```
clear all;
clc;
%%%%%%%%%%%%%%%%
% Parameters %
%%%%%%%%%%%%%%%
F}=[0.5 1 1.5]; % values for F
m = 1;
omega0 = 1;
beta = 0.2;
omega = sqrt(omega0^2 - beta^2);
```

$t=[0: .01: 20] ;$

\% initial conditions $x(0)=1$ and $v(0)=0$ \%

delta $=$ atan (beta/omega);
for $q=1: \operatorname{size}(F, 2)$
$A(q)=\left(1-F(q) / m / o m e g a 0^{\wedge} 2\right)^{*} \operatorname{sqrt}\left(b e t a^{\wedge} 2+o m e g a^{\wedge} 2\right) /$ omega;
end
$\% \% \% \% \% \% \% \% \% \% \%$
\% Equations \%
$\% \% \% \% \% \% \% \% \% \% \%$
for $n=1: \operatorname{size}(t, 2)$
for $q=1: \operatorname{size}(F, 2)$
$x(n, q)=F(q) / m / o m e g a 0^{\wedge} 2+A(q) * \exp (-b e t a * t(n))^{*} \cos (o m e g a * t(n)-d e l t a) ;$
end
end
$p \operatorname{lot}(t, x(:, 1), t, x(:, 2), t, x(:, 3), t, x(:, 4))$
grid on

