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DSMC, Main ideas

Example: Gas flow through a short tube.
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DSMC, Main ideas

Flow region is divided into cells

Felix Sharipov Fundamentals 3 / 87



DSMC, Main ideas

M model particles are considered.
Their positions ri and velocities vi are stored.
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DSMC, Main ideas

Time is advanced in steps ∆t.
Free motion without collisions. New positions are calculated

ri,new = ri,old + vi∆t (1)

Felix Sharipov Fundamentals 3 / 87



DSMC, Main ideas

Gas-surface interaction is simulated.
Some particles are removed.

Felix Sharipov Fundamentals 3 / 87



DSMC, Main ideas

New particles are generated.
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DSMC, Main ideas

Intermolecular collisions are simulated. New velocities vi are calculated
Macroscopic quantities are calculated.

All steps are repeated many times in order to reduce the statistical noise.
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DSMC, Main ideas

Diffuse scattering on solid surface

Normal component of velocity

f(vn) = 2
vn
v2w

exp

(
− v

2
n

v2w

)
, vw =

√
2kBTw
m

0 ≤ vn <∞ (2)

vn = vw
√
− lnRf , Rf - random fraction of 1 (3)

Tangential component

f(vt) = 2
vt
v2w

exp

(
− v

2
t

v2w

)
, 0 ≤ vt <∞ (4)

vt = vw
√
− lnRf , φ = 2πRf (5)

vt1 = vt cosφ, vt2 = vt sinφ (6)

each Rf is used once
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Intermolecular collisions

Number of pairs to be tested

Ncoll =
N2

pFN

2VC
(σtgr)max∆t (7)

Np number of model particles in cell

FN is representation, number of real particles represented by a model one.

VC is volume of cell

gr relative speed of interacting particles

σt total cross section. function of gr

a randomly chosen pair is accepted if
σtgr

(σtgr)max
> Rf (8)

faster particles collide more frequently

Felix Sharipov Fundamentals 5 / 87



Intermolecular collisions

Number of pairs to be tested

Ncoll =
N2

pFN

2VC
(σtgr)max∆t (7)

Np number of model particles in cell

FN is representation, number of real particles represented by a model one.

VC is volume of cell

gr relative speed of interacting particles

σt total cross section. function of gr

a randomly chosen pair is accepted if
σtgr

(σtgr)max
> Rf (8)

faster particles collide more frequently

Felix Sharipov Fundamentals 5 / 87



Intermolecular collisions

Once a pair is accepted

velocities v1,v2 are recalculated according to binary collision dynamics

Scheme of binary collision

g = g′ relative speed does not change its magnitude

deflection angle 0 ≤ χ ≤ π depends on potential

azimuthal impact angle 0 ≤ ε ≤ 2π determines the collision plane

v,v∗ ⇒ χ, ε⇒ v′,v′∗, (9)
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Intermolecular collisions

Hard sphere potential

Total cross section σt = πd2 is constant.

All directions of g′ are equiprobable

cosχ = 2Rf − 1, ε = 2πRf (10)

each Rf is used once It is simple, but it leads to a wrong viscosity

µ ∝ T 1/2 (11)
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Intermolecular collisions

Critics of variable hard sphere

All directions of g′ are equiprobable.

Total cross section σt = πd2 depends on g.

Diameter d is calculated assuming

µ = µref

(
T

Tref

)ω

(12)

index ω is constant
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Intermolecular collisions

Critics of Variable hard sphere

ω is not constant
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He

4
He
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Ar
Kr

Parameters d and ω are still fitting
It is not clear ω for collisions between different species.
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Intermolecular collisions

Arbitrary potential. Classical approach (Newton’s laws)

χ = χ(b, g)

Deflection angle vs. impact parameter. Lennard-Jones potential.
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Intermolecular collisions

Deflection angle vs. impact parameter. Lennard-Jones potential.
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Intermolecular collisions

Arbitrary potential. Quantum approach

Schrödinger equation is applied

χ(g) is determined by differential cross section σ(χ, g)

Arbitrary potential

Calculation of deflection angle χ in each collision takes a long time by

both classical and quantum approaches.

χ are calculated for many values of g and stored in lookup tables.

Sharipov & Strapasson, Phys. Fluids 24 (2012)
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Intermolecular collisions

Arbitrary potential. Lookup tables.

Matrix χij is precalculated for discrete values of gj .

If g is a real relative speed, then j is the closets nodes gj to g.

For a fixed j, all χij are distributed so that all of them are

equiprobable so that i is chosen randomly

Once χij are calculated, they can be used for ANY flow.

χij are given in Supplementary material of several papers.

Computational effort with lookup tables is the same as for HS.
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Hard sphere vs. ab initio potential

Classical approach vs. Quantum approach
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Couette flow. Sharipov & Strapasson, Phys. Fluids 25 027101 (2013)

r2
r1

uw
2

uw
2

a

Shear stress P12 is calculated.

Π = −P12

p0

v0
uw

(13)

as a function of mole fraction and rarefac-
tion parameter

C =
n1

n1 + n2
, δ =

a p0
µv0

(14)

v0 =

√
2kT0
m

, m = Cm1 + (1− C1)m2 (15)
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Couette flow. Sharipov & Strapasson, Phys. Fluids 25 027101 (2013)

r2
r1

uw
2

uw
2

a

Numerical error 0.5%

Number of cells 400

Number of particles 40 000

Time step 0.002a/v0

Number of steps 106 for uw/v0 = 2

Number of steps 107 for uw/v0 = 0.2
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Couette flow, Comparison with Discrete velocity method applied to BGK,
uw = 0.2v0
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Numerical results based on AI potential, He-Ar, uw/v0 = 0.2.
Sharipov & Strapasson, Phys. Fluids 25 027101 (2013)
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Relative difference between results based on AI and HS, uw/v0 = 0.2
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∆ Π/Π %

δ

C=0     
 0.25
 0.5  
 0.75

∆Π

Π
=

Π(HS) −Π(AI)

Π(AI)
× 100% (16)
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Numerical results based on AI potential, He-Ar, uw/v0 = 2.
Sharipov & Strapasson, Phys. Fluids 25 027101 (2013)
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Relative difference between results based on AI and HS, uw/v0 = 2
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Classical and quantum approaches, uw/v0 = 2.
Sharipov, Physica A 508, 797-805 (2018)
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Solid line - quantum approach
dashed line -classical approach
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Heat transfer between two plates.
Sharipov & Strapasson, Int. J. Heat Mass Transfer 71, 91-97 (2014)

T
0
+
∆
T
/2

T
0
−

∆
T
/2

r2
r1

a

q1

Heat qx flow is calculated

Q = − qx
p0v0

T0
∆T

(18)

as function of C and δ
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Heat transfer.
Sharipov & Strapasson, Int. J. Heat Mass Transfer 71, 91-97 (2014)

T
0
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∆
T
/2

T
0
−

∆
T
/2

r2
r1

a

q1

Numerical error 0.5%

Number of cells 400

Number of particles 40 000

Time step 0.002a/v0

Number of steps 5× 106 for ∆T/T0 = 1.5

Number of steps 107 for ∆T/T0 = 0.2
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Numerical results based on AI potential, He-Ar, ∆T/T0 = 0.2.
Sharipov & Strapasson, Int. J. Heat Mass Transfer 71, 91-97 (2014)
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Relative difference between results based on AI and HS, ∆T/T0 = 0.2
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Numerical results based on AI potential, He-Ar, ∆T/T0 = 1.5.
Sharipov & Strapasson, Int. J. Heat Mass Transfer 71, 91-97 (2014)
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Relative difference between results based on AI and HS, ∆T/T0 = 1.5
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Hard sphere vs. ab initio potential. Classic vs.
quantum

Classical and quantum approaches, ∆T/T0 = 1.5.
Sharipov, Physica A 508, 797-805 (2018)
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Orifice flow. Single gas

Orifice flow. Sharipov & Strapasson, Vacuum 109, 246-252 (2014)

~ p1 p2

-

Reduced flow rate

W =
Ṁ

Ṁ0

Ṁ0 =
√
πa2p1/vm free-molecular flow into vacuum
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Orifice flow. Single gas

Orifice flow. Sharipov & Strapasson, Vacuum 109, 246-252 (2014)

~ p1 p2

-

Determining parameters

å Rarefaction parameter

δ =
ap1
µ vm

å Pressure ratio p2/p1
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Orifice flow. Single gas

DSMC scheme

✲

✻

x

r
L
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L
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✲✛ ✲✛

✻

✻

Sharipov & Strapasson, Vacuum 109 (2014)

AI potential for He, Ar, Kr

Number of model particles - 3× 107

Time step - 0.005R/vm

Number of sample - 106
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Orifice flow. Single gas

Numerical results based on AI potential, Ar.
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Orifice flow. Single gas

Relative difference of flow rate between AI and HS, p1/p0 = 0.7
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Orifice flow. Single gas

Relative difference of flow rate between AI and HS, p1/p0 = 0.1
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Orifice flow. Single gas

Flow-field at p1/p0 = 0.01 and δ = 1000

%/%0 density

T/T0 temperature

Local Mach number
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Orifice flow. Single gas

Flow-field at p1/p0 = 0.1 and δ = 1000
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Orifice flow. Single gas

Flow-field at p1/p0 = 0.5 and δ = 1000

%/%0 density

T/T0
temperature

Mach number
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Orifice flow. Single gas

AI potential, quantum effects.
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Sharipov, Vacuum 156. 146 (2018)
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Orifice flow. Single gas

AI potential, quantum effects.
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Orifice flow. Single gas

AI potential, quantum effects.
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Orifice flow. Single gas

AI potential, quantum effects
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Orifice flow. Mixture.

Reduced flow rate W vs δ at p1/p0 = 0, mixture of He-Ar.
Sharipov, Vacuum 143 (2017)
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Orifice flow. Mixture.

Reduced flow rate W vs δ at p1/p0 = 0.5, mixture of He-Ar.
Sharipov, Vacuum 143 (2017)
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Orifice flow. Mixture.

Flow-field of equimolar mixture He-Ar at p1/p0 = 0.1 and δ = 1000,
Sharipov, Vacuum 143 (2017)
,
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Orifice flow. Mixture.

Axial distribution of equimolar mixture at p1/p0 = 0.1, Sharipov, Vacuum
143 (2017)
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Orifice flow. Mixture.

Scheme of slit flow

p0 p1

-

Reduced flow rate

W = Ṁ/Ṁ0, Ṁ0 = p0H/
√
πvm, vm =

√
2kT/m (21)

Rarefaction parameter

δ = p0H/µvm ∝ 1/Kn (22)
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Orifice flow. Mixture.

Flow rate through a slit. BGK vs. DSMC
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Orifice flow. Mixture.

Axial distribution of flowfield past a slit at p1/p0 = 0.1. BGK vs. DSMC

 0

 0.2

 0.4

 0.6

 0.8

 1

-5  0  5  10  15

n

x

Density, Lines - DSMC, circles - BGK, crosses - S-model;

red - δ = 0.1, green - δ = 10, blue - δ = 100

Felix Sharipov Fundamentals 50 / 87



Orifice flow. Mixture.

Axial distribution of flowfield past a slit at p1/p0 = 0.1. BGK vs. DSMC

 0.2

 0.4

 0.6

 0.8

 1

-5  0  5  10  15

T

x

Temperature, Lines - DSMC, circles - BGK, crosses - S-model;

red - δ = 0.1, green - δ = 10, blue - δ = 100

Felix Sharipov Fundamentals 51 / 87



Orifice flow. Mixture.

Axial distribution of flowfield past a slit at p1/p0 = 0.1. BGK vs. DSMC
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Orifice flow. Mixture.

Modelling of vacuum pumps
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Pumps

Scheme of pump
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Pumps

Scheme of pump, Sharipov, J. Vac. Sci. Technol. A 28, 1312 (2010)

Felix Sharipov Fundamentals 55 / 87



Pumps

Pumping speed

S =
2
√
π

vmA

q

pf
(23)

A - working area of TMP

vm - the most probable speed of molecules

q - throughput [Pa m3/s]

pf - fore vacuum pressure

Compression ratio

k =
fore vacuum pressure

high vacuum pressure
(24)
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Pumps

Main determining parameters

U =
blade speed

most probable molecular speed
(25)

Rarefaction parameter

δ =
hpf
µvm

(26)

h space between blades
µ gas viscosity
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Pumps

Numerical scheme, DSMC
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Pumps

Results, Maximum pumping speed, ph = pf
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Pumps

Results, Limit compression ratio, S = 0

Felix Sharipov Fundamentals 60 / 87



3D flows in KATRIN experimental set-up

Measurement of neutrino mass (KATRIN)
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3D flows in KATRIN experimental set-up

Scheme of flow
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3D flows in KATRIN experimental set-up

Scheme of flow
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3D flows in KATRIN experimental set-up

Flow-field. All pumps work

bulk velocity (m/s) temperature (K)
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3D flows in KATRIN experimental set-up

Flow-field. One pump fails

bulk velocity (m/s) temperature (K)
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Transient flow through short tube

Transient flows through short tube
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Transient flow through short tube

Transient flows through short tube
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Transient flow through short tube

Flow rate vs time t (τ = a/vm) at L/a = 1 and p2/p1 = 0.1
solid - inlet, dashed - outlet

Sharipov, Vacuum 90, P.25 (2013)
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Transient flow through short tube

Flow rate vs time t (τ = a/vm) at L/a = 1 and p2/p1 = 0.5
solid - inlet, dashed - outlet

Sharipov, Vacuum 90, P.25 (2013)
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Transient flow through short tube

Flow rate vs time t (τ = a/vm) at L/a = 5 and p2/p1 = 0.1
solid - inlet, dashed - outlet

Sharipov, Vacuum 90, P.25 (2013)
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Transient flow through short tube

Flow rate vs time t (τ = a/vm) at L/a = 5 and p2/p1 = 0.5
solid - inlet, dashed - outlet

Sharipov, Vacuum 90, P.25 (2013)
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Transient flow through short tube

Flowfield p1/p0 = 0.1, L/a = 5, δ = 100

t = 1× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.1, L/a = 5, δ = 100

t = 2× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.1, L/a = 5, δ = 100

t = 4× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.1, L/a = 5, δ = 100

t = 8× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.1, L/a = 5, δ = 100

t = 15× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.1, L/a = 5, δ = 100

t = 30× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.5, L/a = 5, δ = 100

t = 1× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.5, L/a = 5, δ = 100

t = 2× τ , τ = a/vm

Density
ρ/ρ0
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Temperature
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Transient flow through short tube

Flowfield p1/p0 = 0.5, L/a = 5, δ = 100

t = 4× τ , τ = a/vm

Density
ρ/ρ0
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Temperature
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Transient flow through short tube

Flowfield p1/p0 = 0.5, L/a = 5, δ = 100

t = 8× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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Transient flow through short tube

Flowfield p1/p0 = 0.5, L/a = 5, δ = 100

t = 15× τ , τ = a/vm

Density
ρ/ρ0
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Temperature
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Transient flow through short tube

Flowfield p1/p0 = 0.5, L/a = 5, δ = 100

t = 30× τ , τ = a/vm

Density
ρ/ρ0

.
Temperature
T/T0

.
Bulk velocity
ux/vm

.
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