_t = 1$ and $\alpha_n = 1$): the gas is at rest when $\alpha_n < 1$: the gas is moving The same behaviour was detected by Kosuge, Aoki et al. in their work: Phys. Fluids 23 030603 (2011) Their conclusion: "For the CL model, ... a steady flow is induced by the nonuniform temperature distribution of the plates even in the free-molecular limit. This is in contrast to the fact that such a flow vanishes in the free-molecular limit for the Maxwell-type model"

・ロト ・同ト ・ヨト ・ヨト

THE END of Lecture 3, Part 1

Thank you for your attention

http://fisica.ufpr.br/sharipov/

Felix Sharipov

Fundamentals

November 20, 2023