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ABSTRACT

The stickiness effect is a fundamental feature of quasi-integrable Hamiltonian systems. We propose the use of an entropy-based measure of the
recurrence plots (RPs), namely, the entropy of the distribution of the recurrence times (estimated from the RP), to characterize the dynamics
of a typical quasi-integrable Hamiltonian system with coexisting regular and chaotic regions. We show that the recurrence time entropy
(RTE) is positively correlated to the largest Lyapunov exponent, with a high correlation coefficient. We obtain a multi-modal distribution of
the finite-time RTE and find that each mode corresponds to the motion around islands of different hierarchical levels.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0140613

In two-dimensional quasi-integrable Hamiltonian systems with
hierarchical phase space, chaotic orbits can spend an arbitrar-
ily long time around islands, in which they behave similarly
as quasiperiodic orbits. This phenomenon is called stickiness,
and it is due to the presence of partial barriers to the trans-
port around the hierarchical levels of islands-around-islands.
The stickiness affects the convergence of the Lyapunov expo-
nents, making the task of characterizing the dynamics more dif-
ficult, especially when only short time series are known. Due
to the intrinsic property of dynamical systems that quasiperi-
odic orbits can have at most three different return times (Slater’s
theorem1,2), which is the time needed to the orbit return to
a given region at the curve, in this paper, we propose the
use of the recurrence time entropy (RTE) (estimated from the
recurrence plots) to characterize the dynamics of nonlinear sys-
tems. We find that the RTE is an alternative way of detecting
chaotic orbits and sticky regions. Furthermore, the finite-time
RTE distribution is multi-modal when sticky regions are present

in the phase space, and each mode corresponds to a differ-
ent hierarchical level in the islands-around-islands structure
embedded in the chaotic sea.

I. INTRODUCTION

The phase space of a typical quasi-integrable Hamiltonian sys-
tem is, in general, neither integrable nor uniformly hyperbolic, but
there is a coexistence of chaotic and regular domains.3 The regu-
lar dynamics consists of periodic and quasiperiodic orbits that lie
on invariant tori, while the chaotic orbits fill densely the available
domain in phase space. For the special case of two-dimensional
area-preserving maps, the existence of islands of regularity filled
with Kolmogorov–Arnold–Moser (KAM) invariant tori separates
the phase space into distinct regions; i.e., orbits in the chaotic sea
will never enter any island, and the periodic and quasiperiodic orbits
inside of an island will never reach the chaotic sea.3,4 Due to the
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existence of islands embedded in the chaotic sea, the latter con-
stitutes a fat fractal5 and it is challenging to determine exactly the
islands’ boundary. The islands are surrounded by smaller islands,
which are in turn surrounded by even smaller islands. This struc-
ture repeats itself for arbitrarily small scales giving rise to an infinite
hierarchical islands-around-islands structure.6

The phenomenon of stickiness7–11 emerges due to this com-
plex interplay between islands and chaotic sea. The chaotic orbits
that approach an island may spend an arbitrarily long, but finite,
time in its neighborhood, in which the orbits will behave similarly
as quasiperiodic orbits. Before escaping, the orbits are trapped in a
region bounded by cantori,4,10,12 which are a Cantor set, formed by
the remnants of the destroyed KAM tori. Unlike the KAM tori that
are full barriers to the transport in phase space, the cantori act as par-
tial barriers, where the orbits may be trapped in the region bounded
by them, and once trapped inside a cantorus, the chaotic orbits may
cross an inner cantorus and so on to arbitrarily small levels in the
hierarchical structure of islands-around-islands.

Since in two-dimensional area-preserving maps, the islands
and the chaotic sea are distinct and disconnected domains, it is
of major importance to characterize orbits into these two cate-
gories. The traditional and most known method to characterize the
dynamics of a system is through the evaluation of the Lyapunov
exponents.13,14 For a two-dimensional mapping, there are two Lya-
punov exponents, λ1 and λ2, and the dynamics is chaotic if one of
them is positive. When the mapping is area-preserving, the sum of
the two exponents must be zero; i.e., λ1 = −λ2. In this scenario, the
regular orbits have Lyapunov exponents equal to zero for infinite
times, while the chaotic ones exhibit λ1 > 0.

If sticky regions are present in the phase space, the Lyapunov
exponents may not be the optimal choice to detect chaotic orbits due
to the trappings around the islands. When the orbit is trapped, the
largest Lyapunov exponent decreases and this makes its convergence
slower; i.e., it takes longer to reach the asymptotic (infinite-time)
value. As an alternative, a new method based on ergodic theory has
recently been proposed to detect chaotic orbits.15–18 It proved to be
a better option to distinguish between regular and chaotic orbits
than the Lyapunov exponents. However, both this new method and
the Lyapunov exponents require very long time series in order to
obtain reliable accuracy. When only a short time series is available,
a possible approach is to use the recurrence quantification analysis
(RQA).19–23 The RQA was developed to quantify the dynamics of a
system by means of the recurrences of the orbit in phase space.

The most used RQA measures (e.g., the recurrence rate and the
determinism) can, in some sense, detect different transitions occur-
ring in nonlinear systems. However, we seek a measure based on an
intrinsic property of dynamical systems: quasiperiodic orbits lying
on invariant circles can have at most three different return (recur-
rence) times, which is the time needed for the orbit return to a given
neighborhood of a point in the orbit, as stated by Slater’s theorem.1,2

We can obtain the recurrence times by simply defining a recurrence
region and counting how long it takes to the orbit to return to this
given region. It is also possible to use the recurrence plots (RPs)
to estimate the recurrence times: the white vertical lines in the RP
give us a lower estimate of the recurrence times.24–28 Thus, in this
paper, we propose using RPs to characterize the dynamics of a non-
linear system. We focus on a further type of RP-based measure to

identify regular and chaotic regions and sticky regions as well,
namely, the Shannon entropy of the recurrence times: the recurrence
time entropy (RTE).29,30 The RTE was originally introduced without
any connection to the RPs,29 and it was shown that it can provide
a good estimate for the Kolmogorov–Sinai entropy27 and the largest
Lyapunov exponent.31

We find that, with the RTE, we can identify very clearly the
regular regions and the transitions to chaotic motion as one param-
eter of the system is varied. We also find that, by computing the
finite-time RTE distribution, we can identify a multi-modal distri-
bution, in which each maximum is related to a different hierarchical
level in the islands-around-islands structure. Moreover, each of
these regions corresponds to a power-law decay of the cumulative
distribution of trapping times.

This paper is organized as follows. In Sec. II, we introduce
the standard map and briefly comment on some of the properties
of two-dimensional quasi-integrable Hamiltonian systems. We also
discuss a few approaches of how to detect sticky orbits in the phase
space of such systems. In Sec. III, we introduce the concept of recur-
rence plots and show that it can be used to characterize the dynamics
of a dynamical system. In this section, motivated by Slater’s theorem,
we also propose the use of the RTE, estimated from the RP, to quan-
tify the dynamics as periodic, quasiperiodic, and chaotic. In Sec. IV,
we apply this entropy-based measure for the standard map and show
that it is positively correlated to the largest Lyapunov exponent, with
a high correlation coefficient, and also show that it is possible to
detect and characterize different regimes of stickiness present in the
dynamics. Section V contains our final remarks.

II. THE STANDARD MAP

The standard map,32 also known as Chirikov–Taylor map, is a
two-dimensional area-preserving map, and its dynamics is given by
the following equations:

xn+1 = xn + pn+1 mod 2π ,

pn+1 = pn − k sin xn mod 2π ,
(1)

where xn and pn are the canonical position and momentum, respec-
tively, at discrete times n = 0, 1, 2, . . . , N and k is the nonlinearity
parameter.

In spite of its simple mathematical form, the standard map
exhibits all the features of a typical quasi-integrable Hamiltonian
system, and it has become a paradigmatic model for the study of
properties of chaotic motion in quasi-integrable Hamiltonian sys-
tems. For k = 0, the dynamics is regular, the system is integrable,
and all orbits lie on invariant rotational tori. As the nonlinearity
parameter k increases, the “sufficiently irrational” invariant tori per-
sist, as predicted by the KAM theorem,3 whereas the rational tori
are destroyed. When k is sufficiently large, it turns out that all the
invariant rotational tori are destroyed. For the standard map, the
last invariant rotational torus ceases to exist for the critical value
k ≈ 0.971 635,33 leading to a scenario of global stochasticity.

One of the main features of quasi-integrable Hamiltonian
systems is the phenomenon of stickiness. The phase space of a
quasiperiodic orbit (blue), a chaotic orbit (black), and a sticky
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FIG. 1. Phase space of a quasiperiodic orbit (blue), a chaotic orbit (black), and
a sticky orbit (red) of the standard map (1) with k = 1.5 iterated for N = 8.5 ×
104 times. The largest Lyapunov exponent of each orbit is λmax = 0.000 17, λmax

= 0.428 96, and λmax = 0.306 66, respectively.

orbit (red) of the standard map (1) with k = 1.5 and the ini-
tial conditions (x0, p0) = (1.0, 0.0), (x0, p0) = (2.9, 0.0) and (x0, p0)

= (1.6, 0.0), respectively, are displayed in Fig. 1. The orbits were
iterated for N = 8.5 × 104 times, and we also calculated the largest
Lyapunov exponent, λmax, of each orbit, namely, λmax = 0.000 17,
λmax = 0.429 86, and λmax = 0.306 66, respectively. For this value of
k, one single chaotic orbit fills a significant portion of phase space
(black dots), and the most prominent sticky region is around the
period-6 satellite islands (red dots). An orbit initialized in this region
is trapped for a long time until it escapes to the chaotic sea, and this
affects some properties of the orbit, the λmax, in particular. Although
chaotic and sticky orbits both have λmax > 0, the sticky orbit has a
lower value of λmax than the chaotic one. The λmax for the quasiperi-
odic orbit is small, but not exactly zero due to the finite iteration time
N: as N → ∞, λmax → 0. Furthermore, the closer the quasiperiodic
orbit is to the elliptic point, the faster the convergence of λmax toward
zero.34

The stickiness is usually characterized through the recurrence
time statistics,6,11,35–40 although other methods have been proposed,
such as the finite-time Lyapunov exponent (FTLE),41–44 the rotation
number,45 and the recurrence quantification analysis (RQA).24–26,46

Szezech et al.41 showed that for the case where the phase space has
stickiness regions, the distribution of the finite-time Lyapunov expo-
nents is bimodal. The finite-time Lyapunov exponent has also been
used to characterize stickiness in high-dimensional Hamiltonian
systems.43,44 More recently, Santos et al.45 showed that the rotation
number is a faster method, compared to the finite-time Lyapunov
exponent, to verify the presence of sticky orbits in the phase space.
The most commonly used measures of the RQA, such as the deter-
minism and the recurrence rate, can also characterize stickiness in a
similar way.24,25,46

In Sec. III, we review the concept of recurrence plots, and
we propose a quantity based on them, different from the tradi-
tional measures of RQA, to characterize the dynamics of a nonlinear
system.

III. RECURRENCE PLOTS

The recurrence plot (RP), first introduced by Eckmann et al. in
1987,47 is a graphical representation of the recurrences of time series
of dynamical systems in its d-dimensional phase space. Given a tra-
jectory Exi ∈ R

d (i = 1, 2, . . . , N), we define the N × N recurrence
matrix as

Rij = 2(ε − ‖Exi − Exj‖), (2)

where i, j = 1, 2, . . . , N (N is the length of the time series), 2 is the
Heaviside unit step function, ε is a small threshold, and ‖Exi − Exj‖ is
the spatial distance between two states, Exi and Exj, in phase space in
terms of a suitable norm. In this work, we consider the supremum
(or maximum) norm.

The recurrence matrix R is a symmetric, binary matrix that
contains the value 1 for recurrent states and the value 0 for non-
recurrent ones. Two states are said to be recurrent when the state at
t = i is “close” (up to a distance ε) to a different state at t = j, i.e.,
Exi ≈ Exj. The choice of the threshold ε is not arbitrary. If ε is cho-
sen too large, almost every point is recurrent with every other point.
On the other hand, if ε is chosen too small, there will be almost no
recurrent states. Several rules have been proposed. Some consider ε

with a fixed recurrence point density of the RP.48 Another possibility
is to consider ε as a fraction of the standard deviation, σ , of the time
series.49,50 Regardless of the choice we make, the effect of a finite ε

will never disappear; a new study has shown that using ε → 0 is not
the best choice,51 and in this work, we consider the threshold to be
10% of the time series standard deviation, considering the maximum
norm approach (see the Appendix); i.e., ε = σ/10. For a detailed
discussion about the effect of ε in our results, see the Appendix.

Graphically, the recurrent states are represented by a colored
dot, and the recurrence matrix R displays different patterns accord-
ing to the dynamics of the underlying system. In Fig. 2, we show the
recurrence matrix for the first 1000 iterations of (a) a quasiperiodic
orbit, (b) a chaotic orbit, and (c) a sticky orbit of the standard map
with k = 1.5 shown in Fig. 1. The RP of the quasiperiodic orbit con-
sists mainly of uninterrupted diagonal lines [Fig. 2(a)]. The vertical
distance between these lines is regular and corresponds to the dif-
ferent return times of the orbit,24–26,28 whereas the RP of the chaotic
orbit displays short diagonal lines and the vertical distances between
them are not as regular as in the quasiperiodic case. The RP of the
sticky orbit seems to be between these two cases. The diagonal lines
are longer than those in the chaotic case, indicating that the sticky
orbit is more regular than the chaotic one, but the diagonal lines are
not as long as those in the quasiperiodic case. Moreover, the vertical
distances between the diagonal lines have some regularity.

Therefore, we can use the RP to quantify the dynamics of the
system. Several measures based on the length ` of the diagonal lines
and based on the length v of the vertical lines have been proposed,
such as the recurrence rate, the determinism, the laminarity, the
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FIG. 2. Recurrence matrix of the (a) quasiperiodic orbit, (b) the chaotic orbit, and (c) the sticky orbit of the standard map (1) with k = 1.5 shown in Fig. 1.

maximal length of diagonal and vertical lines, among others. A com-
plete discussion about these and other quantifiers can be found in
Refs. 19–23 and references therein.

Entropy-based quantifiers of RPs have been employed to
detect chaotic regimes and bifurcation points.27,29,52–55 The Shannon
entropy of the lines is defined as

S = −

`max
∑

`=`min

p(`) ln p(`), (3)

where `max (`min) is the length of the longest (shortest) line, p(`)
= P(`)/N` and P(`) are the relative distribution and the total num-
ber of line segments with length `, respectively, and N` is the total
number of line segments. In order to define an RP-based entropy
measure based on an intrinsic property of dynamical systems, we
recall Slater’s theorem.1,2,56 The theorem states that for any irrational
linear rotation, with rotation number ω,57 over a unit circle, there
are at most three different return times to a connected interval of
size δ < 1. Furthermore, the third return time is always the sum of
the other two, and two of them are consecutive denominators in the
continued fraction expansion of the irrational rotation number ω.
With this in mind, we can distinguish between the different kinds
of solutions of a nonlinear system by simply counting the number
of return times of an orbit. If it is one, the orbit is periodic, and
if it is equal to three, the orbit is quasiperiodic. If the number of
return times is larger than three, then the orbit is chaotic.24–26 This
procedure has been employed to detect chaotic and quasiperiodic
orbits of the standard map24 and more recently to study the param-
eter space of a one-dimensional map.58 This is an efficient method.
However, it is not obvious how to use it to detect sticky orbits in
two-dimensional quasi-integrable Hamiltonian systems.

Since the vertical distances between the diagonal lines in an RP
are an estimate of the recurrence times of an orbit, we define the
Shannon entropy using the white vertical lines of the RP in Eq. (3).
The total number of white vertical lines (recurrence times) of length

v is given by the histogram

Pw(v) =

N
∑

i,j=1

Ri,jRi,j+v

v−1
∏

k=0

(1 − Ri,j+k) (4)

such that the RTE is defined as29,30

RTE = −

vmax
∑

v=vmin

pw(v) ln pw(v), (5)

where vmax (vmin) is the length of the longest (shortest) white ver-
tical line, pw(v) = Pw(v)/Nw, and Nw is the total number of white
vertical line segments. In this paper, we consider vmin = 1. Care-
ful attention should be given to the evaluation of (4). Due to the
finite size of an RP, the distribution of white vertical lines might
be biased by the border lines, which are cut short by the borders
of the RP, thus influencing the RQA measures, such as the RTE.59

In order to avoid these border effects, we exclude from the distribu-
tion the white vertical lines that begin and end at the border of the
RP. The thickening of diagonal lines in an RP, caused by tangential
motion,21,60 which occurs when states Exj preceding or succeeding a
state Exi are within the neighborhood of Exi (within ε), also influences
the RQA measures.59 However, this effect mainly arises in flows,
and in our simulations, we find that there is virtually no tangential
motion in the dynamics of the standard map (not shown), and we
only apply the corrections due to border effects in (4).

In this way, a periodic orbit, which has only one return time
(the period itself), will have RTE = 0. A quasiperiodic orbit, which
has three return times, will lead to a low value of RTE, whereas a
chaotic orbit will be characterized by a high value of RTE. As has
been stated, the chaotic orbit that experiences stickiness spends an
arbitrarily long time in the neighborhood of an island in which the
orbit exhibits similar behavior as a quasiperiodic orbit. This fact can
be seen from the recurrence matrix shown in Fig. 2(c). Hence, we
expect the RTE of sticky orbits to be smaller than the chaotic ones,
but higher than it would be for a quasiperiodic orbit.
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FIG. 3. (a) The λmax and (b) the RTE for the standard map (1) as a function of
the parameter k with x0 = 0.0 and p0 = 1.3.

IV. RECURRENCE TIME ENTROPY

In this section, we evaluate the RTE for the standard map, and
we show that the RTE can be used to characterize the dynamics of
the system and to detect the presence of stickiness regions. Unless
mentioned otherwise, we use a time series of size N = 5000 for all
our simulations.

In Fig. 3, we show the λmax and the RTE of the standard map for
a fixed initial condition (x0, p0) = (0.0, 1.3) as a function of the non-
linearity parameter k. We notice that whenever λmax > 0, the RTE
is large. Also, we can identify the windows of regularity, in which
λmax is zero and the RTE assumes low values. Furthermore, even
though the Lyapunov exponent goes faster to zero around the elliptic
point,34 only with the values of the Lyapunov exponent, we cannot
distinguish between the periodic and quasiperiodic orbits in two-
dimensional Hamiltonian systems. There are several values of k for
which RTE → 0, indicating that at these points, the initial condition
(x0, p0) = (0.0, 1.3) is very close to a periodic orbit [Fig. 3(b)].

To have a better visualization of the correspondence between
the λmax and the RTE, we plot in Fig. 4 the values of λmax and RTE
for a grid of initial conditions uniformly distributed in the phase
space (x, p) with k = 1.5 and in the parameter space (k, p) with x0

= 0.0. Figures 4(b) and 4(e) are a magnification of one of the period-
6 satellite islands of Figs. 4(a) and 4(d), respectively. We see that the
RTE captures all the features of the Lyapunov exponent but even
more. In the chaotic sea, where λmax is large, RTE is also large and
inside the islands, where λmax → 0, the RTE is low. In addition to
that, in the regions where the rotation number of an orbit is close to
a rational number, the RTE is smaller (blue to purple) [Fig. 4(d)].15,61

The RTE decreases as we get closer to the elliptic point, as we can see
in Figs. 4(e) and 4(f). In the latter, we can see the transitions from
regular to chaotic behavior, where bifurcations occur as k changes.

For the chosen parameter values of the standard map, k = 1.5,
it is known that the system exhibits the stickiness effect, and due
to that, the distribution of the finite-time Lyapunov exponent is
bimodal.41 The most prominent sticky region for this parameter is

TABLE I. Correlation between λmax and the RTE for the standard map (1).

Figure ρλmax ,RTE

3(a) and 3(b) 0.95
4(a) and 4(d) 0.93
4(b) and 4(e) 0.89
4(c) and 4(f) 0.94

the region in between the main island and the period-6 satellite
islands. The λmax decreases in this region when compared with the
rest of the chaotic sea [Figs. 4(a) and 4(b)]. With the RTE, we observe
the same behavior [Figs. 4(d) and 4(e)].

Therefore, at least qualitatively, we can see that the RTE is posi-
tively correlated to λmax. In order to quantify this correlation, we use
the Pearson correlation coefficient, defined as

ρxy =
cov(x, y)

σxσy

, (6)

where cov(x, y) is the covariance of the two time series, x and y, and
σx and σy are their standard deviation, respectively. Applying (6) to
the data in Figs. 3 and 4, we find that the RTE is positively correlated
to λmax and the value of the correlation coefficients is very close to 1,
indicating a very high correlation (Table I).

Next, we consider a single chaotic orbit of the standard map,
and we follow up its evolution for a long iteration time N. For
long times, the trajectory fills the entire chaotic component of the
phase space, and usually, the stickiness acts for very long, but finite,
times before an orbit escapes to the chaotic sea. Thus, the transi-
tions from different regimes in the dynamics of the orbit can be
better understood considering “finite-time” n � N. Therefore, we
compute the RTE along the evolution of a single chaotic orbit in
windows of size n, {RTE(i)(n)}i=1,2,...,M, where M = N/n, and define
the probability distribution of the finite-time RTE, P(RTE(n)), by
computing a frequency histogram of {RTE(i)(n)} such as the one
shown in Fig. 5(a) for N = 1010 and n = 200. To compute this dis-
tribution, we use the matplotlib function hist62,63 with the parameter
bins=”auto”. It uses the maximum of Sturge’s rule and the Freed-
man–Diaconis estimator to compute the number of bins taking into
account data variability and data size.64 The inset in Fig. 5(a) shows
the finite-time RTE “time series” for the interval from i = 40 000 to
i = 70 000. We see abrupt changes in the value of RTE(200), indi-
cating the transitions from different regimes in the dynamics of the
orbit. These changes in the value of the RTE cause its probability dis-
tribution to split into more than one mode. Szezech et al.41 reported
that for this value of k, the distribution of the finite-time Lyapunov
exponent is bimodal. What we see is that the minor peak of Fig. 3 in
Ref. 41 consists, in fact, of multiple peaks, as suggested by Harle and
Feudel.42

The multi-modal distribution is due to the infinite hierarchi-
cal islands-around-islands structure embedded in the phase space.
When the orbit is in the chaotic sea, the time-n RTE is high, cor-
responding to the largest maximum of the distribution. On the
other hand, when the orbit is trapped near an island, the RTE is
low and the distribution exhibits smaller maxima for small values
of RTE(200). Once trapped in the neighborhood of an island, the
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FIG. 4. (a)–(c) The λmax and (d)–(f) the RTE for the standard map (1) for a 1024 × 1024 grid of uniformly distributed points in the phase space (x, p), with k = 1.5, for (a),
(b), (d), and (e) and in the parameter space (k, p), with x0 = 0.0, for (c) and (f). (b) and (e) are magnifications of the regions bounded by the white rectangle in (a) and (d),
respectively, and the dotted white line in (c) and (f) represents the initial condition used in Fig. 3.

orbit may enter an inner level in the hierarchical structure, and
these transitions to different levels are the cause of the multi-modal
distribution.42 Moreover, the closer to zero is λmax, the higher the
hierarchical level of the island on which neighborhood the orbit is

trapped.65 Hence, multiple peaks are formed for small values of RTE
[Fig. 5(a)].

In order to identify the regions in phase space that correspond
to the peaks in the distribution, we monitor the RTE(200) time series

FIG. 5. (a) The finite-time RTE distribution for a single chaotic orbit, with n = 200, N = 1010, and k = 1.5; (b) the phase space points that generate the minor peaks in (a);
and (c) is a magnification of one of the period-6 satellite islands of (b), indicated by the red dashed lines. The colors in (b) and (c) match the filling colors of (a). Inset: the
time series of the finite-time RTE.
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and plot the 200 phase space positions (x, p) with different colors for
different ranges of RTE(200). The blue, red, green, and black points
represent the phase space position when RTE(200) ∈ [0.6, 0.8],
RTE(200) ∈ [1.25, 1.33], RTE(200) ∈ (1.33, 1.48], and RTE(200)
∈ (1.48, 1.55], respectively [Figs. 5(b) and 5(c)]. Different peaks are
indeed related to different hierarchical levels of the structure, and by
means of the RTE, it is possible to distinguish between them very
well. Additionally, the black and green points shadow the mani-
folds along which the non-trapped orbits leave the sticky region.66

Even though only the corresponding hierarchical levels around the
period-6 island are shown [Fig. 5(c)], all island chains contribute to
the finite-time RTE distribution. For completeness, we also investi-
gate the phase space points that generate the peak for high values of
RTE. Whenever RTE(200) ∈ [2.5, 4.0], we plot the 200 phase space
points (x, p) [Fig. 6(a)]. The phase space components in Figs. 5(b)

FIG. 6. (a) The phase space points that generate the larger peak for high values
of RTE in Fig. 5(a) and the (b) log–log plot ofQ(τ ) for each sticky region identified
in Fig. 5(a) with N = 1011 and n = 200 (colored dots). Inset: Log–lin plot ofQ(τ )

of the phase space points shown in (a). The colors of the dots in (b) correspond
to the colors of Fig. 5.

and 6(a) complement each other: in Fig. 6(a), the chaotic sea is
shown, i.e., the hyperbolic component of phase space, whereas in
Fig. 5(b), we see the nonhyperbolic component. Nonhyperbolic-
ity can inhibit chaotic orbits from visiting some regions due to
tangencies between stable and unstable manifolds.67–69

We can also measure the “trapping time” t spent in each of
the stickiness regimes, i.e., the time between two consecutive abrupt
changes in the RTE. In Fig. 5(a), we observe very clearly these
trappings, and we consider the boundary of each peak, defined by
the filling colors, as the limits of the stickiness regimes. With the
RTE(200) time series, we obtain a set of trapping times {tj}j=1,2,...,Nt

and define the probability distribution of the trapping times P(t).
Alternatively, we define the cumulative distribution of the trapping
times as

Q(τ ) =
∑

t>τ

P(t) =
Nτ

Nt

, (7)

where Nτ is the number of trapping times t > τ and Nt is the total
number of them. It is well established in the literature that the
distribution of the trapping times (and also its cumulative distri-
bution) for fully chaotic systems has an exponential decay, whereas
for quasi-integrable Hamiltonian systems, which exhibit the sticki-
ness effect, the decay obeys a power-law.6,11,35–40 Using the finite-time
RTE, we are indeed able to separate these two different behaviors
present in the dynamics, namely, the hyperbolic and nonhyperbolic
ones. The cumulative distribution of the trapping times of the hyper-
bolic region is indeed exponential [the inset of Fig. 6(b)], while Q(τ )

of the nonhyperbolic regions has a power-law tail for large times
[colored dots of Fig. 6(b)].

V. CONCLUSION

Several approaches to detect the existence of sticky orbits in
the phase space of two-dimensional area-preserving systems have
already been proposed and studied in previous studies. RP-based
measures have also been used for this purpose, however, without as
much care as the Lyapunov exponents, for example. In this paper,
we have proposed the use of the Shannon entropy of the distribution
of the recurrence times, RTE, estimated from the recurrence plots,
to detect and characterize the stickiness effect in the standard map.
We have shown that the RTE is positively correlated to the largest
Lyapunov exponent, with a high correlation coefficient, and that it
is possible to distinguish among the different types of motion using
this entropy-based measure.

It is well-known that for systems that exhibit the stickiness
effect, the transitions from fully chaotic motion to different levels in
the hierarchical structure of islands-around-islands cause the FTLE
distribution to have more than one peak. In fact, the distribution is
multi-modal, in which each peak represents a different hierarchical
level of islands. For the chosen nonlinearity parameter, k = 1.5, it
was previously reported that the FTLE is bimodal.41 However, we
have shown here that the maximum for small values of λmax/RTE
is, in fact, composed of several minor peaks, as suggested by Harle
and Feudel.42 This suggests that the RTE can be an alternative way
of characterizing the stickiness effect, with which it is possible to
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distinguish among the different hierarchical levels in the islands-
around-islands structure embedded in the chaotic component of
phase space.

The presence of sticky regions in phase space affects global
properties of the system, such as the distribution of the trapping
times. We have shown that, by monitoring the finite-time RTE time
series, it is possible to collect a set of trapping times {tj} for each
of the different hierarchical levels detected by the finite-time RTE
distribution and obtain the probability distribution of {tj}, P(t), and
its cumulative distribution, Q(τ ), of each hierarchical level. Q(τ )

of fully chaotic systems has an exponential decay, whereas Q(τ )

exhibits a power-law tail when sticky regions are present in the
phase space. After separating among the distinct hierarchical levels,
we have shown that the cumulative distribution of the hyperbolic
component has indeed an exponential decay and that the power-law
tail, characteristic of stickiness, is observed in the distribution of the
different hierarchical levels.

One interesting point we plan to investigate in the future is
whether the RTE can characterize also higher dimensional systems
(e.g., 4D symplectic maps) using the methodology presented in this
paper. Another interesting study is the critical value k = 0.971 635,33

where the last invariant rotational torus ceases to exist. For this
parameter, there is a sequence of cantori, and this could give an
interesting histogram for the finite-time RTE.

All of our simulations regarding the evaluation of the recur-
rence matrix were made using the pyunicorn package,70 and even
though these results were obtained with the standard map, we expect
similar results for any quasi-integrable Hamiltonian system that
exhibits stickiness.
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APPENDIX: THE EFFECT OF THE THRESHOLD ON THE

RTE

In Sec. III, we introduced the concept of RPs and made some
considerations regarding the choice of the threshold ε: we chose ε to
be 10% of the time series standard deviation, σ . In the following, we
provide an analysis of the effect of ε in our results.

When dealing with d-dimensional data, the problem of
how to calculate its standard deviation arises. The simplest
approach one could consider is to concatenate the time series
of each component, creating a new dN-dimensional vector

(x(1)
1 , x(1)

2 , . . . , x(1)
N , x(2)

1 , x(2)
2 , . . . , x(2)

N , . . . , x(d)
1 , x(d)

2 , . . . , x(d)
N )

T
(N is the

time series length) and compute its standard deviation. Another
approach one could choose is to consider a standard deviation vec-
tor, Eσ , where each component is the standard deviation of each time
series individually, and compute its norm. Here, we consider the
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FIG. 7. (a) The standard deviation, σ , as a function of k for the orbit with ini-
tial condition x0 = 0.0 and p0 = 1.3 using the concatenation approach (black)
and the norm approach (red and blue), considering the maximum and Euclidean
norms, respectively, and (b) the correlation coefficient between λmax and RTE as
a function of the threshold ε (in units of the percentage of σ ).

maximum and the Euclidean norms, given by

‖Eσ‖∞ = max(σ1, σ2, . . . , σd), (A1a)

‖Eσ‖2 =
√

σ 2
1 + σ 2

2 + . . . + σ 2
d , (A1b)

respectively. Using the maximum norm corresponds to choosing the
maximum of all standard deviations of the different time series (dif-
ferent components of Eσ ), while the Euclidean norm corresponds to
the ordinary distance from the origin to the point Eσ in the “stan-
dard deviation space.” Figure 7(a) shows the standard deviation
calculated using the concatenation approach (black) and the norm
approach, considering the maximum (red) and the Euclidean (blue)
norms, as a function of k, with the same initial condition as in Fig. 3.
The concatenation and norm (maximum) approaches yield similar
standard deviations, while the norm approach with the Euclidean
norm yields a larger value of σ . However, all methods agree that
chaotic orbits have a larger standard deviation.

To determine the optimal method for calculating σ and an
appropriate value of ε, we compute the correlation coefficient,
Eq. (6), between λmax and RTE as a function of ε (in units of
%σ ) using the concatenation and norm approaches to calculate σ

[Fig. 7(b)]. The three approaches yield similar correlation coeffi-
cients. Even if we choose a very small ε (1% of σ ), we still obtain
a high correlation coefficient (≈ 0.93). Also, increasing ε does not
affect significantly ρλmax ,RTE, indicating that in our case, the choice
of ε is not that sensible as it would be in other cases. In fact, there is
a range of values for ε in which the results are good.

Even though the three approaches of calculating the standard
deviation give similar results in our case, choosing the concatena-
tion approach when one time series has a different value range than

the others might strongly bias the standard deviation. Therefore, in
our opinion, the most appropriate approach is the norm approach
(either Euclidean or maximum).
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