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ABSTRACT

Complex systems have typically more than one attractor, either periodic or chaotic, and their basin structure ultimately determines the
final-state predictability. When certain symmetries exist in the phase space, their basins of attraction may be riddled, which means
that they are so densely intertwined that it may be virtually impossible to determine the final state, given a finite uncertainty in the
determination of the initial conditions. Riddling occurs in a variety of complex systems of physical and biological interest. We review
the mathematical conditions for riddling to occur, and present two illustrative examples of this phenomenon: coupled Lorenz-like
piecewise-linear maps and a deterministic model for competitive indeterminacy in populations of flour beetles.
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1 INTRODUCTION

Chaotic dynamical systems having certain symmetries and quite
general mathematical properties may present basins of attraction
densely intertwined, a phenomenon called riddling (for a recent
review covering theoretical and experimental aspects of riddling
see Ref. [1]). In this case the system has a chaotic attractor A
whose basin of attraction is riddled with “holes” (in a measure-
theoretical sense) belonging to the basin of another (non neces-
sarily chaotic) attractor B [2]. In other words, riddling means that
every point in the basin of attractor A has pieces of the basin of
attractor B arbitrarily nearby. The basins are called intermingled,
when each basin is riddled with holes belonging to the other ba-
sin. For intermingled basins there must be at least two attractors
lying in different invariant subspaces [2, 3].

Basin riddling affects our ability of predicting what attractor
the trajectory originating from a given initial condition asympto-
tes to. Let P be an arbitrary point belonging to the basin of the
chaotic attractor A. If the basin of A is riddled by the basin of
the other attractor B, then a small ball of radius ε centered at
P has a nonzero fraction of its volume belonging to the basin of
B, irrespective of how small the radius ε may be. Hence, if we
regard this ε-ball as an uncertainty neighborhood related to the
(numerical or experimental) determination of the initial condition,
the resulting trajectory has always a positive probability of falling
into the basin of the other attractor. In other words, the probabi-
lity of escaping from the basin of attractor A is nonzero for every
uncertainty ε. Consequently, in the presence of riddling, the task
of predicting what will be the final state of the system becomes
much more difficult than in the cases of fractal basins, where the
boundary is a fractal curve and the uncertain fraction scales with
ε as a power-law [4].

There are many examples of riddling in dynamical systems
of physical and biological interest, as a forced double-well Duf-
fing oscillator [5, 6, 7], coupled nonlinear electronic circuits
[8, 9], coupled elastic arches [10], ecological population mo-
dels [11], learning dynamical systems [12], chemical reactions
of the Belouzov-Zhabotinsky type [13], and in models of interde-
pendent open economies [14]. In this paper we describe applica-
tions of riddled and intermingled basins in physical and biological
complex systems.

This paper is organized as follows: in Section 2 we review
the mathematical conditions for the existence of riddled basins.
Section 3 deals with riddled basins in coupled piecewise-linear
maps which can be viewed as a low-dimensional reduction of
coupled Lorenz equations, for which riddling is thought to occur.

Section 4 brings an application of riddling in a dynamical system
of biological interest, describing the competitive indeterminacy
for two species of a flour beetle, and which presents intermingled
basins. The last Section contains our conclusions.

2 MATHEMATICAL CONDITIONS FOR THE EXISTENCE
OF RIDDLED BASINS

Let H be the phase space in which a discrete-time map xn+1 =
F(xn) is defined. Continuous-time flows can be also described
by F , if Poincaré sections are taken. A closed subset A ∈ H is
said to be an attractor of F if it satisfies the following conditions:

(i) A has a basin of attraction, denoted β(A), of positive Le-
besgue measure (volume) in the phase space H;

(ii) A is a compact set with a dense orbit. In the Milnor defi-
nition of attractor, the basin of attraction does not need to
include the whole neighborhood of the attractor.

If the basin of attraction of A has positive Lebesgue measure, we
call A a weak Milnor attractor [15].

The basin of a chaotic attractor A is riddled if its complement
intersects every disk(in the sense of phase-space volumes of all
sizes) of the phase space H in a set of positive Lebesgue mea-
sure [2]. When the basin of attraction of A is riddled with holes
belonging to the basin of another attractor B, we can say that,
if a randomly chosen point has a positive probability of being in
β(A), then it also has positive probability of not being in β(A).
In the latter case, the point belongs to the other basin of attraction
β(B).

This measure-theoretical definition implies the following set
of conditions under which riddled basins occur in a dynamical
system [6]:

1. there is an invariant subspace M ∈ H;

2. the dynamics on M has a chaotic attractor A;

3. there is another attractor B not belonging to M;

4. the attractor A is transversely stable in H, i.e. for typical
orbits on the attractor the Lyapunov exponents for infinite-
simal perturbations along the directions transversal to the
invariant subspace M are all negative;

5. a set of unstable periodic orbits embedded in A is trans-
versely unstable. As a consequence, at least one of the
Lyapunov exponents along directions transverse to M ex-
periences positive finite-time fluctuations.
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Condition 1 is a consequence of the system having some
symmetry which enables it to display an invariant subspace M,
in the sense that, once an initial condition is exactly placed on M,
the resulting trajectory cannot escape from M for further times.
To have riddling, it is necessary to have a dense set of points with
zero Lebesgue measure in the attractor lying in the invariant subs-
pace which are transversely unstable, thus it is necessary that this
attractor be chaotic (condition 2). The existence of another attrac-
tor (condition 3) is necessary for the basin of an attractor to be
riddled with holes belonging to the basin of this second attractor.

If the transverse Lyapunov exponents of typical orbits lying in
the invariant manifold M are all negative (condition 4), then A is
an attractor at least in the weak Milnor sense, and its basin has po-
sitive Lebesgue measure. This can be verified by computing the
maximal Lyapunov exponent along a transversal direction to M:

λ⊥ = lim
n→∞

λ̃⊥(x0, n) < 0, (1)

where

λ̃⊥(x0; n) =
1

n
ln ||D f n(x0).v⊥||, (2)

is the maximal time-n Lyapunov exponent along a transversal di-
rection (specified by the singular vector v⊥) with respect to the
invariant manifold M, DFn(x0) being the Jacobian matrix of
the n times iterated map F , with entries evaluated at an initial
condition x0 ∈ A.

Condition 5 states that, while the invariant manifold M is still
transversely stable, there will be trajectories on the attractor A
that are transversely unstable. Verifying condition 5, on the other
hand, would require the determination of a transversely unsta-
ble periodic orbit embedded in the attractor A. A consequence
of these transversely unstable orbits is that there will be typically
a number of positive values of the finite-time transversal Lyapu-
nov exponent, or λ̃⊥(x0, n) > 0. Hence, this condition can be
statistically verified by considering the probability distribution of
finite-time transversal exponents P(λ̃⊥(x0, n)).

The existence of positive values of λ̃⊥(x0, n) – condition 5
for riddling – implies that there is a fraction of positive values
of λ̃⊥(x0, n) for initial conditions x0 randomly chosen in the
attractor A, i.e.

f (n) =
∫ ∞

0
P

(
λ̃⊥(n)

)
dλ̃⊥(n) > 0. (3)

assuming that the probability is properly normalized.

3 RIDDLED BASINS IN LORENZ-LIKE MAPS

The modern age of nonlinear dynamics begun in 1963, when Ed
Lorenz investigated the dynamics generated by a three-mode re-
duction of the equations governing thermal convection, that is one
of the mechanisms underlying climate changes [16]. Lorenz rea-
lized that the chaotic dynamics exhibited by the three-mode diffe-
rential equations

dx

dt
= 10(y − x), (4)

dy

dt
= x(28 − z) − y, (5)

dz

dt
= xy −

8

3
z, (6)

could be understood in terms of a simpler, low-dimensional
discrete map. The so-called Lorenz map is obtained by sam-
pling the local maxima of one of the evolving variables, hn =
maxt=tn {z(t)}, so as to yield a first return map hn+1 = L(hn),
which is unimodal with a cusp [Fig. 1(a)]. Such maps dis-
play a similar dynamical behavior as the tent map (xn+1 =
1− 2|xn − 1/2|) and, in fact, this similarity was used by Lorenz
to explain the erratic behavior of orbits belonging to the famous
“butterfly attractor” in the three-dimensional phase space [16].

Another piecewise-linear approximation to the Lorenz map is
provided by the so-called bungalow-tent map, which has out of
four linear segments instead of two, as in the tent function [17, 18]:

xn+1 = fa (xn) =

=






1 − a

a
xn, if xn ∈ [0, a) ,

2a

1 − 2a
xn +

1 − 3a

1 − 2a
, if xn ∈

[
a, 1

2

)
,

2a

1 − 2a
(1 − xn) +

1 − 3a

1 − 2a
, if xn ∈

[
1
2 , 1 − a

)
,

1 − a

a
(1 − xn) , if xn ∈ [1 − a, 1] ,

(7)

where a ∈
(

0, 1
2

)
is a control parameter. For a = 1

3 we obtain

the tent map. A linear coordinate transformation h = 22x + 32
and the choice a = 0.45 furnish a better approximation of the
Lorenz map in comparison with the tent function [Fig. 1(b)]. In
the following we will refer to the former as the piecewise-linear
Lorenz map.

The two fixed points of the bungalow map are P1 : x∗
1 = 0

and the right corner point P2 : x∗
2 = 1 − a. For all va-

lues of the control parameter a, the fixed points are unstable
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(a) (b)

Figure 1 – (a) Lorenz map. (b) Bungalow-tent map for a = 0.45.

because the eigenvalues δ1,2 = (a − 1)/a are greater than
1 in modulus. Although the map is non-smooth at the fixed point
x∗

2 , we can define the map derivative at the right-hand site of x∗
2 ,

because this point belongs to the interval [1−a.1]. Thanks to the
piecewise-linearity of this map, it is possible to obtain analytically
its Lyapunov exponent for any value of a, namely [17, 18]:

λ (a) =
1 − a

2 − 3a
ln

(
1 − a

a

)
+

1 − 2a

2 − 3a
ln

(
2a

1 − 2a

)
. (8)

In particular, for a = 1/3 (tent map) we obtain λ = ln 2,
and, for other values of a, the Lyapunov exponent is always po-
sitive, displaying a smooth dependence with a. For the approxi-
mation to the Lorenz map which results from a = 0.45, we have
λ = 0.5078.

Systems of coupled Lorenz equations have been found nu-
merically to exhibit a suggestive evidence for riddled basins [19],
although without a mathematical proof. Such an investigation is
indeed quite difficult in view of the high dimensionality of the sys-
tem and of the rather strong mathematical requirements neces-
sary to characterize riddled basins, as we have seen in the previ-
ous Section. Hence we can resort to the one-dimensional reduc-
tion performed by taking the Lorenz map and its piecewise-linear
counterpart. Hence we can study the presence of riddled basins
in coupled Lorenz equations starting from its simplest possible
version, which is the coupling of piecewise-linear Lorenz maps in
the form

xn+1 = fa
(
xn

)
+ δ

(
xn − yn

)
, (9)

yn+1 = fa
(
yn

)
+ ε

(
yn − xn

)
, (10)

where fa is given by Eq. (7), and δ and ε are coupling strengths

which can be different when the coupling is asymmetric, and even
vanish for unidirectional coupling (a master-slave configuration).
As we will see, the dynamics of the system depends essentially
on their sum d ≡ δ + ε.

It has been known for a long time that two identical coupled
chaotic systems, in spite of their characteristic sensitivity on the
initial condition, can attain a completely synchronized state cha-
racterized by xn = yn for all times n [20, 21]. In terms of the
two-dimensional phase space H of the coupled system, the syn-
chronized state defines a synchronization subspace M, which is
the straight line x = y. The orbit in the synchronized state is
obviously the same as a chaotic orbit from the uncoupled maps.
Hence, it turns out that M is an invariant subspace, thus fulfil-
ling condition 1 for riddling. Moreover, there is a chaotic attractor
A embedded in the synchronization subspace (condition 2), such
that the fixed points in M are P1 = 0 and P2 = 1−a, belonging
to the intervals [0, a) and [1 − a, 1], respectively. In this case,
there is only one transversal direction to M. Besides the synch-
ronized state, there exists another attractor B off the manifold M,
that is the attractor at infinity (condition 3).

In order to verify condition 4 for riddling, we have to investi-
gate for which values of the coupling coefficient d the transversal
Lyapunov exponent is negative. The exponent along the trans-
versal direction, on the other hand, can be obtained by applying
Birkhoff ergodic theorem as [15]:

λ⊥ =
1

2 − 3a

[
a ln

∣
∣
∣
∣
1 − a

a
− d

∣
∣
∣
∣

+
1 − 2a

2
ln

∣
∣
∣
∣

2a

1 − 2a
− d

∣
∣
∣
∣
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+
1 − 2a

2
ln

∣
∣
∣
∣

−2a

1 − 2a
− d

∣
∣
∣
∣

]

+
1 − 2a

2 − 3a
ln

∣
∣
∣
∣

−
(

1 − a
)

a
− d

∣
∣
∣
∣, (11)

where we have used the invariant density of the isolated map
[17, 18].

In Figure 2 we plot the transversal Lyapunov exponent as a
function of the coupling strength sum d = δ + ε for a = 0.45.
There are out of four intervals of d for which the transversal Lyapu-
nov exponent is negative, thus fulfilling Condition 4 for riddling.
The boundaries of these intervals are the given by the values of
d for which λ⊥ = 0, yielding transcendental equations in view
of (11). The intervals characterized by negative transversal ex-
ponents for the piecewise-linear Lorenz case (a = 0.45) are
I1 = (−1.224, −1.220) and I2 = (0.689, 1.707).

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−6

−5

−4

−3

−2

−1

0

1

2

d

λ

Figure 2 – Transversal Lyapunov exponent for the synchronized attractor of cou-
pled piecewise-linear Lorenz maps with a = 0.45 (as a function of the coupling
strength d .

We can now verify condition 5 for riddling, that demands that
there exist transversely unstable fixed points in the synchronized
attractor A. In principle, any periodic orbit embedded in A can be
transversely unstable, so we start by the fixed points. Thanks to
the piecewise-linearity of the bungalow-tent map, we can compute
analytically the eigenvalues of the fixed points along transversal
directions to the synchronization subspace. In Figure 3 we plot
the moduli of the transversal eigenvalue μ2 as a function of the
coupling parameter d for the fixed points P1 and P2 of the cou-
pled maps. Regardless of the value taken on by d , there will be
always some transversely unstable fixed point, i.e. there is at least
one transversal eigenvalue having modulus greater than the unity.

For the fixed point P1 = 0 this interval is d1 < d < d2, where

d1,2 =
(

1 − a

a

)
∓ 1, (12)

and for P2 = 1 − a, −d2 < d < −d1. For a = 0.45,
as in Figure 3, these intervals are I3 = (−2.23, −0.22) and
I4 = (0.22, 2.23) for the fixed points P1 and P2, respectively.

Summing up, since condition 5 is verified for any d , the only
relevant condition for riddling is 4, i.e. the coupling strength sum
d must take on a value belonging to the intervals I1 or I2 such
that we have riddled basins of attraction.

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

d

|µ
2
|

µ
2
(1)

µ
2
(4)

µ = 1

Figure 3 – Moduli of the transversal eigenvalue of the coupled piecewise-linear
Lorenz maps as a function of the coupling strength d for the fixed points P1 = 0
and P2 = 1 − a.

An example of a non-riddled basins of synchronization is pro-
vided by Figure 4(a), where the black pixels represent initial con-
ditions in the phase plane which asymptote to the synchronized
state xn = yn , whereas white pixels represent initial conditions
generating orbits which go to infinity. In fact, the black and white
regions do not seem to be densely intertwined, as required for
riddled basins, and are actually fractal ones, with a nonetheless
involved basin boundary structure. A riddled basin is exemplified
in Figure 4(b), for which the value (d = 1.5) of the coupling
strength is such that λT < 0 (condition 4). The black and white
regions are densely intermixed, such that for any point belonging
to the basin of the synchronized attractor there exists a neigh-
borhood containing points belonging to the basin of infinity.

4 INTERMINGLED BASINS IN A COMPETITION
TWO-SPECIES SYSTEM

Experiments on the competition of two species of flour beetles, Tri-
bolium castaneum and Tribolium confusum resulted in the even-
tual extinction of either one of the two competitors [22]. However,
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(a) (b)

Figure 4 – Initial conditions in the phase plane for a = 0.45 and (a) d = 0.5 and (b) d = 1.5. The black pixels represent
initial conditions which converge to a synchronized state, whereas white pixels are initial conditions generating orbits going to infinity.

the particular species to become extinct was found to be extremely
sensitive to the initial population and the environmental condi-
tions (such as temperature and humidity) prevailing during the
realization of the experiment [23]. Moreover, there are also expe-
rimental evidences of chaotic behavior in the time evolution of the
populations of single species of Tribolium [24]. Hence we may
regard the extinction of either species as an asymptotic state with
a well-defined attractor in the phase space [25]. The observed ex-
treme sensitivity on the initial condition has led to the hypothesis
that the basins of these attractors are riddled [26].

In fact, the basins of attraction are intermingled, for each ba-
sin is riddled with holes belonging to the other basin. In this
case the two coexisting attractors must lie in different invariant
subspaces, and the basin of each attractor is pierced with holes
containing initial conditions belonging to the basin of the other
attractor [2, 3]. Moreover, these basins are so intertwined that,
given an initial condition with a finite uncertainty, the final state
cannot be predicted. The sensitivity observed in the Tribolium
sp. experiments suggests that a mathematical model describing
the problem should exhibit intermingled basins, since the initial
population in the experiments correspond to an initial condition
which is unavoidably plagued with some uncertainty, and thus the
outcome becomes uncertain, even if the accuracy is very large in
determining the initial condition [25, 26].

Hofbauer and coworkers [25] have developed a class of two-
dimensional models in which we consider two species with po-
pulations x1(n) and x2(n) at (discrete) times n = 0, 1, 2, . . .,
which labels the insect generation, and satisfying identical evo-
lution equations. We can adapt our conditions for riddling to the
case of intermingled basins in this two-dimensional phase space
H, as follows:

1a. there are two invariant one-dimensional subspaces M0

and M1 in the phase plane;

2a. the dynamics on the invariant subspaces M0 and M1 have
chaotic attractors A and B, respectively;

3a. the attractors A and B are transversely stable in the phase
plane, i.e. for typical orbits on the attractors the Lyapunov
exponent for infinitesimal perturbations along the direc-
tion transversal to the invariant subspaces M0 and M1,
respectively, is negative;

4a. a set of unstable periodic orbits embedded in the chaotic
attractors A and B are transversely unstable. As a conse-
quence, along the direction transversal to M0 and M1, the
Lyapunov exponent experiences positive finite-time fluc-
tuations.

The Hofbauer model starts from the map equations

x1(n + 1) = x1(n)8
(
x1(n) + x2(n)

)
, (13)

x2(n + 1) = x2(n)8
(
x1(n) + x2(n)

)
, (14)

where 8(.) is a function compatible with three biological requi-
rements: (i) the proportion of each species does not change with
time, i.e. x2(n + 1)/x1(n + 1) = x2(n)/x1(n); (ii) the
total population x = x1 + x2 in a generation depends only on
the value at its previous generation; and (iii) ∂8/∂x1 < 0 and
∂8/∂x2 < 0.

Perturbations of Eqs. (13)–(14) are included in the model so
as to bring about competition effects that may lead to species ex-
tinction:

x1(n + 1) = x1(n)8
(
x1(n) + x2(n)

)

[
1 + κx1(n)G

(
x1(n), x2(n)

)]
, (15)
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x2(n + 1) = x2(n)8
(
x1(n) + x2(n)

)

[
1 − κx2(n)G

(
x1(n), x2(n)

)]
, (16)

where 0 < κ < 1 stands for the strength of the competition
between species and, for simplicity, we assume that G(.) depends
only on the total population x = x1 + x2. Changing variables
from (x1, x2) to (x, y ≡ x1/x) we obtain, from Eqs. (15)–(16),
the following two-dimensional map

x(n + 1) = T (x(n)) ≡ x(n)8(x(n)), (17)

y(n + 1) = y(n) + κy(n) (1 − y(n)) g(x(n)), (18)

where g(x) = xG(xy, x(1 − y)) satisfies the mathemati-
cal requirements stated in Ref. [25]. Within the class of two-
dimensional discrete models defined by Eqs. (17)–(18) both func-
tions T (or 8) and g (or G) have to be determined taking into
account the possibility of riddled basins. There must be two pos-
sible outcomes: y = 0 (extinction of the x1 species) or y = 1
(extinction of the x2 species). These are the only attractors of
the two-dimensional map in the phase plane, denoted as A and
B, respectively. Moreover, their basins of attractions β(A) and
β(B) must be riddled (in fact intermingled), what poses additio-
nal requirements in the formulation of the model.

The evolution of the total population, governed by the one-
dimensional map T (x), must be chaotic in order to fulfill con-
dition 2a for intermingled basins, since the only way to have
an infinite number of unstable periodic orbits within an attrac-

tor is to ensure the existence of a dense chaotic orbit lying in
the invariant manifold. The transversal dynamics (18) has two
invariant subspaces: M0 =

{
(x, y = 0)|x ∈ [0, 1]

}
and

M1 =
{
(x, y = 1)|x ∈ [0, 1]

}
, what fulfills condition 1a.

The specific function g(x), on the other hand, must be cho-
sen so as to warrant the proper transverse stability conditions
3a and 4a.

The case for which T (x) = 3x (mod 1) and g(x) =
cos(2πx) was previously studied by Kan [26], who proved the
existence of intermingled basins when κ = 1/32. This proof has
been extended to the case 0 < κ < 1 by Hofbauer and collabo-
rators [25]. In the present paper we consider a slightly modified
version of Kan’s model, by choosing

x(n + 1) = 4x(n)(1 − x(n)), (19)

y(n + 1) = y(n) + κy(n)(1 − y(n)) cos(3πx(n)). (20)

such that the dynamics in each invariant subspace is strongly
chaotic (transitive).

A representative example of the basins of attraction exhibited
by this system is depicted in Figure 5(a) for κ = 0.3. A nu-
merical approximation of the basin of the attractor at M0 (M1) is
represented by the white (black) pixels, and show a fine structure,
with tongues of a basin approaching the other attractor at arbitra-
rily small distances. Moreover, the tongue-like structure of each
basin is self-similar, as suggested by the magnification shown in
Figure 5(b).

(a) (b)

Figure 5 – Basins of the synchronized attractor (white pixels) and of the attractor at infinity (black pixels) when κ = 0.3.
(b) Magnification of a small region of (a).
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In order to discuss conditions 3a and 4a for intermingled
basins in a quantitative setting, we deal with the finite-time Lyapu-
nov exponents of the two-dimensional map defined by Eqs. (19)–
(20). If either attractor has a riddled basin, it must be transversely
stable (condition 3a), such that it is necessary that the infinite-
time transversal Lyapunov exponent be negative for A and B:

λ⊥ = lim
n→∞

λ̃⊥(x(0), y(0), n)

= lim
n→∞

1

n

n∑

i=1

ln ||DF(xi , yi ).ey || < 0, (21)

where DF is the map Jacobian. In addition, it is also re-
quired that both A and B must contain transversely unstable
orbits (condition 4a). This implies the existence of positive
and negative fluctuations of the finite-time transversal exponent,
λ̃⊥(x(0), y(0), n), what makes useful to work with the proba-
bility distribution P(λ̃⊥(x(0), y(0), n)).

The probability distribution function (PDF) we have numeri-
cally obtained for typical chaotic orbits in both attractors is fitted
by a Gaussian distribution, with small (and statistically not signi-
ficant) deviations at its tails. For a Gaussian distribution, it turns
out that the infinite-time Lyapunov exponent along the transversal
direction is the average finite-time exponent:

〈
λ̃⊥(x(0), y(0), n)

〉

=

+∞∫

−∞

, λ̃⊥(n)P(λ̃⊥(x(0), y(0), n))dλ̃⊥(n) = λ⊥, (22)

provided the PDF is normalized.
In Figure 6(a) we depict (in gray-scale) the dependence on

the parameter κ of the numerically obtained probability distribu-
tion function P(λ̃⊥)(x(0), y(0), n) for the time-24 transverse
Lyapunov exponents. The average of these PDFs are always ne-
gative for any κ , hence λ̃⊥ < 0 (condition 3a). The widths of the
PDFs increase with κ , with a marked asymmetry toward negative
values of the exponent, as shown by the computed moments of
the PDFs as a function of κ [Fig. 6(b)]. We have used in these
computations, both typical chaotic orbits in the attractor A and
atypical unstable period- p orbits embedded in A [27], with simi-
lar results for the attractor B.

Verifying the condition 4a for intermingled basins amounts
to observe a positive fraction of positive values of λ̃⊥(n) for ini-
tial conditions (x(0), y(0)) randomly chosen in the attractor A
or B [cf. Eq. (3)]. If the PDFs are such that half of their va-
lues are positive sign, there results that f (n) = 1/2, and the

infinite-time transversal exponent vanishes (λ⊥ = 0), the attrac-
tor losing transversal stability (a blowout bifurcation). We remark
that the occurrence of a blowout bifurcation marks the endpoint of
riddling, since after that the invariant chaotic sets A or B become
transversely unstable.

Figure 6 – (a) PDF (in gray-scale) and (b) some of its moments, for time-24
transversal Lyapunov exponents for typical orbits in the subspaces y = 0 as a
function of the parameter κ . The lines stand for typical chaotic orbits, whereas the
symbols represent atypical unstable period- p orbits (open symbols of p = 24,
filled symbols for p = 12).

The dependence of the positive fraction of time-n transverse
Lyapunov exponents with κ is depicted in Figure 7(a) for three
different values of n. The results indicate that, for 0 < κ < 1
we have a nonzero positive fraction of transversal exponents, on
account of the existence of transversely unstable periodic orbits.
Since the infinite-time Lyapunov exponent is already negative for
this range of parameters there follows that the map always fulfill
the conditions for riddling. This result holds for both attractors,
so we have intermingled basins for any κ .

Our conclusions are reinforced by computing the so-called
contrast measure, that quantifies the relative contribution of the
unstable period- p orbits to the natural measure of a chaotic at-
tractor [28],

C p = |μu
p − μs

p|, (23)

where μu
p and μs

p are the contributions of period- p orbits, em-
bedded in the chaotic attractor, which are transversely unstable
and stable, respectively. Riddling occurs when the former con-
tribution is nonzero, hence the contrast measure is supposed to
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take on values between zero and unity for systems possessing rid-
dled basins. The contrast measure is depicted in Figure 7(b) as a
function of the parameter κ for orbits with three different periods.
The results confirm those obtained with help of finite-time Lyapu-
nov exponents.
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Figure 7 – Dependence with κ of (a) the positive fraction of transversal Lyapunov
exponents of attractor A for typical chaotic orbits (n = 16, 20, 24) and unstable
periodic orbits (p = 16, 20, 24); (b) contrast measure for p = 16, 20, 24.

5 CONCLUSIONS

Riddled basins, when occurring in complex systems, present
many challenges for theoretical and experimental investigations.
The extreme sensitivity to initial conditions make those systems
highly susceptible to uncertainties of parameter and state deter-
mination. On the other hand, the rather stringent mathematical
conditions necessary for the occurrence of riddled or intermin-
gled basins (chiefly the mandatory existence of invariant mani-
folds for each coexisting attractor) limit the horizon of dynamical
systems to be investigated. For example, coupled chaotic systems
commonly present one such invariant manifold – the synchroniza-
tion subspace. However, other invariant subspaces would require
additional symmetry properties that not all complex systems are
able to exhibit.

In spite of these difficulties, it turns out that riddling is quite
common in complex systems. In this paper we have shown two
representative examples of riddling in systems of physical and
biological interest. Coupled Lorenz-like piecewise-linear maps
can be viewed as a toy model that is expected to emulate dynami-
cal features of complex systems describing climate change. We

have shown that there are wide parameter values (in this case,
the strength of coupling between the systems) for which the basin
of the chaotic synchronized attractor is riddled. The advantages
here are that we can actually prove that the basins are riddled, by
verifying the mathematical requirements for that, which may be
unfeasible in a higher-dimensional model. Moreover, since we
were able to prove riddling for such a low-dimensional system, it
is well likely that higher-dimensional models would also display
riddled basins.

The second example studied involves a model for the compe-
tition between two species of flour beetles, in which the final states
are the extinction of either species. The discrete-time model we
used for this problem is simple enough that the mathematical re-
quirements for riddling can be proved to exist for any intensity
of the competition between species. Moreover, the basins of both
coexisting attractors are mutually riddled, or intermingled. A prac-
tical consequence of riddling, in this case, is that the outcome of
the species competition is indeterminate, as observed in experi-
ments with populations of Tribolium sp.. The conventional expla-
nation for this phenomenon has been stochastic, both of genetic
and demographic origin, but we showed that intermingled basins
offer a new perspective on this phenomenon, since they provide
a deterministic origin for the competitive indeterminacy, what can
be used to analyze the evolution of other animal populations.
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