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A B S T R A C T

The heart, a component of the cardiovascular system, is responsible for pumping oxygenated and deoxygenated
blood. It does not behave like a metronome and normally there is a variation in the duration of the intervals
between each heartbeat, called Heart Rate Variability (HRV). In the presence of diseases or with the progression
of aging, there is a reduction in HRV due to dysfunction of the autonomic nervous system. The objective of
this work is to show, using machine learning techniques, that these techniques are able to relate directly
the variability of the heart with the degree of the disease. Producing, as a practical result, the use of these
techniques in the prediction of different types of diseases by only analyzing their time series. One of the first
techniques used in our work is the unsupervised learning algorithm (t-Stochastic Neighbor Embedding). We
show that this algorithm is able to differentiate the type and degree of the disease just by analyzing time
series, we demonstrate that it is possible to design a neural network architecture capable of learning these
characteristics, relating cardiac variability and the disease. In a complementary analysis, we check that cardiac
variability can be directly related to permutation entropy, proving that the healthier an individual is, the more
stochastic his cardiac time series is. We build a classification algorithm, using deep learning, from the confusion
matrix and the ROC curve. This algorithm can be used as an entry point in diagnosing patients by measuring
their HRV.
1. Introduction

The heart is an organ that sends blood throughout the circula-
tory system, carrying oxygen and important nutrients to the cells.
The cardiovascular system also removes carbon dioxide and waste
products away from the body [1]. The normal heart rhythm can be
affected by cardiovascular diseases and depressive disorders [2]. An
important indicator of diseases is the variability of the heart rate [3],
that refers to the regulation of sinoatrial node. It permits to observe
the heart’s ability under regulatory inputs [4] and has been used to
monitor clinical conditions [5]. Lower heart rate variability can be
related to abnormal adaptation of the autonomic nervous system [6].
Meyerfeldt et al. [7] investigated heart rate variability before the onset
of ventricular tachycardia in patients with an implantable cardioverter
defibrillator. Marwan et al. [8] proposed measures of complexity to
analyze heart rate variability data. Analysis of heart rate variability was
used as a predictor of mortality in cardiovascular patients of intensive
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care unit [9]. Liu et al. [10], using recurrence quantification analysis
(RQA) in the HRV data, classified the HRV data into pathology groups
using a multilayer perceptron classifier.

First coined by Samuel in 1959 [11], machine learning (ML) is the
study of computational algorithms which are designed to improve au-
tomatically through experience [12]. ML techniques have been widely
applied to different field of science, for instance in solid-state mate-
rials [13], wildfire [14], and genetics [15]. It has been considered to
predict different types of diseases, such as brain [16] and kidney dis-
eases [17]. Recently, Herry et al. [18] used ML on heart rate variability
to investigate children that were exposed prenatally to the Zika virus.

The ability of ML for cardiovascular disease prediction was reported
by Krittanawong et al. [19]. Parthiban and Srivatsa [20] applied ML
methods in diagnosing heart disease for diabetic patients. They showed
the possibility of identifying heart disease vulnerability in a person
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Fig. 1. The 𝛥𝑅 interval series is the sequence of time intervals between successive
beats on the ECG.

with diabetes. Recently, Ali et al. [21] demonstrated that ML algorithm
has a very high accuracy and potential utility to make heart disease
predictions.

In this work, we study how ML can be used to detect diseases by
means of heartbeats. We analyze various experimental tachograms ob-
tained from people with different clinical conditions. The experimental
data are separated into healthy patients and patients with mild and
serious illnesses. With regard to the ML techniques, we utilize a recur-
rent neural network coupled with a multilayer perceptron network. Dua
et al. [22] demonstrated that multilayer perceptron method provides
high classification accuracy of coronary artery disease utilizing heart
rate variability analysis.

We apply the t-stochastic neighbor embedding (t-SNE) technique
on our data sets. By means of t-SNE, we plot the 2D embedding
visualization of different class targets related to diseases. We compute
the confusion matrix to measure the performance of the machine
learning classification. We also calculate the permutation entropy for
the identification of diseases. Our results show that severe diseases
exhibit higher permutation entropy difference values than mild dis-
eases. The difference is between the entropies obtained from the cardiac
and stochastic time series, both with the same temporal correlation
quantifier.

This paper is organized as follows. In Section 2, we show the
methodology about the machine learning. In Sections 3 and 4, we
discuss our results about the analysis of empirical time series and
permutation entropy, respectively. In the last section, we present our
conclusions.

2. Methodology

2.1. Experimental data

The cardiac impulse travels through the heart and electrical currents
travel through the surrounding tissues, consequently, a small propor-
tion travels to the surface of the body. If the electrodes are placed
on the skin, on opposite sides of the heart, the electrical potentials
generated by these currents can be recorded. This record is known as
an electrocardiogram (ECG). The normal ECG is composed of a P wave,
a QRS complex, and a 𝑇 wave (Fig. 1). The QRS complex is formed by
three distinct waves: the Q wave, the R wave, and the S wave. The
P wave is produced by the electrical potentials that are generated by
the atria depolarization, before contracting. The QRS complex is due to
the potentials that are generated when the ventricle depolarizes, before
contracting. The 𝑇 wave is due to the potentials generated during
the recovery of the ventricles from the depolarized state. In summary,
the electrocardiogram is composed of depolarization and repolarization
waves.

The heart rate variability (HRV) signal consists of a series of time
intervals between the R waves of the ECG, that is, the interval 𝛥𝑅. The
series of intervals 𝛥𝑅 is not equidistant in time. Our experimental data
are obtained from HRV technique, which provides a powerful means
2

for observing the interaction between the sympathetic and parasym-
pathetic nervous system. The variation of the HRV can be used as an
indicator of illness or early warning of impending heart disease. The
analyses of the HRV are non-invasive and inexpensive tools to assess the
health status of the circulatory system. Understanding the HRV brings
us to the functional comprehension of the heart.

Fig. 2 shows the moving average of the normalized HRV signals for
5 groups of patients and a control group (healthy volunteers):

(1) Control group (Fig. 2(a)),
(2) Bipolar disorder patient group (Fig. 2(b)),
(3) Group of leprosy patients (Fig. 2(c)),
(4) Group of patients with chronic kidney disease (Fig. 2(d)),
(5) Group of brain dead patients (Fig. 2(e)),
(6) Intensive Care Units (ICU) patient group (Fig. 2(f)).

We normalize the groups across the moving average, for better visual-
ization. In the learning algorithm, the dataset was normalized using
variance and mean of the samples. For this normalization, we use
sklearn’s StandardScaler library.

The main objective of our work is to build a neural network capable
of learning the dynamic characteristics of each group and to classify,
through HRV signals, which group a patient belongs to. Using an
unsupervised learning algorithm, we aim to group cardiac time series
into groups with high correlation. This analysis is important to identify
common characteristics without any supervision. We can use the infor-
mation to extract common characteristics of these groups, improving
the performance of the neural network at the time of classification.
Another approach is the use of a methodology created by [23] that
relates permutation entropy with the stochastically of a time series.
This approach shows us how the variability of the HRV signal is directly
related to the severity of the disease. And finally, we apply all this prior
knowledge in creating a deep network, that is capable of classifying the
degree of impairment of a patient by means of their cardiac time series.

2.2. Learning algorithm

We consider a neural network with the objective of classification.
The network is trained to classify the time series into one of the groups.
For the classification model, we use two coupled neural networks. A
recurrent network with echo state (ESN) [24,25] coupled with a mul-
tilayer perceptron network (Fig. 3(a)) and using Principal Component
Analysis (PCA) [26] as a dimension reducer.

The BDESN is utilized for the classification of time series 𝐱 = {𝐱𝑡}𝑇𝑡=0
labeled with class 𝐜 through the following procedure. We first project
the time series with smaller dimension 𝐱(𝑡) to a larger space through
the reservoir (𝐡(𝑡)). Then a dimension reduction algorithm projects the
reservoir outlet into a smaller space represented by the state vector
𝐫𝐱, where all the dynamic characteristics of the input are represented
by the vector 𝐫𝐱. Finally, a multilayer perceptron (MLP) classifies the
vector representative of 𝐱. Fig. 3(a) details the procedure.

These state vectors with their reduced dimensions become the input
vectors to the network (MLP), where the classification or regression
takes place. The weights of these layers will undergo adjustments
during training. At this point, a normal training of an MLP network
is made.

In our architecture, we use a reading layer formed by an MLP
network with three hidden layers of 400 neurons each one and an input
layer with 500 neurons. On the hidden layers, we use a dropout = 0.2
(Figs. 3(a) and 3(b)) and ‘‘Greedy Layer-Wise’’ [27] as pre-training
of the network. The optimizer and error function were ‘‘adam’’ and
‘‘MSE’’, respectively. In neural networks, an important rule is the choice
of hyperparameters for a better performance in the classification model
without suffering overfit. After choosing these hyperparameters, using
Bayesian optimization (Appendix C), we apply our network for the
classification problem. The best hyperparameters of the reservoir are:
𝑁 = 400, 𝛼 = 0.7607, 𝜌 = 0.9698, 𝜔 = 0.9, 𝜂 = 0.0011 and 𝑃𝐶𝐴 = 100.
Details of this procedure are described in Appendix A.
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Fig. 2. Normalized HRV signal through the moving average for the six groups, where the full curve is the moving average and the light gray curve is the fluctuations. (a) Control
group, (b) bipolar disorder patient group, (c) group of leprosy patients, (e) group of patients with chronic kidney disease, (d) group of brain dead patients, and (f) ICU patient
group.
Fig. 3. Neural network. (a) It represents a deep network composed of a computational reservoir followed by a dimensional reduction (PCA) and a reading layer formed of a
multilayer perceptron network trained for classification, (b) it represents a deep network composed of a computational reservoir followed by a dimensional reduction (PCA) and
a reading layer formed of a multilayer perceptron network trained for regression and (c) it represents a deep network composed of a computational reservoir followed by a
dimensional reduction (PCA) and a t-SNE layer, used for unsupervised learning.
2.3. Permutation entropy

i. Ordinal analysis and permutation entropy
Ordinal analysis allows the identification of patterns and nonlinear

correlations in complex time series [28,29]. Each sequence of D data
points in the time-series (consecutive or with a certain lag between
them) is converted into a sequence of D relative values (smallest to
3

largest) ordered from 0 to 𝐷−1, which defines an ordinal pattern. Then,
the frequencies of occurrence of the different patterns in the time series
define the set of ordinal probabilities, which in turn allows to calculate
the information-theoretic measures, such as the permutation entropy.
For instance, a sequence {0, 5, 10, 13} in the time series transforms into
the ordinal pattern ‘‘0123’’, while {0, 13, 5, 10} transforms into ‘‘0312’’.
As an example, Fig. 4 shows the ordinal patterns formed with D =
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Fig. 4. Schematic illustration of 24 ordinal patterns that can be defined from D = 4 consecutive data values in a time series [23].
4 consecutive values. This sequence of time series points with size
D is randomly selected. For more details on this procedure, read the
work [30]. We evaluate the frequency of occurrence of each word,
defined as the ordinal probability 𝑝(𝑖) with ∑𝐷!

𝑖=1 𝑝(𝑖) = 1, where 𝑖 rep-
resents every possible word. Then, the permutation entropy is defined
as the value of the Shannon entropy computed using all 𝑝𝑖(𝑖 = 1, 2, ..𝐷).
Permutation entropy contains the information about the temporal struc-
ture associated with the underlying dynamics of a time series, therefore,
permutation entropy seems to be particularly suited as a discriminative
measure to reveal nonlinear dynamics in arbitrary real-world data [23].

𝑆(𝐷) = −
𝐷
∑

𝑖=1
𝑝(𝑖) ln 𝑝(𝑖), (1)

The permutation entropy varies from 𝑆(𝐷) = 0 if the 𝑗th state 𝑝(𝑗) =
1(while 𝑝(𝑖) = 0 ∀, 𝑖 ≠ 𝑗) to 𝑆(𝐷) = ln𝐷! if 𝑝(𝑖) = 𝑖∕𝐷! ∀𝑖. The normalized
permutation entropy used in this work is given by:

𝑆(𝐷) =
𝑆(𝐷)
ln𝐷!

. (2)

To calculate the ordinal patterns, we use the algorithm proposed
by Parlitz et al. [31]. We utilize 𝐷 = 6 and no lag, i.e, the values of
𝐷 − 1 overlap in defining two consecutive ordinal patterns. Therefore,
we use the D! = 720 probabilities of the ordinal patterns. For a robust
estimation of these probabilities, a time series of length 𝑇 ≫ 𝐷! is
needed. However, as shown in [23], the algorithm returns meaningful
values even for time series that are much shorter.

3. Analysis of empirical time series

In our work, due to the difficulty in obtaining data from available
volunteers, we worked with a total of 240 individuals, divided into 26
healthy individuals, 26 with leprosy, 38 with bipolar disorder, 26 with
chronic kidney disease, 21 with brain death and 103 patients in the
ICU. All time series obtained have a size of 1000 periods (Fig. 2). As
we do not have a very large number of samples due to the difficulty of
obtaining experimental data, we tried to compensate for this problem
with a more sophisticated network and more efficient regularization,
in order to be able to generalize our results and avoid overfitting.

Firstly, before employing our classification algorithm, we use the
t-SNE algorithm (Appendix B) in order to pre-visualize and understand
the correlations between the groups. Using this unsupervised learning
algorithm, we group the cardiac time series into groups with high
correlation. We process the data, without knowing a ‘‘prior’’ which class
they belong to, letting our algorithm group them according to their
common characteristics. In this work, we also use noisy time series with
its 𝛼 ranging from 0 to 2 (𝑃 (𝑓 ) = 1∕𝑓 𝛼). These last artificial signals
permit us to know how close the cardiac series are to them. Before
using t-SNE in the data, we utilize a ‘‘BDESN’’ network (Fig. 3(c)). This
network is fed with all time series and learns the dynamics of each
series, generating as output the state vector 𝐫𝑋 , which brings all the
information on the dynamics of the time series. With the unlabeled
state variables, we feed our t-SNE algorithm. The result is shown in
Fig. 5. The t-SNE groups data that exhibits a strong correlation and
the ones closer to these ‘‘clusters’’ have similar dynamics. Noisy series
4

Table 1
Confusion matrix.

Predicted positive Predicted negative

Current positive TP FN
Current negative FP TN

have a very large variability, consequently, the cardiac series closer
to these series present a greater variability. In Fig. 5(a), we see a
proximity between the control group and patients with leprosy and
bipolar disorder, who are practically included in the noisy series. On the
other hand, patients with brain death and ICU are far from this region.
It is possible to observe that patients with kidney problems move
between these two groups. This algorithm shows us that patients with
more severe illnesses have a lower variability compared with patients
with less severe illnesses. Thus, for a better classification, we group
these series into three large groups: Healthy individuals, individuals
with mild illnesses and individuals with severe illnesses, where we
include in this group patients with kidney diseases (Fig. 5(b)).

By means of the t-SNE plot, we group the patients into three groups
according to healthy, mild disease, and severe disease. This way, it is
possible a better performance of the algorithm. We compute the per-
formance measurement through the confusion matrix. The performance
is evaluated based on three main measurement performances in RNN
models, which are the accuracy, precision, and recall

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
, (3)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
(𝑇𝑃 + 𝐹𝑃 )

,

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

.

These measurements are described using the confusion matrix that
considers a two-class classification problem, as illustrated in Table 1.
The main diagonal values are the correctly predicted values, while the
off-diagonal values

In neural networks, an important rule is the choice of hyperpa-
rameters for a better performance in the classification model without
suffering overfit. After choosing these hyperparameters, using Bayesian
optimization, we can apply our network for the classification problem.
The best hyperparameters of the reservoir are shown in Table 2. We
focus on the HRV signal of a patient to classify it into healthy, medium
disease or severe disease. Importantly, the diagnosis of our network is
based on the variability of the HRV signal, therefore, its classification
is independent of the disease. It compares the patient’s signal, based
on its variability, and classifies it in one of the three groups. According
to the signal dynamics, the network is able to diagnose the severity
of the patient. For the process of obtaining our algorithm, we first
randomly separate 70% from the entire dataset for training and 30%
for testing. This random separation must be done to maintain the
representativeness of all classes, both in the training set and in the test
set, guaranteeing a good generalization of these processes. We group
the HRVs into three categories: group O (control), group 1 (leprosy and
bipolar), and group 2 (chronic kidney disease, ICU and brain death).
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Fig. 5. T-SNE plot applied to noise (0), control (1), mild diseases (bipolar and leprosy) (2), Chronic Kidney Disease (3), and ICU and Death brain (4), as shown in panel (a). In
the panel (b), t-SNE plot applied to healthy (noise and control) (0), mild diseases (bipolar and leprosy) (1), and severe diseases (IRC, UTI and Death brain) (2).
Fig. 6. The roc curve represents the accuracy performance of a perfect diagnostic test
(ASC = 1.0) and a random error line (ASC = 0.5). Our results show ASC = 0.79.

This grouping is done through the level of disease severity. For the
classification layer, the architecture of the MLP network (Fig. 3(a)) is
made as follows: with four hidden layers with 500, 400, 400, and 400
neurons, respectively. For the regularization, we consider a dropout of
20% with an adaptive learning rate of 0.01 and with a minibatch of
32. In the output layer, we apply the softmax function, and for the
gradient, we use 𝑎𝑑𝑎𝑚 [32]. The reservoir (BDESN), we utilize the
hyperparameters (Table 2). After the training phase, the best accuracy
is 80.85% in the test data with 80.03% f1 score. In Fig. 5, the confusion
matrix of the test data is shown. The diagonal represents the hits, and
the values outside the diagonal correspond to the erroneously classified
data. The diagonals exhibit the recall and precision values for each
class.

The relative shapes of the Receiver Operating Characteristic Curve
(ROC curve) on the graph are a quick approach to estimate and
compare the precision between tests (Fig. 6). A perfect test (ASC = 1)
identifies all positive and negative results. An inaccurate test or similar
to a coin toss would result in a 45 degree line (ASC = 0.5). ASC is the
area swept out by the ROC curve. These two extremes (perfect test and
uninformative test) are often used as references. ROC curves closer to a
perfect test have a higher ASC and are more accurate than those closer
to the random error line (ASC ≈ 0.5). In our results, we find ASC =
0.79.

We see that the highest precision is in the severe and control disease
group, while the lowest precision is in the mild diseases. The severe
illness has a dynamics different of the control group. This way, it is
easier to separate the patients with severe disease and control than
patients with mild disease, which has an intermediate dynamics. In
5

Fig. 7. Confusion matrix of test data. 0 — represents volunteers, 2 — mild diseases,
and 2 — severe diseases. The top values represent precision and low values represent
recall for each disease, respectively.

Fig. 7, we observe a diagnostic accuracy of a cardiac time series greater
than 80%, that is, if a patient is diagnosed in one of the 3 groups
(healthy, mild, and severe), the probability of correctness is 80%. In
other words, our neural network can be applied to the patient’s first
diagnosis with good precision. The medical diagnosis is performed
directly on the time series without prior treatment of the collected data
and without other more expensive diagnoses. Our neural network can
be a gateway to a patient’s diagnosis and depending on the group to
start a more thorough investigation. This network is available at [33]
or in the webapp [34].

A way to characterize the complexity of a time series is that of
determining the decay law of its power spectrum 𝑃 (𝑓 ) = 1∕𝑓 𝛼 , where
𝛼 is the correlation in the signal. We employ this complexity measure
to determine the degree of variability of the time series, comparing
its dynamics with a stochastic noise. We determine the value of 𝛼 of
some time series (cardiac series) and use it to generate a stochastic
noise. Then, we compute the permutation entropy of each series and the
generated noise, the greater the difference between the two entropies,
the smaller the variability of the time series.

We train a recurrent neural network (Fig. 3(b)) with several time
series (flicker noise, ≈ 700) obtained from various values of 𝛼. They
are randomly separated into training (70%) and test (30%) series. The
network is a ‘‘Reservoir of computation (RC)’’ network coupled with
a perceptron network (Fig. 3(b)). Computation Reservoir (RC) is fed
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Fig. 8. Values of 𝛺 as a function of each group. The higher value of 𝛺, the lower
its variability. Control (volunteers), CRF (kidney diseases), (a) bipolar (patients before
treatment), (b) bipolar (patients after treatment) and MC (brain death).

only with time series without the correlation quantifier (𝛼). RC is used
to learn the dynamics of each time series 𝐱 = {𝐱𝑡}𝑇𝑡=0 as follows: first
project the time series with smaller dimension 𝐱(𝑡) for a larger space,
through the reservoir. Then a dimension reduction algorithm (PCA)
projects the reservoir outlet into a smaller space. The RC output feeds
a multilayer perceptron network (MLP) that correlates the network
dynamics with the value of 𝛼, respectively. The network learning is
done by regression, since the values of 𝛼 are not integers. The error
function metric is the mean-squared error,

𝜀 = 1
𝑁

𝑁
∑

𝑖=1
(𝛼̂𝑖 − 𝛼𝑖)2, (4)

where 𝛼̂ is predicted by the network and 𝛼 is the real value of the
series, respectively. After training, we utilize the separate series for the
test in the already trained network and compare the predicted values
of 𝛼𝑖 with the real values. The final error is given by 𝜀𝑡𝑒𝑠𝑡 ≈ 0.01 and
𝜀𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ≈ 0.001. After the trained network, we apply the same network
to the HRV signal to obtain the value of 𝛼 of this same time series. With
this value of 𝛼, we generate stochastic noise.

After the trained network, we apply the same network to the HRV
signal to obtain the value of 𝛼̂ of this same time series. With this value
of 𝛼̂, we generate stochastic noise of both the HRV signal and the noise
with the same value of 𝛼̂.

From the entropies, we use a quantifier defined by [23],

𝛺(𝛼̂) =
∣ 𝑆𝑓𝑛(𝛼̂) − 𝑆 ∣

𝑆𝑓𝑛(𝛼̂)
, (5)

where 𝑆 is the permutation entropy of the analyzed time series and
𝑆𝑓𝑛(𝛼) is the permutation entropy of a flicker noise time series gener-
ated with the value of 𝛼 returned by the recurrent neural network, 𝛼̂.
The greater 𝛺, the lower the variability of the HRV signal.

In Fig. 8, we plot the mean value of 𝛺 (difference between en-
tropies) for each group of cardiac series. We observe that the stochastic
noise has a small 𝛺 value. The control group has a greater variability
than people with brain death. The patients with bipolar disorders,
after treatment, have an increase in their variability (decrease of 𝛺).
The patients with chronic kidney disease and in the ICU are closer to
patients with brain death. Analyzing the two approaches (t-SNE and
entropy difference), both methodologies reach the same conclusion,
showing that the variability of the HRV signal is a great indicator in the
diagnosis of a patient. And all this analysis, has as its final application,
the use of the algorithm AnSeCar [34].
6

4. Conclusions

In this work, we show that the measurement of the variability of
the HRV signal is a great indicator of the patient’s health status. The
quantification of the variability can be directly related to the severe
or less severe disease. This relationship is directly shown in the use
of unsupervised learning, which groups the cardiac series according to
their dynamic correlations. When we consider some stochastic noises,
we observe that the patients with a more critical health status are
farther away from these noises. The groups with a less severe health
status show a strong relationship with the dynamics related to the
stochastic noises. By means of the entropy difference of the patient
groups, we verify that the variability of HRV signals is strongly related
to the patient’s status. The algorithm is able to capture the difference in
the variability of HRV signals from the group of patients with bipolar
disorder that received treatment. As a result of this work, we built an
algorithm with medical application in the diagnosis of an individual’s
health status, measuring their HRV signal. This algorithm can be used
as an entry point in the diagnosis of a patient. It is fast, does not need
pre-treatment in the data, and has good accuracy. The next steps will
be to obtain more HRV signals, so that we can improve the prediction
of our algorithm.
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Appendix A. Bidirectional deep read echo state (BDES) networks

Bidirectional architectures have been successfully applied in RNNs
to extract time features from time series that also account for very
distant dependencies in time, as it concatenates time series in both
directions, recovering all information from the beginning of the time
series, which would be lost if not bidirectional. The extraction of the
dynamic characteristics of this time series can be used as input to
another intelligent algorithm. This learning algorithm combines the
training speed of Reservoir computing with the accuracy of trainable
recurrent networks.

i. Reservoir computing
The reservoir computing (RC) has been used for modeling nonlinear

time series. In the learning context, echo states are more common in
RC models, where the input sequence is projected into a larger space
through the use of the non-linear reservoir. Learning is accomplished
through the application of simple linear techniques in the space of the
reservoir.

The proposed architecture is adapted from [35], called bidirectional
deep read ESN (BDESN), which combines the speed of the RC with the
trainable precision of RNNs. The model is equipped with a bidirectional
reservoir. Bidirectional architectures have been successfully applied in
RNNs to extract temporal resources from the time series that have a
very long time dependency.
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ii. Reservoir
The reservoir acts as an encoder that generates the input represen-

tation in a larger space. The state produced by the reservoir brings
all the dynamic information from the original input. This encoding is
performed using the weights 𝜃𝑒𝑛𝑐 = {𝐖𝐢,𝐖𝐡} and the dynamics of this
process is performed by the following equation

𝐡(𝑡) = (1 − 𝛼)𝐱(𝑡) + 𝛼𝑓
(

𝐖ℎ𝐡(𝑡 − 1) +𝐖𝑖𝐱(𝑡) + 𝜂
)

. (6)

where 𝐡(𝑡) is the time-dependent internal state, which combines the cur-
rent input 𝐱(𝑡) with the previous state 𝐡(𝑡−1). The initial value of 𝐡(0) is
zero. The function 𝑓 is a non-linear activation function (tanh), 𝐖ℎ is the
sparse matrix that defines the recurrent self-connects in the reservoir,
and 𝐖𝑖 defines the incoming connections. Both matrices are randomly
generated and are not trained. The behavior of the reservoir is mainly
controlled by five hyperparameters, that are: the size of the states 𝑁 ,
the spectral radius 𝜌 of 𝑊 ℎ, the dimensioning of the inputs 𝜔, the hyper
leakage parameter 𝛼, and the noise 𝜂 which is used for regularization
in the reservoir. The 𝜂 term represents additive white Gaussian noise
with spherical covariance matrix and unit standard deviation. By means
of an optimal fit of these hyperparameters, the reservoir produces rich
dynamics and its internal states can be used to solve many prediction
and classification tasks. The state generated by the reservoir 𝐡(𝑡), after
all inputs have been processed, is a high-dimensional representation
that incorporates the temporal dependencies of 𝐱. Since the reservoir
exchanges its internal stability with a memory at time 𝑇 [36], the
state tends to lose information from the initial times. To get around
this problem, we feed the same reservoir with the inverse order of the
time series 𝐱′ = {𝐱𝑇−𝑡}𝑇𝑡=0 and generate a new state 𝐡(𝑡)′ that is more
influenced with the first inputs. The final resultant state is obtained
by concatenating the two states, 𝐡𝑇 = [𝐡(𝑡);𝐡(𝑡)′]. The bidirectional
reservoir has recently been used for time series prediction [37]. From
the sequence of the RNN states generated over time,

𝐇 = [ℎ(1),… ,𝐡(𝑇 )], (7)

it is possible to extract a representation 𝐫𝑋 = 𝑟(𝐇) of the input 𝐱. The
𝐫𝑋 vector brings us all the information about the characteristics of the
𝐱 input, in this case the 𝐫𝑋 vector is formed by the weights and bias
learned when a later state is generated by the previous state, as shown
in the equation

𝐇(𝑡 + 1) = 𝐖𝑟𝐇(𝑡) + 𝐛𝑟, (8)

where 𝐫𝑋 = {𝐖𝑟,𝐛𝑟} ∈ R𝑅(𝑅+1) and 𝑅 is the number of neurons that
form the reservoir. Learning is done through the Ridge method of the
sklearn library.

In summary, all dynamic characteristics of the input are represented
by the vector 𝐫𝑋 , which is formed by the weights {𝐖𝑟,𝐛𝑟}. After
constructing 𝐫𝑋 , we can decode in the output space, which are the 𝑦
classes for the classification case (Fig. 3(a)) or for the regression case
(Fig. 3(b)). This decoding can be performed by

𝑦 = 𝑔(𝐫𝑋 , 𝜃𝑑𝑒𝑐 ), (9)

where 𝑔 is a multilayer perceptron network (Fig. 3(a)) and the 𝜃𝑑𝑒𝑐
weights to be learned. This 𝐫𝑋 state vector can also be used as input to
an unsupervised learning algorithm (Fig. 3(c)).

As the reservoir has a large dimension due to the number of neurons,
this takes an overfit and computational resources. The PCA [26] di-
mensionally reduces the states, showing a better performance. The PCA
aims to reduce the feature space, choosing a space that better separates
these features, facilitating the decision surface.

iii. Multilayer perceptron (MLP)
These state vectors with their reduced dimensions become the input

vectors to the network (MLP), where the classification or regression
takes place. The weights of these layers will undergo adjustments
during training. At this point, a normal training of an MLP network
is made.
7

These deep MLPs are known for their generalizability and adapt-
ability, important characteristics for the problem at hand. Nowadays,
deep layer networks can be efficiently trained using sophisticated reg-
ularization techniques and pre-training techniques that help to avoid
overfit and null or explosive.

Appendix B. t-Stochastic Neighbor Embedding (t-SNE)

Unsupervised learning is a branch of Machine Learning that learns
from test data which were not previously labeled, classified or cat-
egorized. Rather than responding to an operator’s programming, un-
supervised learning identifies similarities in data and reacts based on
the presence or absence of such similarities in each new piece of data.
One of the goals of this learning is to group in ‘‘clusters’’ the data that
have strong correlation, allowing a visualization of the data without
a ‘‘prior’’ knowledge of your characteristics. This learning serves as a
starting point for the study of the dataset characteristics under analysis.

The t-Stochastic Neighbor Embedding (t-SNE) [38], also called non-
parametric t-SNE, is a classical machine learning method for visualizing
high-dimensional data. The idea of t-SNE is to map data points in
the original high-dimensional space (X = {𝑥1, 𝑥2,… , 𝑥𝑁}) to points
in a low-dimensional space (Y = {𝑦1, 𝑦2,… , 𝑦𝑁}), while keeping the
similarity among the points. The map is determined by minimizing the
KL-divergence between the similarity of data distributions in the high-
and low-dimensional space.

In detail, the t-SNE defines the similarity between a high-dimensiona
data point 𝑥𝑖 and another data point 𝑥𝑗 by the following joint proba-
bility

𝑝𝑖𝑗 =
𝑝𝑗|𝑖 + 𝑝𝑖|𝑗

2𝑁
(10)

here,

𝑗∣𝑖 = 𝑒−∥𝑥𝑖−𝑥𝑗∥
2∕2𝜎2𝑖

∑

𝑘≠𝑙 𝑒
−∥𝑥𝑘−𝑥𝑙∥2∕2𝜎2𝑖

, (11)

𝑝𝑖|𝑖 = 0

nd 𝜎𝑖 are parameters determined from the following quantity called
perplexity of data 𝑥𝑖

𝑃𝑒𝑟𝑝(𝑃𝑖) = 2𝐻(𝑃𝑖) (12)

where 𝐻(𝑃𝑖) =
∑

𝑗 𝑝𝑗|𝑖 log2 𝑝𝑗|𝑖.
The value of 𝜎𝑖 is set so as to make 𝑃𝑒𝑟𝑝(𝑃𝑖) an user specified

alue (typically between 5 and 50). The similarity between the low-
imensional data points 𝑦𝑖 and 𝑦𝑗 is defined by the following equation

using Student t-distribution with one degree of freedom [38]

𝑞𝑗𝑖 =
(1+ ∥ 𝑦𝑖 − 𝑦𝑗 ∥2)−1

∑

𝑘
∑

𝑘≠𝑙(1+ ∥ 𝑦𝑘 − 𝑦𝑙 ∥2)−1
, (13)

𝑞𝑖|𝑖 = 0

The t-SNE determines a low-dimensional point 𝑦𝑖 corresponding to a
data point 𝑥𝑖 by iteratively minimizing the cost function 𝐶({𝑦𝑖}) defined
s the Kullback–Leibler (KL) divergence between a joint probability
istribution in the high- and low-dimensional data,

({𝑦𝑖}) =
∑

𝑖
𝐾𝐿(𝑃𝑖 ∥ 𝑄𝑖) =

∑

𝑖

∑

𝑗
𝑝𝑖𝑗 log

𝑝𝑖𝑗
𝑞𝑖𝑗

, (14)

here 𝑃𝑖 represents the probability distribution over all points given by
𝑖 and 𝑄𝑖 represents the probability distribution over all points given

by𝑦 .
𝑖



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 171 (2023) 113388S.T. da Silva et al.

𝑦

I
t
g

Y

Table 2
Hyper parameters of the reservoir.

Accuracy 𝛼 𝜌 𝜔 𝜂

0.62 0.7500 0.9700 0.90 0.0011
0.74 1.0000 0.9690 0.92 0.0020
0.52 0.8000 0.8123 1.00 0.0021
0.79 0.7200 0.9900 0.94 0.0012
0.80 0.7500 0.7200 0.98 0.0014
0.42 0.6000 0.9982 0.90 0.0200

The gradient of the cost function with respect to the set of variables
𝑖 is given by
𝜕𝐶
𝜕𝑦𝑖

= 4
∑

𝑗
(𝑝𝑖𝑗 − 𝑞𝑖𝑗 )(𝑦𝑖 − 𝑦𝑗 )(1+ ∥ 𝑦𝑘 − 𝑦𝑙 ∥2)−1, (15)

where 𝑝 ≈ 𝑞, we have 𝜕𝐶
𝜕𝑦𝑖

≈ 0.
The gradient is initialized by randomly sampling the mapped points.

n order to speed up the optimization and avoid poor local minima on
he error surface, a relatively large momentum term is added to the
radient,

(𝑡) = Y (𝑡−1) + 𝜂 𝜕𝐶
𝜕𝑦𝑖

+ 𝑎(𝑡)(Y (𝑡 − 1) + Y (𝑡 − 2)), (16)

where Y (𝑡) indicates iteration solution 𝑡, 𝜂 is the learning rate, and 𝑎(𝑡)
represents the moment in 𝑡.

Appendix C. Sensitivity to hyperparameters

As is known [39,40], the dependence of the prediction results on
the hyperparameters can be quite sensitive. We have used the Bayesian
optimization method [41,42] that is contained in the PYTHON package
‘‘skopt’’[43]. An issue is that the optimization algorithm typically gives
multiple sets of hyperparameter values. We consider these hyperpa-
rameter values to train multiple reservoirs and obtain the average
validation RMSE that can be fed back to the Bayesian algorithm. For
each set of the hyperparameter values, we repeat the training and
validation processes multiple times with different random realizations
of the reservoir to reduce the fluctuations in RMSE. After several
hundreds of iterations of the Bayesian algorithm, we choose the hyper-
parameter values with the lowest validation RMSE in all the iterations
(not necessarily the hyperparameter values from the last iteration).

A deficiency of the Bayesian optimization algorithm is that some-
times it generates solutions that are not optimal. It occurs when the
solution trajectory is trapped in a local minimum of the landscape
of the cost function, especially when the RMSE from the validation
process has large fluctuations. An empirical solution is to run the whole
Bayesian optimization process independently a number of times and
choose the best result with the smallest error. Table 2 shows some
accuracy values that depend on the hyperparameters.
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