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Chaotic escape of impurities and sticky orbits in toroidal plasmas
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We investigate chaotic impurity transport in toroidal fusion plasmas (tokamaks) from the point of view of
passive advection of charged particles due to E × B drift motion. We use realistic tokamak profiles for electric
and magnetic fields as well as toroidal rotation effects, and consider also the effects of electrostatic fluctuations
due to drift instabilities on particle motion. A time-dependent one degree-of-freedom Hamiltonian system is
obtained and numerically investigated through a symplectic map in a Poincaré surface of section. We show that
the chaotic transport in the outer plasma region is influenced by fractal structures that are described in topological
and metric point of views. Moreover, the existence of a hierarchical structure of islands-around-islands, where
the particles experience the stickiness effect, is demonstrated using a recurrence-based approach.
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I. INTRODUCTION

The transport of impurities in fusion reactor plasmas has
been the object of many theoretical, computational, and ex-
perimental investigations [1]. These impurities can be charged
particles created from plasma-wall interactions in tokamaks,
for example [2]. The transport of such impurities raise a num-
ber of key issues in both physical and technological levels. In
ITER (International Thermonuclear Experimental Reactor),
for example, that is expected to produce 500 MW of fusion
power [3,4], particle transport (not just impurities) may gener-
ate heat loads of 5−10 MW/m2 that can damage the tokamak
inner wall [5]. In order to mitigate this problem, both in ITER
as well as in other tokamaks like JET and Alcator C-Mod,
divertor concepts have been proposed so as to capture or divert
energetic particles escaping from the plasma [6–8].

Divertors are shaped metallic plates placed outside the
plasma boundary, and particles can be deviated so as to hit
them by magnetic field lines connecting the outer portion of
the plasma column and the inner wall. However, if particle
fluxes are too large even the divertor plates can be damaged, so
chaotic magnetic field lines have been proposed to uniformize
heat and particle loadings [9]. These chaotic field lines can be
produced, for example, by the application of suitable external
magnetic fields. When combined with the equilibrium field,
the resulting field lines can form a cold chaotic boundary layer
insulating the wall (and the divertors) from the plasma core.
The latter is the so-called ergodic divertor concept, realized
with resonant helical windings [10] or current rings of finite
length [11].

A fundamental question in the successful operation of
ergodic divertors is how uniform are the heat and particle
loadings on the plates, the so-called magnetic footprints. Ex-
perimental results show that these loadings are not really

*Corresponding author: leonardo@fisica.ufpr.br

uniform, but that magnetic footprints seem to have a self-
similar organization, a fractal pattern indeed [12]. Magnetic
field line models using nonintegrable Hamiltonian systems are
able to show that these fractal patterns are ultimately related
to some topological structures underlying chaotic, area-filling
orbits, in a Poincaré surface of section [13–15]. This point
of view has been intensively investigated by Evans and his
collaborators in a number of seminal papers on the subject
[16,17].

In this paper, we shall pursue another pathway to describe
chaotic impurity transport in toroidal plasmas, by includ-
ing electrostatic fluctuations in the model equations. The
magnetic confinement of toroidal plasmas in machines like
tokamaks and stellarators is strongly affected by a large num-
ber of instabilities. Among them, one of the most important
is represented by drift instabilities, occurring when there are
steep density gradients in the plasma column. They are com-
monly observed in plasmas of nonuniform density that are
kept in equilibrium by a dominant magnetic field, which gives
to such instabilities an universal character [18,19].

In the case of low frequencies, the magnetic perturbations
play essentially no role and drift waves are electrostatic, in
the sense that the electric field points along the propagation
direction and ∇ × Ẽ = 0, enabling us to define a potential
[20] such that Ẽ = −∇φ̃. The electrostatic field associ-
ated with drift wave, combined with the dominant magnetic
field, produces a E × B drift in particle motion. In addition,
plasma turbulence in tokamaks is dominated by E × B drift
effects [21].

The drift equations of motion can be made even more
realistic by including radial profiles of equilibrium quantities
related to electromagnetic fields, and which are ingredients
of modern tokamak scenarios. The resulting model, proposed
by Horton [20], has a Hamiltonian character, being a nonau-
tonomous one-and-a-half degrees of freedom system. By
defining action-angle variables in a suitably chosen Poincaré
surface of section, one can describe the motion of particles
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using a two-dimensional area-preserving map. Being noninte-
grable, it is possible to describe chaotic motion in a region that
extends from the outer plasma column to the tokamak wall.

Our strategy is to describe the diffusion of impurities using
this model, by assuming that they are passive particles, i.e.,
they suffer the influence of the electric and magnetic fields
but they do not alter these fields in a significative way. Hence
impurity particles behave as passive tracers, being advected
by the E × B flow in a similar way as dye particles are
advected by incompressible flows in two spatial dimensions.
The incompressibility condition, in the plasma context, is
provided by Liouville’s theorem, which is also responsible
by the area-preserving nature of the discrete-time map in the
Poincaré surface of section. We also assume that the density
of impurities is so low that particles can be described individ-
ually, neglecting collisional effects. A more comprehensive
description of impurity transport, considering larger particle
densities, would require more sophisticated models that use
kinetic and/or fluid descriptions to investigate this problem
from the point of view of neoclassical and anomalous trans-
port [1].

In this paper, we aim to explore some dynamical proper-
ties of the chaotic impurity transport using Horton’s model
endowed with radial profiles obtained in agreement with ex-
perimental data obtained in the TCABR tokamak, operating in
the Institute of Physics of São Paulo University. This type of
model has a built-in mechanism of chaotic dynamics genera-
tion, which is just the presence of electrostatic fluctuations,
which are strictly deterministic. In principle, at least, there
is no need of adding stochastic noisy terms. Moreover, there
is no external magnetic field like in ergodic divertors, which
simplifies the physical setting in a considerable way.

Our main goal is to apply concepts from nonlinear dynam-
ics to characterize chaotic transport as a passive advection
problem. Since we are dealing with particle escape (after a
number of them collide with the inner tokamak wall) this is an
open Hamiltonian system. Chaotic orbits in open Hamiltonian
systems have been investigated for a long time, including
the hydrodynamical analog of our system. The dynamics of
chaotic orbits in phase space is governed by the properties of
an invariant, nonattracting chaotic set (chaotic saddle) and its
corresponding invariant manifold structure. We interpret the
nonuniformity of passive particle transport in terms of the dy-
namics around a chaotic saddle, describing the motion using
dynamical tools like Lyapunov exponents, fractal dimensions,
and escape rates. These diagnostics form a useful toolbox
that can be used to describe virtually any other situation in
which passive particle advection is investigated. Moreover,
the chaotic particle may be trapped in a complex structure
around the islands, given rise to the stickiness effect [22]. This
affects transport and statistical properties of chaotic orbits, the
trajectories, which would otherwise freely explore all chaotic
regions of phase space, find themselves temporally confined to
a peculiar quasiperiodic motion within the vicinity of islands,
thus having a large kinetic energy. In this paper, we used the
finite-time recurrence time entropy [23], a method based on
recurrences that allow us to detect sticky orbits without the
need for calculating the Jacobian matrix.

We find that the chaotic saddle is almost a area fill-
ing curve with box-counting dimension and information

dimension close to the dimension of the phase space. With the
recurrence time entropy, it is possible to discern the fine struc-
ture of stickiness by identifying a multi-modal distribution,
in which each maximum is related to a different hierarchi-
cal level in the islands-around-islands structure. Furthermore,
these regions exhibit a power-law decay pattern in the cumu-
lative distribution of trapping times.

The paper is organized as follows: In Sec. II we outline
the derivation of the symplectic map describing drift particle
motion in tokamaks with drift instabilities and sheared radial
profiles for electric and magnetic fields, as well as toroidal
velocity. Basic dynamical properties of the map are briefly
described, with focus on the formation of a boundary layer
of chaotic motion near the tokamak wall. In Sec. III we focus
on the chaotic saddle underlying motion in the chaotic orbit.
Section IV considers the physical consequences of fractality
on observable dynamical quantities like the escape rate. The
connection among the latter with Lyapunov exponents and
fractal dimensions are revisited. Section V uses the concept of
recurrence time entropy, showing how it can reveal trapping
structures in the chaotic region causing stickiness of motion,
which influences the numerical computation of diffusion in
action variable. The last section contains our conclusions.

II. SYMPLECTIC MAP FOR E × B DRIFT MOTION

In the present model we use local coordinates (r, θ, ϕ) to
indicate the position of passive particles, where r is mea-
sured from the minor axis, θ is the poloidal angle, and ϕ

the toroidal angle. Denoting by a and R0 the minor and
major radius, respectively, in the large aspect ratio approxima-
tion (ε = a/R0 � 1), the equilibrium magnetic field is B =
(0, Bθ (r), Bϕ ), where Bϕ and Bθ ∼ εBϕ are the toroidal and
poloidal components, respectively, such that B ≈ Bϕ � Bθ .
Hence the magnetic surfaces are described by the safety factor
q(r) = rB/R0Bθ (r).

On analyzing the E × B drift motion of passive particles,
the electrostatic field will be given as

E = Er (r)r̂ − ∇φ̃(r, θ, ϕ; t ), (1)

where Er is an external radial field and φ̃ represent electro-
static drift instabilities. Adding a toroidal velocity v‖, with a
specified radial profile, the drift equations of motion read, in
local coordinates,

dr

dt
= − 1

rB

∂φ̃

∂θ
, (2)

dθ

dt
= v‖(r)

R0q(r)
− Er (r)

rB
+ 1

rB

∂φ̃

∂r
, (3)

dϕ

dt
= v‖(r)

R0
. (4)

The wave and frequency spectra of drift instabilities can
be obtained from experimental data. We suppose that there is
a broad spectrum of frequencies ωn = nω0 and wave vectors,
described by a Fourier expansion [24,25]

φ̃(r, θ, ϕ; t ) =
∑
m,�,n

φm,�,n cos(mθ − �ϕ − nω0t ), (5)
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where, for simplicity, the Fourier coefficients are taken as
constants over the plasma region of interest. Moreover, we
assume that there is a dominant Fourier mode with m = M and
� = L, respectively. Using Poisson sum formula we rewrite
the above expression as

φ̃(θ, ϕ; t ) = 2πφML cos (Mθ − Lϕ)
∞∑

n=−∞
δ(ω0t − 2πn),

(6)
where the delta functions have been introduced so as to trans-
form continuous-time equations into a discrete-time map.

On defining the variables I = (r/a)2 and ψ = Mθ − Lϕ,
the drift equations of motion (2)–(4) become

dI

dt
= 4πMφ

a2B
sin ψ

∞∑
n=−∞

δ(ω0t − 2πn) = −∂H

∂ψ
, (7)

dψ

dt
= v‖(r)

R0

(
M

q(r)
− L

)
− MEr (I )

aB
√

I
= ∂H

∂I
, (8)

where φML ≡ φ, and H (I, ψ, t ) is the corresponding Hamil-
tonian, describing a nonautonomous one degree-of-freedom
system. Within this context, it turns out that (I, ψ ) are actually
action-angle variables.

A Poincaré (stroboscopic) map can be obtained [24] by
defining discrete variables (In, ψn), that represent the values
of action and angle at integer multiples of the characteristic
period T = 2π/ω0. With the definition �n = ψn/(2π ), there
results

In+1 = In + β sin (2π�n), (9)

�n+1 = �n + αv‖(In+1)

(
M

q(In+1)
− L

)
+ γ

Er (In+1)√
In+1

, (10)

where we define the quantities α = 1/(ω0R0), β =
4πMφ/(a2Bω0), and γ = −M/(aBω0).

For numerical simulations, we have taken parameters from
TCABR tokamak, operating at the Physics Institute of São
Paulo University (Brazil) [26]. We have normalized lengths
by the tokamak minor radius a = 0.18 m, and magnetic field
strengths by the toroidal field intensity at the axis B0 = 1.1 T.
The external electric field is normalized with respect to its
value at plasma edge E0, such that velocities are normalized
according to the factor v0 = E0/B0 and use the factor t0 =
a/v0. Finally, the intensity of the potential associated with
drift instabilities is normalized to φ0 = a0E0.

In addition, we must specify the action dependence of the
safety factor q(I ), electric field Er (I ), and the toroidal velocity
v‖(I ). We have used the following expressions, compatible
with profiles measured in the TCABR tokamak [26]:

q(I ) = q1 + q2I2 + q3I3, (11)

Er (I ) = e1I + e2

√
I + e3, (12)

v‖(I ) = v1 + v2 tanh(v3I + v4), (13)

where the normalized values of the various coefficients are
in Table I. In the following numerical simulations we will
keep fixed all quantities, except the normalized value of the
perturbation strength β, which we will take as our variable pa-
rameter, representing the intensity of the perturbation. Indeed,

TABLE I. Normalized parameter values for the two-dimensional
drift map.

q1 5.0 e3 4.13 M 15
q2 −6.3 v1 −9.867 L 6
q3 6.3 v2 17.47 ω0 16.36
e1 10.7 v3 10.1 α 1.83×10−2

e2 −15.8 v4 −9.00 γ −9.16×10−1

for β = 0 the map reduces to a nontwist radial map, due to the
nonmonotonicity of the profiles used in this paper, compatible
with the formation of internal transport barriers [27].

In Fig. 1, we showed the phase spaces for the map (9)–(10).
The increase of β causes the breaking of KAM curves and the
chaotic region expands to internal regions of the plasma.

III. CHAOTIC SADDLE AND THEIR INVARIANT
MANIFOLDS

In this section we will discuss the problem of (passive)
particle escape in the E × B flow as an open nonintegrable
Hamiltonian system. For simplicity, let us denote by Mβ the
discrete map (9)–(10),

(In+1, �n+1) = Mβ (In, �n),

where the subscript β stands for the control parameter, propor-
tional to the intensity φ of the electrostatic fluctuations acting
upon the impurity plasma particles. All other map parameters
are being fixed at constant values. We will consider values of
the control parameter β such that there is a wide chaotic region
near the boundary line I = 1, which is an analog for a tokamak
wall. Hence, any map orbit for which In � 1 is considered as
an escaping orbit and is removed from the computation. In this
way we transform our Hamiltonian system into an open one.

As a general rule, any particle, which initial condition
belongs to this chaotic region will wander erratically and
eventually escape out of the system by colliding with the wall
at I = 1. However, there are nonescaping orbits even in the
chaotic region, for very special initial conditions. An example
are the unstable periodic orbits embedded in the chaotic sea. In
general, all the nonescaping orbits are unstable and the union
of all nonescaping orbits forms a Cantor-like set of Lebesgue
measure zero.

Although this set of nonescaping orbits is rather excep-
tional, it influences the motion of particles in its neighbor-
hood: A typical initial condition generates an orbit, which
follows closely some unstable periodic orbit for a given
time, and then it jumps to the proximity of another peri-
odic orbit and so one. This wandering among nonescaping
periodic orbits ultimately yields chaotic particle motion. As
a consequence, these orbits have positive average Lyapunov
exponent λ.

A chaotic saddle is an invariant, nonattracting chaotic set
formed by the union of all nonescaping particle trajectories
in the chaotic orbit. The chaotic saddle is a fractal object
with (box-counting) dimension D′

0 [28]. Each nonescaping
orbit belonging to a chaotic saddle has a stable and an
unstable manifold. These manifolds are fractal curves with a
complicated structure already described by Poincaré
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FIG. 1. Phase spaces of the map with the profiles and parameters for TCABR, with (a) β = 0.05 and (b) β = 0.08.

(homoclinic tangle), with dimension D0. In a Hamiltonian
system, due to time-reversal invariance, the stable and
unstable invariant manifolds have identical fractal dimension,
such that D′

0 = 2(D0 − 1).
In a two-dimensional phase space, as for the map Mβ , we

observe that the invariant manifold dimension is 1 < D0 < 2,
such that the chaotic saddle dimension is 0 < D′

0 < 2. In
physical terms, let us consider a bunch of particles (pas-
sive tracers), which overlaps with the stable manifold of the
chaotic saddle. In the Poincaré surface of section this bunch
of particles can be represented by a droplet advected by the
E × B drift flow of the plasma. As we iterate the map Mβ a
large number of times, the droplet shape is modified such that
it approaches the chaotic saddle with time (measured in map
iterations).

Within this deformed droplet, however, only a small num-
ber of particles fall close enough to the stable manifold of the
chaotic saddle. The remaining particles escape away along the
unstable manifold of the chaotic saddle, i.e., passive particles
trace out the invariant unstable manifold after a large enough
time, until they eventually escape by reaching the tokamak
wall at I = 1. Approximations of the invariant manifolds can
be obtained with the sprinkler method [29]. A bounded region
A of the phase space is divided by a grid of points (�0, I0) that
are iterated m times. If the values of (�m, Im) remain inside
A, then the mth iterates are numerical approximations of the
unstable manifold. The initial conditions (�0, I0) will be ap-
proximations of the stable manifold. Moreover, the (m/2)-th
iterates are a numerical approximation of the chaotic saddle.
In the Figs. 2(a) and 2(b) we show the stable and unstable
manifolds, respectively, for the map (9)–(10) using a grid
of 1000 × 1000 initial conditions in the rectangle −0.5 � �

� 0.5, 0.8 � I � 1.0 with m = 10. In Fig. 2(c) it is shown the
chaotic saddle formed by the intersection of the manifolds.

The invariant stable manifold of the chaotic saddle is also
physically relevant. In the case where exits are present, the
sets of initial conditions (I0, �0) (in the Poincaré surface
of section) leading to trajectories escaping through exits are
the corresponding escape basins. In a previous paper [14],
we showed that the boundary of these escape basins is the
closure of the invariant stable manifold of the chaotic saddle.
Hence, for time large enough, the dimension of the escape

basin boundary is a good numerical approximation for the
dimension of the invariant stable manifold D0. We can esti-
mate the latter using the box counting method [30]. The box
counting dimension was calculated considering that the area
of interest is formed by a regular grid of M × M points. We
take two-dimensional boxes with lateral length ε, so that the
boxes cover the area completely. We then count the number
N of boxes required to cover the stable manifold. The box
counting is defined as

D0 = lim
ε→0

ln N (ε)

ln(1/ε)
. (14)

The box counting dimension D0 of the stable manifold
is then obtained as the angular coefficient of the linear least
squares fit (LLSF) of a first-order polynomial to the pair of
points [ln (1/ε), ln N (ε)], with ε in the interval varying 10−10

to 100.

IV. ESCAPE RATE AND LYAPUNOV EXPONENTS

The characterization of the dynamics of area preserving
maps can be done by computing the Lyapunov exponents
[31,32]. For a two-dimensional map, there are two Lyapunov
exponents λ1 and λ2, and the dynamics is chaotic if one of
them is positive. For area preserving maps, like (9)–(10), it is
necessary that λ1 = −λ2. This makes it possible to distinguish
regular orbits whose Lyapunov exponent it is zero, for infinite
time, and chaotic orbits who have λ1 > 0. The positive Lya-
punov exponent will be referred to as λmax, unless specified
otherwise. In Fig. 3, we plot the values of λmax for a grid
of uniformly distributed initial conditions iterated by 5 × 105

times.
Within the chaotic region, the dynamics is governed by

the chaotic saddle formed by the union of all nonescaping
orbits. For each initial condition (I0, �0) we have a different
escape time, or the number of map iterations τ it takes for
a given trajectory to reach the tokamak wall I = 1. Due to
the presence of the chaotic saddle, this escape time strongly
depends on the initial condition, so we expect a statistical
distribution of escape times according to an exponential

P(τ ) = P0 exp (−κτ ), (15)
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FIG. 2. In (a) the stable manifold (yellow), in (b) the unstable manifold (blue) and in (c) the chaotic saddle (black), for β = 0.1.

where P0 is a normalization constant and κ = 1/〈τ 〉 is the
so-called escape rate, where < τ > is the average escape time.
In order to determine this number, we consider the sprinkler
method, computing the number of initial conditions that re-
mains inside A for different values of the number of iterations

FIG. 3. Color map for the maximum Lyapunov exponent, for a
grid of 1000 × 1000 initial conditions, uniformly distributed in the
phase space for β = 0.05.

m. In Fig. 4 the number of particles in A is shown as a function
of time, and how this follows the Eq. (15) with κ = 0.0227.
In Table II the values of κ for different values of β are
shown.

FIG. 4. Number of particles that remain inside a bounded region
A of the phase space, as a function of the time of iterate, for β =
0.08. The red line is the fit from which we obtain the escape rate, and
the blue dots are from the numerical simulation.
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TABLE II. Results for the escape rate (κ), maximum Lyapunov
exponent (λmax), information dimension (D1), and box counting
dimension (D0), respectively, as a function of the perturbation am-
plitude β.

β κ λmax D1 D0

0.05 0.0044 ± 0.0003 0.50 ± 0.12 1.99 1.99
0.06 0.0092 ± 0.0003 0.50 ± 0.09 1.98 1.99
0.07 0.0148 ± 0.0005 0.51 ± 0.08 1.97 1.99
0.08 0.0227 ± 0.0004 0.53 ± 0.07 1.96 1.99
0.09 0.0236 ± 0.0005 0.54 ± 0.07 1.96 1.97
0.10 0.0412 ± 0.0008 0.60 ± 0.07 1.93 1.96
0.11 0.037 ± 0.001 0.61 ± 0.08 1.94 1.96
0.12 0.065 ± 0.001 0.64 ± 0.08 1.90 1.96

There is a general relation, valid for transient chaos, involv-
ing the information dimension D1 of the invariant manifolds,
the average Lyapunov exponent λ around the chaotic saddle,
and the escape rate κ < λ of particles in the chaotic sea of a
two-dimensional phase space, namely

D1 = 2 − κ

λ
. (16)

To derive this expression, we cover the portion of the in-
variant unstable manifold in the two-dimensional phase space
with boxes of sidelength ε. The union of all those boxes form
a plane figure of area A.

After τ iterations of the map M, taking as initial conditions
a large number of points belonging to the set of boxes, a
number of particles will escape through the exit I = 1. Hence
the the area A′ occupied by the nonescaping particles will be
smaller by a factor of exp(−κτ ), with respect to the initial
area A.

The new area A′ refers to a closed contour that has been
shrunk along the stable invariant manifold, towards the unsta-
ble invariant manifold. Using the definition of box-counting
dimension, we now cover the region of area A′ with boxes
of sidelength ε′ = ε exp(−λτ ), where −λ is the average neg-
ative Lyapunov exponent of orbits escaping off but near the
unstable invariant manifold.

A cautionary remark: we consider this new covering of
boxes, which are typical with respect to the natural measure
on the chaotic saddle. In this case we are, strictly speaking,
dealing with the information dimension D1 of the invariant
manifold, which takes into account most of the natural mea-
sure of nonescaping orbits belonging to the chaotic saddle.
Hence the number of boxes necessary to cover A′ scales as
N (ε) ∼ ε−D1 . In general, it turns out that D1 � D0, i.e., the
fractal dimension D0 of the invariant manifolds is an upper
bound to the information dimension D1. In practice, if we
choose a typical set of boxes, D1 is very close to D0 and
provides a good estimate of D0. By multiplying the number
of boxes by the area of each two-dimensional box, the total
area is initially A ∼ N (ε)ε2 ∼ ε2−D1 . After τ map iterations
one has

(εe−λτ )
2−D1 ∼ ε2−D1 e−κτ ,

resulting in Eq. (16).

Another useful characterization of the chaotic saddle is
provided by the topological entropy K0, defined (in the present
context) as follows: let L(t ) be the perimeter length of a
closed region bounding a number of passive particles in the
Poincaré section of the phase space. It increases with time as
eK0t , where t is measured in number of map iterations. K0 is
an upper bound to the metric entropy K1 = λmax − κ . For a
closed system κ = 0 and K0 � K1 = λ > 0.

Table II shows the values of the information dimension,
calculated with the Eq. (16), and the box counting dimension,
for various values of the parameter β. Both dimensions are
very close to the dimension of the phase space itself. These
results point that the chaotic saddle structure is an extreme
fractal. Moreover, for all studied values, the relation D1 � D0

is true, and there is small variation of the dimensions with the
respect the parameter β.

V. RECURRENCE TIME ENTROPY

One of the distinctive features of the maximal Lyapunov
exponents depicted in Fig. 3 is the nonuniformity of the
large chaotic region obtained for perturbation amplitude large
enough. There is a range of values of the positive Lyapunov
exponent λ, indicating that there are segments of the chaotic
orbit, which are trapped in the vicinity of periodic islands for
some time, before escaping out to the large chaotic region with
higher values of λ. This phenomenon, called stickiness, has
been described for quite a long time in numerical investiga-
tion of Hamiltonian systems, in both discrete and continuous
time [22].

The reason for this sticky behavior of a chaotic orbit near
a periodic island is the existence of perforated tori, or can-
tori, which act as a transport barrier for a limited time only,
although this trapping time can be arbitrarily long depending
on the size of the holes [33]. Nevertheless, such a trapping
interferes in long-time calculations such as those necessary
to compute the Lyapunov exponent. Hence the quantitative
characterization of sticky behavior is necessary to evaluate
the extent of such influence on time averages of dynamical
quantities.

One possible characterization is the distribution of finite-
time Lyapunov exponents P(λn), which are computed over
time-n sections of a single, long chaotic orbit. Such finite-time
exponents depend on the initial condition (I0, �0), unlike its
infinite-time counterpart λ = limn→∞ λn(I0, �0). While there
is a main peak in this statistical distribution centered at λ, the
sticky behavior causes a second peak near zero [34].

Recently, concepts based on recurrence plots have been
developed to characterize stickiness [23,35,36]. Recurrence
plots [37] (RP) are graphical representations of the recur-
rence matrix for a time series. We use the shorthand notation
xn = (In, �n) to denote the current values of the action-angle
variables for the particle position in the Poincaré surface of
section. Accordingly, given a time series from a chaotic orbit
xi ∈ R (i = 1, 2, . . . , N), the corresponding recurrence matrix
elements are defined as

Ri j = H(ε − ‖xi − x j‖), (17)

where N is the length of the time series, H is the Heavi-
side function, and ‖xi − x j‖ is the spatial distance between
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FIG. 5. (a) Phase space of a quasiperiodic orbit (blue), a chaotic orbit (black), and a sticky orbit (red) of the map with β = 0.08 iterated
for N = 1000 times. Recurrence matrix of (b) the quasiperiodic orbit, (c) the chaotic orbit, and (d) the sticky orbit.

two states, here calculated with the supremum (or maximum)
norm. An Euclidean norm could also be used yielding similar
results.

Careful attention should be given to the choice of the
threshold ε, since its value influences the results: if ε is large,
we would record too many recurrences with a barely distin-
guishable RP. On the other hand, for a too small ε, we would
barely register recurrences. A good compromise is to consider
ε to be 10% of the time series standard deviation σ [38,39].

The use of the Heaviside function limits the components
of RP to ones and zeros. As such RPs are a kind of contour
plots with only two levels: on a recurrence it is 1, otherwise
0. Two states are recurrent when the state at the time t = i is
close, up to the distance ε to a different state at t = j, that is
xi ≈ x j . The recurrent states are represented by dots in the
plot, and display various diagonal structures depending of the
dynamics of the underlying system. The vertical distances
between these lines correspond to different return times for
points belonging to a given map orbit [36,40,41]. Recently it
has been proposed that the white vertical lines of a RP could
be used to detect stickiness regions [23].

In Figs. 5(a)–5(d), we show the phase space for three or-
bits together with their corresponding RPs for the first 1000
iterations of the drift map, for a given perturbation strength
of β = 0.08. The RP for a quasiperiodic orbit, chosen inside
a periodic island, cf. Fig. 5(b), consists of uninterrupted di-
agonal lines, characterized by having three return times [36],
while a chaotic orbit shown in 5(c) exhibits short diagonal
lines, and the vertical distances of the lines are not regular.

In the case of sticky orbits [Fig. 5(d)] the diagonal lines are
longer than those in the chaotic case, but not as long as for
the quasiperiodic case, and the vertical lines present some
regularity.

It is possible to distinguish the different solutions of a
nonlinear system by counting the number of return times of
an orbit. If there exists a single return time then the orbit is
periodic with a period equal to the return time. On the other
hand, if the orbit is quasiperiodic, Slater’s theorem [42–44]
asserts that there are three different return times, and the third
one is the sum of the previous two. Finally, if the orbit is
chaotic there are more than three return times. Given that the
distances between vertical lines in the RP are estimates of the
recurrence times, the statistical distribution of white vertical
lines can be used to distinguish these orbits.

We consider the total number of white vertical lines of
length ν, as given by the histogram

Pw(ν) =
N∑

i, j=1

Ri jRi j+ν

ν−1∏
k=0

(1 − Ri j+k ). (18)

Let Nw be the total number of white vertical line segments.
Then the probability of a white vertical line of length ν is
pw(ν) = Pw(ν)/Nw. From the latter we can define the re-
currence time entropy (SRT ) as Shannon’s entropy for white
vertical lines, as [23]

SRT = −
νmax∑

ν=νmin

pw(ν) ln pw(ν), (19)
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FIG. 6. (a) Finite-time SRT distribution for a single chaotic orbit, with n = 200, N = 1010, and β = 0.08. (b) The phase space points that
generate the minor peaks in (a). (c) A magnification of the region indicated by the black dashed lines.

where νmin and νmax are the lengths of the shortest and longest
white vertical line, respectively. We consider νmin = 1. The
distribution of white vertical lines may be influenced by the
border lines of the RP due to its finite size. To mitigate this
effect, we have excluded the white vertical lines that originate
and terminate at the RP’s border. The SRT for a periodic orbit
is zero, given that it has only one return time, a quasiperiodic
orbit will have a low value of SRT , while a chaotic one have
a larger value of SRT . Therefore, chaotic orbits, which expe-
rience stickiness have smaller values of the SRT than chaotic,
but higher than quasiperiodic orbits.

Following the evolution of a single chaotic orbit for a long
time N , the trajectory may be trapped in the stickiness region,
and stay therein for a possibly long time until eventually
escapes to the chaotic sea. Therefore, the transition among
different regimes can be better understood considering finite
time values of the SRT , for n � N . Accordingly, we computed
the finite time SRT for a single chaotic orbit in windows
of size n, {Si

RT (n)}i=1,2,...,M , where M = N/n and define the
probability distribution of the finite-time SRT , P(SRT (n)), by
computing a frequency histogram of {SRT (i)(n)} as shown in
Fig. 6(a) for N = 1010 and n = 200.

The observed multimodal distribution can be attributed to
the intricate hierarchical islands-around-islands structure that

permeates the phase space. When an orbit finds itself within
the chaotic sea, it experiences an extended time n − SRT , lead-
ing to the highest peak in the distribution. When the orbit is
trapped near an island the SRT is low corresponding to smaller
values in distribution. The trapped orbit may enter an inner
level in the hierarchical structure, and the transition among
these levels is the cause of the multimodal behavior shown in
Fig. 6(a).

For a chaotic orbit far from sticky regions, the corre-
sponding finite-time SRT (n) is large and is represented by
the largest peak in the distribution of Fig. 6(a). If, however,
a chaotic orbit is trapped into a sticky region, the distribu-
tion has smaller peaks and correspondingly smaller values of
SRT (n). To identify the regions in phase space corresponding
to the peaks in the distribution, we monitor the time series
of SRT (200) and generate a plot, Fig. 6(b), that displays 200
phase space positions (�, I) using distinct colors to represent
various ranges of SRT (200). The different peaks are related to
the different hierarchical levels of the structure. Figure 6(c)
presents a magnification of the structures.

We remark that stickiness is actually a transient phe-
nomenon: an initially sticky orbit will eventually become
a full-fledged chaotic orbit. Before that occurs, however,
the orbit visits different sticky regions according to the
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FIG. 7. log - log plot of Q(τ ) for each sticky region, with N =
1010 and n = 200. (Inset) log-linear plot of Q(τ ) of the phase space
points belonging to the biggest peak in Fig. 6(a). The colors of the
dots correspond to the colors of Fig. 6(a).

hierarchical structure of islands-around-islands that we have
described using the histogram of finite-time SRT . The time a
sticky orbit spends in the vicinity of a given island is called
trapping time and, as the sticky orbit visits different islands
we have a sequence of trapping times {t1, t2, . . . tNt }, where
Nt is the total number of different trapping times. Now let
us consider only those trapping times higher than a given
value τ , denoted as Nτ . Hence, we can either describe the
trapping times for their probability distribution P(t ) or by their
cumulative distribution

Q(τ ) =
∑
t>τ

P(t ) = Nτ

Nt
. (20)

The cumulative distribution of trapping times is expected
to decay with τ in different fashions according to the local
dynamics. For chaotic orbits, Q(τ ) decays exponentially with
time, whereas sticky orbits present a power-law decay. We
have numerically verified both scalings, our results being de-
picted in Fig. 7, where we plot the cumulative distribution as
a function of τ for time-200 SRT computed from a very long
(N = 1010) chaotic orbit. Different colors represent sticky
orbits around the islands corresponding to Fig. 6. As a general
trend, in all cases the decay is of a power-law type. We thus
have an exponential decay with a fat tail characteristic of
sticky behavior for all cases considered, while the decay is
exponential [see the inset of Fig. 7] for the largest peak in
histogram Fig. 6(a) corresponding to the hyperbolic region of
the phase space.

VI. CONCLUSIONS

Chaotic saddles are invariant nonattracting chaotic sets
appearing in both dissipative and conservative systems, and
can be thought as the backbone of the aperiodic behavior. In
open conservative systems, the chaotic saddle underlies the
dynamics of escape, and there are some observable manifes-
tations of this presence. In this paper we illustrated the role of

the chaotic saddle in the impurity particle escape in a toroidal
plasma under the simultaneous action of magnetic and electric
fields, as well as an overall toroidal velocity. All these factors
have been taken into account to describe impurity particle
escape in realistic regimes of a tokamak operation. In spite of
this, the model has considered a number of simplifications that
reduce the number of variable parameters, without removing
the basic physical processes involved.

We have considered electric fields resulting from low-
frequency electrostatic fluctuations related to drift instabilities
in toroidal plasmas. The E × B drift motion has all the fea-
tures of a nonintegrable area-preserving system, in a Poincaré
surface of section. In particular, for sufficiently large values of
the fluctuation amplitude there is a wide chaotic orbit near the
tokamak wall.

The chaotic saddle can be thought as the set of intersections
between the stable and unstable invariant manifolds of some
unstable periodic orbit embedded in the chaotic orbit. By
allowing particles to escape through the tokamak wall, the
system reduces to an open Hamiltonian system, and we can
then investigate the dynamical properties of chaotic particle
escape. Any particle starting from an initial position off but
very near to the chaotic saddle will closely follow the cor-
responding unstable invariant manifold until it reaches the
tokamak wall and is considered lost, being removed from
numerical integration of the model. Hence the unstable man-
ifolds provide escape channels for the particles to exit the
tokamak. Since the chaotic saddle is itself a fractal Cantor-
dust-like set, we expect that this fractal nature will also be
present in the distribution of impurity particles hitting the
tokamak wall. This has potential importance for the design of
devices aiming to reduce or control plasma-wall interactions
like divertors or limiters.

The presence of a chaotic saddle in the chaotic region leads
to an exponential distribution for the escape time of parti-
cles through the tokamak wall. The information dimension
of the invariant manifolds can be estimated by the com-
putation of the corresponding escape rate and the average
Lyapunov exponent. Our results show that the information
and box-counting dimensions both decrease with the intensity
of electrostatic fluctuations. Another observable influence of
the chaotic saddle is the fractal character of escape basin
boundaries. If we divide the tokamak wall into two or more
partitions, we can assign to each of them a set of initial con-
ditions such that particles will eventually escape through that
exit, or its escape basin. In this case the escape basin boundary
is a fractal, whenever pieces of it intersect the stable invariant
manifold of the chaotic saddle. Hence we can summarize the
role of the chaotic saddles in the chaotic particle escape by the
following: (i) the unstable manifold provides escape channels,
(ii) the stable manifold indicates the fractality of escape basin
boundaries.

Using the concept of recurrence time entropy (SRT ), our
analysis reveals the presence of the stickiness effect within
the system and quantifies its strength. This phenomenon
entails chaotic orbits becoming temporarily trapped in the
vicinity of periodic islands before eventually escaping into
the chaotic region. Notably, the finite-time SRT distribu-
tion exhibits a multimodal pattern. While the major peak
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corresponds to the chaotic sea, there are a number of minor
peaks corresponding to a distinct hierarchical level within the
islands-around-islands structure. Consequently, it becomes
feasible to distinguish the various hierarchical levels inherent
to this complex structure. Moreover, it is possible to calculate
the cumulative distribution of the trapping times related to
each hierarchical level. We have shown that the largest peak
corresponds to the hyperbolic region of the chaotic phase
space, such that the cumulative distribution of trapping times
exhibits an exponential decay, whereas the trapping times
associated to the smaller peaks in this distribution exhibit a
power-law tail, which is a characteristic feature of the sticki-
ness effect.
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