Our Implementations
Reproducible Research defines good practices in scientific research methodology involving quantitative computational research. In this space we available some of our computational implementations.
- The Python codes and the data for the fitting procedures used in our paper
Análise de curvas epidêmicas da Covid-19 via modelos generalizados de crescimento: Estudo de caso para as cidades de Recife e Teresina, submitted to Revista Brasileira de Epidemiologia, are available here:
- REC-CASOS.py
- REC-OBITOS.py
- REC_THE_OBITOS_DIARIOS.py
- THE-CASOS.py
- THE-OBITOS.py
- DadosCasosRecife.csv
- DadosObitosRecife.csv
- DadosCasosTeresina.csv
- DadosObitosTeresina.csv
- The Python codes and the data for the fitting procedures used in our paper
Complexity signatures in the COVID-19 epidemic: power law behaviour in the saturation regime of fatality curves, published in medRxiv, are available here:
- inputs.py
- lmfit_BLM.py
- lmfit_CI.py
- inputs.txt
- The Python codes and the data for the fitting procedures used in our paper
Modelling the epidemic growth of preprints on COVID-19 and SARS-CoV-2, published in medRxiv, are available here:
- preprintsv2.ipynb
- fig_1_2_preprints.csv
- fig_3_preprints.csv
- fig_4_preprints.csv