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General form of boundary condition

@
@R�
�
�
��
v

v′
n 6

vnf(v) = −
∫
v′n≤0

v′nR(v′,v)f(v′)dv′ (1)

where

vn ≥ 0
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Normalization / impermeability

∫
vn>0

R(v′ → v) dv = 1 (2)

Reciprocity

|v′n| exp

(
−mv

′2

2kTw

)
R(v′ → v) (3)

= |vn| exp

(
− mv2

2kTw

)
R(−v → −v′) (4)
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Diffuse-specular scattering

Diffuse-specular scattering

R = αdRdiff + (1− αd)Rspec (5)

α(ψ) =
J incident(ψ)− Jreflected(ψ)

J incident(ψ)− Jreflecteddiff (ψ)
= αd (6)

for any kind of the property ψ

αd - unique accommodation coefficient for all properties.
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Diffuse-specular scattering

Cerciganani-Lampis model (1971)

RCL(v′,v) =
vn

π2αn αt(2− αt)v4w

× exp

{
− [vt − (1− αt)v′t]2

αt(2− αt)v2w
− v2n + (1− αn)v′2n

αnv2w

}
×
∫ 2π

0
exp

{
2
√

1− αn vn v′n cosφ

αnv2w

}
dφ (7)

vw =

√
2kBTw
m
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Cercignani-Lampis model

Cercignani-Lampis model (1971)

ψ = mvt, α(ψ) =
J incident(ψ)− Jreflected(ψ)

J incident(ψ)− Jreflecteddiff (ψ)
= αt (8)

0 ≤ αt ≤ 2 tangential momentum accommodation coefficient (TMAC)

ψ =
1

2
mv2n, α(ψ) =

J incident(ψ)− Jreflected(ψ)

J incident(ψ)− Jreflecteddiff (ψ)
= αn (9)

0 ≤ αn ≤ 1 normal energy accommodation coefficient (NEAC)

J incident(ψ) =

∫
vn<0

|vn|f(v)ψ(v) dv (10)

Eqs.(8) and (9) are NOT dependent on f(v)
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Cercignani-Lampis model

Diffuse-specular vs. CL kernel

Scheme of thermo-molecular pressure difference

p1
T1

p2
T2

Net flow = 0

p1
p2

=

(
T1
T2

)γ
(11)

Free-molecular regime, diffuse-specular scattering

γ =
1

2
for any αd (12)
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Cercignani-Lampis model

Free-molecular regime, experiment

0.4 ≤ γ ≤ 0.5 (13)

Podgursky, Davis, J. Phys. Chem. 65 1343 (1961) .

Edmonds, Hobson, J. Vac. Sci. Technol. 2 182 (1965).

Free-molecular regime, CL kernel

0.13 < γ < 1 (14)

when

0.25 ≤ αn ≤ 1, and 0.25 ≤ αt ≤ 1.75 (15)

Sharipov, Eur. J. Mech. B/Fluids 22 (2003)
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Theory based on CL kernel and experiments

Planar Couette flow, free-molecular regime (δ = 0)

r2
r1

uw
2

uw
2

a

P12 = − αt
2− αt

puw√
πvm

, vm =

√
2kBT

m
(16)

It depends only on αt
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Theory based on CL kernel and experiments

Planar heat transfer, free-molecular regime δ = 0

T
0
+
∆
T
/2

T
0
−

∆
T
/2

r2
r1

a

q1

q1 = −1

2

[
αn

2− αn
+

αt(2− αt)
2− αt(2− αt)

]
p vm∆T√

πT0
, ∆T � T0 (17)

It depends on both αt and αn
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Theory based on CL kernel and experiments

Viscous slip coefficient

6
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-

-

-

uz(x)

x
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slip
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Definition

uz = σP`
duz
dx

at x = 0 (18)

σP - viscous slip coefficient

Felix Sharipov Fundamentals November 20, 2023 12 / 62



Theory based on CL kernel and experiments

Viscous slip coefficient σP
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Sharipov, Eur. J. Mech. B/Fluids 22, 133 (2003)
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Theory based on CL kernel and experiments

Thermal slip coefficient
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Definition

uy = σT

µ

%

d lnT

dz
at x = 0 (19)
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Theory based on CL kernel and experiments

Thermal slip coefficient σT
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Theory based on CL kernel and experiments

Temperature jump coefficient

6

-
Tgas(x)− Twall

x
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jump
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Definition

Tgas − Twall + ζT`
dT

dx
(20)
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Theory based on CL kernel and experiments

Temperature jump coefficient ζT
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Theory based on CL kernel and experiments

Poiseuille flow

p1 > p2

Definition

Ṁ =
πa3

vm

dp

dx
GP, GP = GP(δ), δ =

pa

µvm
(21)
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Theory based on CL kernel and experiments

Poiseuille flow through a long circular tube.
Free-molecular regime (δ = 0.01)
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Theory based on CL kernel and experiments

Thermal creep

T1 > T2

Definition

Ṁ =
πa3p

vmT

dT

dx
GT, GT = GT(δ), δ =

pa

µvm
(22)
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Theory based on CL kernel and experiments

Thermal creep through a long circular tube.
Free-molecular regime (δ = 0.01)
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Theory based on CL kernel and experiments

Experiment, Poiseuille flow

Exp.: Porodnov et al. J. Fluid Mech. 64, 417 (1974).
Theory: Sharipov Eur. J. Mech. B/Fluids 22, 145 (2003)
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Theory based on CL kernel and experiments

Experiment, free-molecular flow through a tube

Sazhin et al. J. Vac. Sci. Technol. A 19, 2499 (2001).
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Theory based on CL kernel and experiments

Heat transfer between two cylinders (Pirani sensor)

To be calculated:

qr heat flux

T (r) temperature distribution
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Theory based on CL kernel and experiments

Heat transfer between two cylinders

Exp: Semyonov et al. IJHMT 27, 1789 (1984).
Theory: Sharipov & Bertoldo, J. Vac. Sci. Technol. A 24 2087 (2006)
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Theory based on CL kernel and experiments

Heat transfer between two planar plates. Free-molecular regime, Eq(17)

Exp.: Trott et al., Rev.
Sci. Instrum 82 035120
(2011).

Theory: Sharipov and
Moldover, J. Vac. Sci.
Technol. A 34 (2016).
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Theory based on CL kernel and experiments

Experiment values of temperature jump coeff. ζT

Theory: Sharipov
and Moldover, J.
Vac. Sci. Tech-
nol. A 34, 061604
(2016).
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Theory based on CL kernel and experiments

CL kernel was used to redefine kelvin (K)

In the past, kelvin was defined via the triple point of water.

Since 2019, the Boltzmann constant is fixed

kB = 1.380649× 10−23J/K (23)

kelvin is now defined via the Boltzmann constant

Sound speed in dilute gas

kB is extracted from

c =

√
γ
kBT

m
, γ =

cp
cv

=
5

3
for noble gas (24)
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Theory based on CL kernel and experiments

Acoustic resonator

Moldover et al. Phys. Rev. Letters 60, 249 (1988).
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Theory based on CL kernel and experiments

Boundary condition for temperature

Tg = Ts + ζT`
dT

dxn
(25)

` = µvm/p is the equivalent free path of molecules
` ∼ 0.1 µm at p = 1 atm.

ζT = ζT(αt, αn) (26)

ζT was calculated for helium and the resonator surface applying the CL
kernel. (Sharipov & Moldover, J. Vac. Sci. Technol. A 34 (2016)).
As a result, the experimental accuracy of kB was significantly improved.
Then, its value was fixed as kB = 1.380649−23 J/K.
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Theory based on CL kernel and experiments

Free-molecular flow though a conical orifice

Conductance is well known for diffuse gas-surface interaction.

Conductance for CL model: Sharipov & Barreto, Vacuum 121, 22-25

(2015).
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Theory based on CL kernel and experiments

Deviation of W at αt = 0.8 from that at αt = 1

∆W = W |αt=0.8 − W |αt=1
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Theory based on CL kernel and experiments

Deviation of W at αn = 0.1 from that at αn = 1

∆W = W |αn=0.1 − W |αn=1
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Theory based on CL kernel and experiments

Drag force on a sphere

F = 4πR2p∞
U∞
v0

Fu (27)

δ =
R

`0
, U∞ � v0 (28)

Fu = Fu(δ, αt, αn) calculated via the Boltzmann equation (29)
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Theory based on CL kernel and experiments

Drag force on a sphere at δ = 1
Kalempa & Sharipov, J. Fluid Mech. 900 (2020)
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Theory based on CL kernel and experiments

Thermophoresis on a sphere at δ = 1

F = 4πR2p∞`0 (∇ lnT )FT (30)

δ =
R

`0
, `0 =

p∞
µv0

v0 =

√
2kBT∞
m

(31)

FT = FT (δ, αt, αn) calculated via the Boltzmann equation (32)
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Theory based on CL kernel and experiments
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Theory based on CL kernel and experiments

Thermophoresis. Speed u and streamlines at δ = 10 and αt = 0.5.
Kalempa & Sharipov, J. Fluid Mech. 900 (2020)

. αn = 0.1 αn = 1

Flow-field changes qualitatively by increasing αn.
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Theory based on CL kernel and experiments

Radiometric force

Radiometer

Felix Sharipov Fundamentals November 20, 2023 55 / 62

https://www.youtube.com/watch?v=r7NEI_C9Yh0


Theory based on CL kernel and experiments

Radiometric force on a sphere

F = −4πR2p∞τwFR (33)

δ =
R

`0
, `0 =

p∞
µv0

v0 =

√
2kBT∞
m

(34)

FR = FR(δ, αt, αn) calculated via the Boltzmann equation (35)
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Theory based on CL kernel and experiments

Radiometric force of sphere at δ = 1
Kalempa & Sharipov, Phys. Fluids 33, 073602 (2021)
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Theory based on CL kernel and experiments

Radiometric force. Speed and streamlines at αt = 1 and δ = 0.1.
Kalempa & Sharipov, Phys. Fluids 33, 073602 (2021)

Flow-field changes qualitatively by increasing αn from 0.1 to 0.5.
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Theory based on CL kernel and experiments

Radiometric force. Speed and streamlines at αt = 1, αn = 0.1 and δ = 1.
Kalempa & Sharipov, Phys. Fluids 33, 073602 (2021)

There are two vortices
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Theory based on CL kernel and experiments

Radiometric force. Kalempa & Sharipov, Phys. Fluids 33, 073602 (2021)

In the free-molecular regime (δ = 0)

diffuse scattering (αt = 1 and αn = 1):

the gas is at rest

when αn < 1: the gas is moving

The same behaviour was detected by Kosuge, Aoki et al. in their work:

Phys. Fluids 23 030603 (2011)

Their conclusion: ”For the CL model, ... a steady flow is induced by the

nonuniform temperature distribution of the plates even in the

free-molecular limit. This is in contrast to the fact that such a flow

vanishes in the free-molecular limit for the Maxwell-type model”
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Theory based on CL kernel and experiments

THE END

of Lecture 3, Part 1

Thank you for your attention

http://fisica.ufpr.br/sharipov/
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