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A B S T R A C T

Cancer is a group of diseases and the second leading cause of death according to World Health Organization.
Mathematical and computational methods have been used to explore the cancer cells spread and the mechanism
of their growth. We study a cancer model that exhibits both periodic and chaotic attractors. It describes the
interactions among host, effector immune, and cancer cells. It is observed fluctuations in the population of cells.
The fluctuation range can be associated with the appearance of tumour cells. In this work, we use machine
learning algorithms for the prediction of fluctuations. We show that our machine learning classification is able
to identify fluctuations that are associated with the growth rate of cancer cells.
1. Introduction

Cancer is among the leading causes of death in the world. It is
an abnormal growth of normal tissues and can spread throughout the
body. Understanding its mechanism of proliferation and prevention can
be effective to control cancer [1]. When the immune system recog-
nises tumour cells, it plays an important role in protecting the body
from malignancy [2,3]. Due to this fact, studies have been considered
interactions between effector immune and tumour cells [4].

Mathematical models have been used to improve the comprehension
of the relation among cancerous cells and ways to stop their growth or
spreading [5]. Some cancer models based on Lotka–Volterra compe-
tition and chaotic equations were considered to investigate situations
in which tumour cells may be suppressed [6]. Models with negative
competitive effects of cancer cells on host cells and vice versa [7]
can identify the parameters which should be targeted by treatments,
as well as determine the most effective strategy for medicine therapy
regime [8]. Borges et al.,[9] investigated a delay differential equations
model in which the cancer cells are attacked by the immune system
and chemotherapeutic agents [10,11]. Iarosz et al. [12] and Trobia
et al. [13] proposed mathematical models of brain tumour growth with
glia–neuron interactions considering chemotherapy treatment and drug
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resistance, respectively. There have been a lot of theoretical and experi-
mental investigations about the tumour–immune cell interactions [14].
Ghosh and Banerjee [15] demonstrated a mathematical modelling of
cancer-immune system based on clinical evidences that antibodies can
kill cancer cells.

In recent years, it has increased the use of machine learning models
in nonlinear systems. Recurrent neural networks (RNN), as one type
of machine learning model, have been explored to create a mixture of
experts for modelling nonlinear systems [16]. A class of RNN, namely
reservoir computing (RC) network, has been successfully applied to
many computational problems, such as prediction [17]. RC is suitable
for model-free prediction of nonlinear and chaotic systems [18,19].
Also, this framework has been used to reconstruct bifurcation diagrams
of nonlinear systems [20].

Itik and Banks [21] computed the Lyapunov exponents and the
Lyapunov dimension to confirm chaotic dynamics in a cancer model
composed of healthy, tumour, and effector immune cell populations.
They showed that the dynamics of the tumour–immune system interac-
tion can lead to the emergence of chaotic attractors in their phase space.
It was reported a tumour escape (immune system suppression) and
an uncontrolled growth of cancer cell populations. Izquierdo-Kulich
et al. [22] used the entropy production rate as a robust characteristic of
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the tumour complexity and a measurable value from the contour-based
fractal dimensions of avascular tumour growth. They demonstrated
that the increase of the entropy production rate is proportional to the
growth rate of tumours. Toker et al. [23] applied a chaotic decision tree
algorithm with very high accuracy to a wide variety of complex systems
in nature, such as a model of the transcription of the NF-kB protein
complex related to several genes involved in immune responses and
cancer research [24]. This algorithm uses the permutation entropy of
the inputted signal to approximate the degree of chaos. Obcemea [25]
studied the behaviours related to tumour cells and other cells through a
chaos framework by considering the bifurcation structure of nonlinear
equations for tumour growth.

In this work, we study a cancer model that is based on the Lotka–
Volterra equations and can exhibit chaotic behaviour. It describes
the interactions among host, effector immune, and tumour cells [26].
Depending on the parameters, this model has numerous similarities
with clinical evidences [21]. An extensive analysis can provide in-
sights into cellular interactions that correspond to some empirical and
clinical observations [27,28]. We use machine learning algorithms for
the prediction of fluctuations. We show that our machine learning
classification is able to identify fluctuations that are associated with
the growth rate of cancer cells.

The paper is organised as follows. Section 2 shows the cancer model
that describes the interactions among three cell populations. An analy-
sis in the form of bifurcation diagrams is performed. In Section 3, we
show the neural network used to analyse the cancer model. Section 4
presents our results. Concluding remarks are in the final section.

2. The cancer model

A model composed of ordinary differential equations containing ef-
fector immune and tumour cells was introduced by
Kuznetsov et al. [29]. The model with only two cell populations
was able to show some important aspects of the stages of cancer
growth. De Pillis and Radunskaya [26] analysed the phase space for
the model proposed by Kuznetsov et al. [29] and added a normal
(host) cell population. They also studied the effect of chemotherapy
treatment using optimal control theory. Furthermore, Kirschner and
Panetta [30] investigated the tumour cell growth in the presence of two
cell populations, namely the effector immune cells and the cytokine
IL-2. To diagnosis the tumour cells by the effector immune system,
they found that the antigenicity of the tumour cell populations has an
essential role in it. All these models containing various cell populations
have basic common characteristics [31]. According to the studies done
by [32–35], it has been reported that the dynamics of interactions of
tumour cells with other cells may exhibit chaos. In this regard, Itik and
Banks [21] used the model presented by [26] to show chaotic dynamics
in three cell populations. We study the model proposed by [26] that
exhibits chaotic dynamics [21] and has numerous analogies to clinical
evidences [27,28]. The parameter values, that we consider for the
model, are selected according to the findings obtained from some
biological evidences [26].

We consider a mathematical model that describes the interactions
among host (normal), effector immune (natural killer, macrophages
and CD8+T cells), and cancer cells in a single tumour site [21,26]. The
normalised cancer model [36] is given by
𝑑𝑥
𝑑𝑡

= 𝑝1𝑥(1 − 𝑥) − 𝛼13𝑥𝑧, (1)
𝑑𝑦
𝑑𝑡

=
𝑝2𝑦𝑧
1 + 𝑧

− 𝛼23𝑦𝑧 − 𝛿2𝑦, (2)

𝑑𝑧
𝑑𝑡

= 𝑧(1 − 𝑧) − 𝑥𝑧 − 𝛼32𝑦𝑧, (3)

where 𝑥, 𝑦, and 𝑧 correspond to the normalised rate of change of host,
effector immune, and tumour cells, respectively. The descriptions and
values of the parameters are shown in Table 1 [21]. The parameters
𝑝 and 𝑝 are the growth rate of host cells and effector immune cells,
2
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Table 1
Parameter descriptions and values used in our simulations.

Name Description Value

𝑝1 Growth rate of host cells [0.3,1.4]
𝛼13 Host cell killing rate by 1.5

tumour cells
𝑝2 Growth rate of 4.5

Effector immune cells
𝛼23 Effector immune cell 0.2

Inhibiting rate by tumour cells
𝛿2 Effector immune cell mortality 0.5
𝛼32 Effector immune cell killing rate 2.5

by tumour cells

Fig. 1. Schematic representation of the cancer model, where the red and blue lines
correspond to the linear and nonlinear interactions, respectively. The signs are related
to the growth (+) or suppression (-) of the cells.

respectively. The parameter 𝑝2 is a positive constant, which can be
varied to determine the bifurcations. For 𝑝2, we consider 4.5 to simulate
a patient with a compromised immune system. The parameter 𝛼13
corresponds to the rate of inhibiting host cells by tumour cells, 𝛼23 is
associated with the inactivation of effector immune cells by tumour
cells, and 𝛼32 is the rate of killing tumour cells by effector immune
cells. The competition terms are positive in our simulations [37,38].
The parameters 𝛼13, 𝛼23, and 𝛼32 are considered as 1.5, 0.2, and 2.5,
respectively. The parameter 𝛿2 equal to 0.5 denotes the per capita death
rate of the immune cells.

In Eq. (1), the first term is a logistic function and the second one is
the inhibition of host cells due to the cancer. The first term in Eq. (2)
is associated with the stimulation of the immune system by cancer
cells. The second and third terms are responsible for the suppression
of effector immune cells by tumour cells and due to the naturally
die, respectively. In Eq. (3), the first term is a logistic function and
the second term represents the competition between cancer and host
cells. The third term corresponds the death of tumour cells by effector
immune cells. Fig. 1 displays a schematic representation of the cancer
model, where the red and blue lines represent the linear and nonlinear
interactions, respectively.

Depending on the parameters, the cancer model can exhibit at-
tractors. Fig. 2(a) displays a periodic attractor for 𝑝1 = 0.3750 and
parameters according to Table 1. For 𝑝 = 0.6, we observe a chaotic
1
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Fig. 2. (a) Periodic attractor for 𝑝1 = 0.3750 and (b) chaotic attractor for 𝑝1 = 0.6. We
consider the parameters shown in Table 1.

Fig. 3. Bifurcation diagrams for (a) host and (b) tumour cells.

attractor, as shown in Fig. 2(b). Then, periodic and chaotic trajectories
can be generated by the cancer model.

We plot the bifurcation diagrams for the host and cancer cells as
a function of 𝑝1, as shown in Figs. 3(a) and 3(b), respectively. To do
that, we compute the maxima and minima values of the time series.
The diagrams exhibit period-doubling cascades, periodic windows, and
chaotic attractors [39]. The population of host cells can reach value
close to 1, while the minimum becomes very low. As the growth rate
of host cells increases, the cycle-to-cycle diversity decreases [36]. This
means that the host cells population achieves its maximum for a long
time, however it can drop to zero very quickly. Also, the population of
tumour cells remains near its minimum value during a time period and
can increase very quickly to one.

3. Neural network

Our deep neural network model, that we use in the analysis of
the cancer model, basically consists of two coupled neural networks.
An echo state network (ESN) as a recurrent neural network [40,41]
coupled to a multilayer perceptron (MLP) network (Fig. 4), using a
principal component analysis (PCA) [42] as dimension reducer.

3.1. BDESN networks

3.1.1. Reservoir computing
The Reservoir Computing (RC) has been used for modelling non-

linear time series. In the learning context, echo state networks (ESNs)
are more common in RC models, where the input sequence is projected
into a larger space through the use of the non-linear reservoir. Learning
is accomplished through the application of simple linear techniques in
the space of the reservoir. The architecture is adapted from [43], called
Bidirectional Deep-readout Echo State Networks (BDESN), which com-
bines the speed of RC with the trainable precision of RNNs. The model
is equipped with a bidirectional reservoir. Bidirectional architectures
have successfully been applied in RNNs to extract temporal resources
from the time series that have a very long time dependency.
3

The BDESN is used for the classification of time series 𝐮 = {𝐮𝑡}𝑇𝑡=0
through the following procedure. We first project the time series with
smaller dimension 𝐮(𝑡) to a larger space, through the reservoir. Then
a dimension reduction algorithm projects the reservoir outlet into a
smaller space. Finally, a multilayer perceptron (MLP) classifies the
vector representative of 𝐮, as shown in Fig. 4.

3.1.2. Reservoir
The reservoir acts as an encoder that generates the input represen-

tation in a larger space. The state produced by the reservoir brings
all the dynamic information from the original input. The encoding is
performed using the weights 𝜃𝑒𝑛𝑐 = {𝑊 𝑖,𝑊 ℎ}. The dynamics of this
process is given by

𝐡(𝑡) = (1 − 𝛼)𝐮(𝑡) + 𝛼𝑓 (𝐖ℎ𝐡(𝑡 − 1)
+𝐖𝑖𝐮(𝑡) + 𝜂(𝑡)), (4)

where 𝐡(𝑡) is the time-dependent internal state, which combines the
current input 𝐮(𝑡) with the previous state 𝐡(𝑡 − 1), 𝑓 is a non-linear
activation function (tanh), 𝐖ℎ is the sparse matrix that defines the
recurrent self-connects in the reservoir, and 𝐖𝑖 defines incoming con-
nections. Both matrices are randomly generated and are not trained.
The behaviour of the reservoir is mainly controlled by five hyper pa-
rameters, they are: the size of the states 𝑁 , the spectral radius 𝜌 of 𝑊 ℎ,
the dimensioning of the inputs 𝜔, the hyper leakage parameter 𝛼, and
the noise 𝜂 which is used for regularisation in the reservoir. Through
an optimal fit of these hyper parameters, the reservoir produces rich
dynamics and its internal states can be used to solve many prediction
and classification tasks.

The states generated by the reservoir 𝐡(𝑡), after all inputs are pro-
cessed, are a high-dimensional representation that incorporates the
temporal dependencies of 𝐮. Since the reservoir exchanges its internal
stability with a memory [44], at the time T, the state tends to lose
information from the initial times. To get around this problem, we
feed the same reservoir with the inverse order of the time series 𝐮′ =
{𝐮𝑇−𝑡}𝑇𝑡=0 and generate a new state 𝐡(𝑡)′ that is more influenced with the
first inputs. The final resultant state is obtained by concatenating the
two states, 𝐡𝑇 = [𝐡(𝑡);𝐡(𝑡)′]𝑇 . The bidirectional reservoir has recently
been used for time series prediction [45]. From the sequence of the
RNN states generated over time,

𝐇 = [ℎ(1),… ,𝐡(𝑇 )]
𝑇
, (5)

it is possible to extract a representation 𝐫𝑢 = 𝑟(𝐇) of the input 𝐮.
The 𝐫𝐮 vector brings all the information about the characteristics of

the 𝐮 input, in this case the 𝐫𝐮 vector is formed by the weights and bias
learned when a later state is generated by the previous state as shown
in

𝐡(𝑡 + 1) = 𝐖𝑟𝐡(𝑡) + 𝐛𝑟, (6)

where 𝐫𝑢 = {𝐖𝑟,𝐛𝑟} ∈ R𝑅(𝑅+1) and 𝑅 is the number of neurons that
form the reservoir.

After constructing 𝐫𝑢, we can decode in the output space, which are
the 𝐶 classes for the classification case (Fig. 4). This decoding can be
performed by

𝐶 = 𝑔(𝐫𝑢, 𝜃𝑑𝑒𝑐 ), (7)

where 𝑔 is a multilayer perceptron network and the 𝜃𝑑𝑒𝑐 weights and
biases to be learned. The 𝐫𝑢 state vector can also be used as input to an
unsupervised learning algorithm.

As the reservoir has a large dimension due to the number of neu-
rons, this takes an overfit and computational resources. The Principal
Component Analysis (PCA) [42] dimensionally reduces the states, by
transforming large states into a smaller one that still contains most of
the information in the large states, while preserving as much variability
as possible, showing a better performance. The PCA aims to reduce
the feature space, choosing a space that better separates these features,
facilitating the decision surface. In BDESN, dimensionality reduction
not only provides a strong regularisation, but also prevents overfitting
in the classifier operating on the reservoir states.
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Fig. 4. Schematic representation of a deep network composed of a computational reservoir followed by a dimensional reduction method (PCA) and a reading layer formed of a
multilayer perceptron network trained for classification.
3.1.3. Multilayer perceptron (MLP)
The state vectors with their reduced dimensions become the input

vectors of the network (MLP), where the classification or regression
takes place. MLP following a feedforward algorithm is a neural network
in which the mapping between inputs and output is non-linear. In
the network, supervised learning is made by a mechanism called back
propagation that allows MLP to iteratively adjust the weights during
training and to minimise the cost function. At this point, a normal
training of a MLP network is made.

The deep MLPs are known for their generalisability and adapt-
ability, that are important characteristics for the problem at hand.
Nowadays, deep layer networks can be efficiently trained using sophis-
ticated regularisation techniques and pre-training techniques that help
to avoid overfit and null or explosive gradient problem.

In the architecture formed by the multilayer perceptron network,
we use 500 neurons in the input layer and three hidden layers with
400 neurons each. These numbers of neurons in the layers give the best
performance in the prediction, avoiding overfitting and resulting in a
better generalisation. On the hidden layers, we use a dropout = 0.2
(Fig. 4) and ‘‘Greedy Layer-Wise’’ [46] as pre-training of the network.
The optimiser and error function are ‘‘Adam’’ and ‘‘MSE’’, respectively.

4. Analysis of time series via machine learning

The objective of this work is to find the parameters values of the
cancer model proposed in Eqs. (1), (2), and (3), that keep the dynamics
of the host cells as long as possible close to 1. For this task, we train our
deep neural network with several time series, which we label as classes
0 (𝑥 = 1), 1 (Fig. 5(a)), 2 (Fig. 5(b)), 3 (Fig. 5(c)), and 4 (Fig. 5(d)).
These classes are grouped according to their dynamic characteristics.

The training is performed with 4000 samples, divided equally into 5
classes, where we use 70% for training, 5% for validation and 25% for
testing. We calculate the performance measured through the confusion
matrix. Performance is evaluated based on three main measurement
performances in RNN models, which are accuracy, precision and recall,
given by

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

, (8)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (9)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (10)

𝐹1𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

. (11)

These measurements are described using the confusion matrix that
considers a two-class classification problem, as illustrated in Table 2.
The main diagonal values are the correctly predicted values while the
off-diagonal values are the wrongly predicted ones.

In neural networks, an important rule is the choice of hyper pa-
rameters for a better performance in the classification model without
suffering overfit. After choosing these hyper parameters, using Bayesian
optimisation, we can apply our network for the classification problem.
4

Fig. 5. 𝑥 × 𝑡 for (a) 𝜌1 = 1.1, 𝛼13 = 1.5, 𝛼23 = 0.2 (class 1), (b) 𝜌1 = 0.7, 𝛼13 = 1.5,
𝛼23 = 0.2 (class 2), (c) 𝜌1 = 0.7, 𝛼13 = 0.8, 𝛼23 = 0.2 (class 3), and (e) 𝜌1 = 0.5, 𝛼13 = 1.8,
𝛼23 = 0.2 (class 4). When the oscillation of the number of host cells is close to 1, the
number of cancer cells remains close to zero.

Table 2
Confusion matrix.

Predicted Positive Predicted Negative

Current Positive True Positive (TP) False Negative (FN)
Current Negative False Positive (FP) True Negative (TN)

Table 3
Hyper parameters of the reservoir.
𝑁 𝛼 𝜌 𝜔 𝜂 PCA

500 0.8976 0.9984 0.5988 0.0008 100

The best hyper parameters of the reservoir are shown in Table 3. For
the classification layer, the architecture of the MLP network (Fig. 4) is
made by means of hidden layers. For the regularisation, we consider
a dropout of 20 (0.2) with an adaptive learning rate of 0.01 and with
a minibatch of 32. In the output layer, we apply the softmax function,
and for the gradient, we use ‘‘Adam’’. After the training phase, the best
accuracy is 98.36% in the test data with 99.19% f1 score. In Table 4,
we show the summary of the algorithm’s efficiency.

Fig. 6 displays the confusion matrix of the test data. The diagonal
represents the hits and the values outside the diagonal correspond to
the erroneously classified data.

After the training step, we apply our trained network to the entire
parameter space. The phase is done as follows: For each parameter
value, we generate time series, repeating this procedure throughout the
parameter space, we obtain a data set relating the parameter values
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Table 4
Algorithm’s efficiency.

accuracy 0.9836

F1 score 0.9919
Precision 0.9839
Recall 1.0

Fig. 6. Confusion matrix of the test data.

Fig. 7. 𝜌1 × 𝛼13 for 𝛼23 = 0.2 and 𝛼32 = 2.5.

with their respective series. Then, we apply our algorithm to the entire
dataset generated in the previous step. For each parameter values,
our network is ranked between one of the above classes. For these
predictions, we consider 𝛿2 = 0.5 and 𝜌2 = 4.5. The classes are identified
by means of colours.

In Fig. 7, we vary 𝜌1 and 𝛼13, fixing the other parameters. The
first parameter is the growth rate of healthy cells, while the second
parameter is the effect of tumour cells on the host cells. In the red
region, the number of host cells are close to 1, that is the ideal
parameter values. Fig. 8 displays our result for the parameter space
𝜌1 versus 𝛼23. The parameter 𝛼23 is directly related to the effect of the
tumour cells on the immune system. We verify that the variation of 𝛼23
does not affect the number of healthy cells.

Increasing 𝛼32 (Fig. 9), we observe the effect of the immune system
on the tumour cells. The undesired dynamic regime goes to an ideal
condition. The boundary between the class 0 with the classes 1, 2, 3,
4 is a linear boundary throughout the parameter space, moreover, it
always separates the class 0 from the class 3. The class 4 occurs for the
lowest values of 𝜌 with its boundaries with the class 3.
5

1

Fig. 8. 𝜌1 × 𝛼23 for 𝛼13 = 1 and 𝛼32 = 2.5.

Fig. 9. 𝜌1 × 𝛼32 for 𝛼23 = 0.2 and 𝛼13 = 1.2.

To improve the condition of a patient, it is important to work with
𝜌1 and 𝛼32. The variation of these parameters changes a regime from
the number of host cells oscillating close to zero to a regime in which
the number of host cells are constant in time and close to the maximum
value. From the therapeutic point of view, the non-linear term 𝛼32𝑦𝑧 is
interesting to be considered.

5. Conclusion

In this work, we analysed the dynamics of a cancer model that
describes the interactions among host, effector immune, and tumour
cells. The model focuses on the generic interaction and how the host
cells (healthy tissue cells) evolve, survive, and die in the encounter with
the effector immune and tumour cells.

We use a Bidirectional Deep-readout Echo State Network (BDESN)
to investigate the values of the parameters that the cancer model
keeps the dynamics of the host cells oscillating close to 1. In this
network, the reservoir model is optimised by Bayesian method and
the output dimensions of the reservoir decrease using PCA. To classify
the various time series, resulting from changing the parameters of
the cancer model, into 5 classes, a multilayer perceptron network is
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applied. Among several parameters of the cancer model, growth rate of
host cells and the effect of the immune system on tumour cells are the
two most important parameters to consider for improving a patient’s
condition. Furthermore, our results reveal when the tumour–immune
interactive dynamics are greater than 3.5, the host cells will remain at
their maximum value. An effective cancer treatment starts by increasing
the rate that is associated with the death of cancer cells caused by cells
of the immune system and the rate of the growth of the host cells. This
aspect occurs due to the fact that 𝛼32 is directly related to the death of
the tumour cells, while 𝑝1 acts only on the growth of the host cells. It
means that the tumour cells are well controlled by the immune system.
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