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a b s t r a c t 

In tokamak-confined plasmas, particle transport can be reduced by modifying the radial electric field. In this 
paper, we investigate the influence of both a well-like and a hill-like shaped radial electric field profile on the 
creation of shearless transport barriers (STBs) at the plasma edge, which are a type of barrier that can prevent 
chaotic transport and are related to the presence of extreme values in the rotation number profile. For that, we 
apply an 𝐄 × 𝐁 drift model to describe test particle orbits in large aspect-ratio tokamaks. We show how these 
barriers depend on the electrostatic fluctuation amplitudes and on the width and depth (height) of the radial 
electric field well-like (hill-like) profile. We find that, as the depth (height) increases, the STB at the plasma 
edge becomes more resistant to fluctuations, enabling access to an improved confinement regime that prevents 
chaotic transport. We also present parameter spaces with the radial electric field parameters, indicating the STB 
existence for several electric field configurations at the plasma edge, for which we obtain a fractal structure at 
the barrier/non-barrier frontier, typical of quasi-integrable Hamiltonian systems. 
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. Introduction 

In tokamaks, modifying the 𝐄 × 𝐁 shear can lead to changes in turbu-
ence and transport, enabling access to improved confinement regimes
1–4] . In particular, the radial electric field 𝐸 𝑟 at the plasma edge can
e adjusted to reduce particle transport [3,5–7] . Both the 𝐸 𝑟 -shear and
 𝑟 -curvature play crucial roles in suppressing turbulence and creat-

ng an edge transport barrier [8–10] . For instance, by applying biased-
lectrode-induced electric fields, modifications of the 𝐸 𝑟 profile can be
ade and high-mode-like regimes can be triggered, thereby improving
lasma confinement [5,11,12] . Additionally, these modifications of the
adial electric field may occur spontaneously when the neutral beam
eating exceeds a certain threshold, leading to the development of a
eep well-like structure of 𝐸 𝑟 inside the last closed flux surface, which
esults in a transition from a low-confinement to a high-confinement
ode [13–15] . Specifically, as the depth of the radial electric field well

ncreases, the plasma confinement regime tends to improve [15,16] . 
In this paper, we show that the presence of such radial electric fields

n the plasma edge can cause the formation of shearless transport bar-
iers (STBs) due to the presence of shearless tori. These STBs are ba-
ically invariant tori for which the rotation number has local extrema
17] . Some works have shown that, when the plasma has non-monotonic
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heared profiles for the electric and/or the magnetic fields, STBs can ap-
ear [18–23] . 

Our results are obtained from a model of guiding centre motion with
 × 𝐁 drift in tokamaks, in which we adopt non-monotonic profiles for

he equilibrium radial electric field, and sheared profiles for both the
afety factor and the parallel velocity [18] . Although the spectrum of
urbulent electrostatic fluctuations is complex, we simplify our model
y focusing on a single spatial mode with a finite number of harmonics.
espite this simplification, through our analysis, we observe a corre-

ation between the presence of either a well-like or a hill-like radial
lectric field profile near the plasma edge and the onset of an STB in
okamaks. 

Our numerical results indicate that, by shaping 𝐸 𝑟 at the plasma
dge, an STB can appear and, thereby, prevent the particles from es-
aping. Furthermore, we show that the robustness of this STB depends
n the profile parameters; in particular, for a well-like (hill-like) 𝐸 𝑟 pro-
le, the STB will be more resistant to perturbations as the well (hill)
epth (height) and width increase. 

Since the applied model has a Hamiltonian structure, the phase space
ow generated by solving the equations of motion is area-preserving in
n adequate Poincaré surface of section. If the plasma profiles were all
onotonic, KAM theory would apply everywhere in phase space and
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hearless barriers would not be possible at all. However, since the pro-
les are non-monotonic, local extrema correspond to shearless invariant
ori which act as dikes, preventing particle diffusion. 

An undeniable advantage of simple models over large-scale com-
uter simulations is the possibility of choosing a small number of system
arameters to investigate the effects of their changes on the STB prop-
rties. The depth/height of the radial electric field well/hill-like profile,
ts width and the intensity of a single mode of the electrostatic potential
erturbation can be varied in order to get parameter planes indicating
 transport property, namely, the mean escape time for particles. The
rontier between escape and non-escape is fractal, which is ultimately
he consequence of the complicated invariant curve structure of quasi-
ntegrable Hamiltonian systems. 

The remainder of this paper is organized as follows: Section 2 out-
ines the 𝐄 × 𝐁 drift wave transport model, whereas our numerical re-
ults on the identification of shearless transport barriers in the plasma
dge are presented in Section 3 . In Section 4 , we discuss the influence of
he edge radial electric field on the STB robustness, regarded from the
oint of view of our parameter planes. Finally, we draw our conclusions
n Section 5 . 

. 𝐄 × 𝐁 drift wave transport model 

For a magnetically confined plasma in a tokamak, let us consider
n individual test particle whose guiding centre is moving along the
agnetic field lines, 𝐁 ( 𝐱) , with velocity 𝐯 ∥( 𝐱) and drifted by a 𝐯 𝐄 ×𝐁 ( 𝑡, 𝐱)

elocity, such that 

d 𝐱 
dt 

= 𝑣 ‖�̂� + 𝐯 𝐄 ×𝐁 , 𝐯 𝐄 ×𝐁 = 
𝐄 × 𝐁 

𝐵 

2 , (1) 

here 𝐱 = ( 𝑟, 𝜃, 𝜑 ) corresponds to the particle position in toroidal coordi-
ates, 𝑣 ∥ = 𝑣 ∥( 𝐱) its velocity component in the magnetic field direction,

̂
 = 𝐁 ∕ 𝐵, and 𝐄 = 𝐄 ( 𝑡, 𝐱) the electric field experienced by the particle. 

For simplicity, we assume that the magnetic equilibrium surfaces
ross sections are concentric circles and that there is only a radial de-
endence of the plasma profiles. Also, we are ignoring the drifts due to
he magnetic field lines curvature and magnetic gradients. To do that,
ome assumptions are made on the tokamak geometry and the mag-
etic field; mainly, we take the cylindrical approximation for the toka-
ak, for which 𝑎 ∕ 𝑅 = 𝜖 ≪ 1 , with 𝑎 and 𝑅 the minor and major radius

f the plasma, respectively, i.e. the plasma is treated as a 2 𝜋𝑅 periodic
ylinder. Furthermore, we assume a screw pinch configuration such that
 ( 𝑟 ) = 𝐵 𝜃𝑒 𝜃 + 𝐵 𝜑 ̂𝑒 𝜑 , with 𝐵 ≈ 𝐵 𝜑 ≫ 𝐵 𝜃 and 𝐵 = cst . The radial depen-
ence of the magnetic field components will be regarded through the
afety factor profile 𝑞( 𝑟 ) , given by 

( 𝑟 ) = 
𝑟𝐵 𝜑 ( 𝑟 ) 
𝑅𝐵 𝜃( 𝑟 ) 

. (2)

The electric field, 𝐄 ( 𝑡, 𝐱) , is considered as a rotation-free vector field,
 × 𝐄 = 0 . When this condition is fulfilled, the electric field can be called
lectrostatic, even with it depending explicitly on time. In the equilib-
ium, we are neglecting any contribution of the parallel electric field,
 ∥, and considering only the radial equilibrium part 𝐸 𝑟 ( 𝑟 ) ̂𝑒 𝑟 . For the
on-equilibrium scenario, a perturbation is included via the electrostatic
otential �̃�( 𝑡, 𝐱) , and therefore 

 ( 𝑡, 𝐱) = 𝐸 𝑟 ( 𝑟 ) ̂𝑒 𝑟 − ∇ ̃𝜙( 𝑡, 𝐱) . (3)

The electrostatic potential �̃�( 𝑡, 𝐱) is written as a superposition of har-
onic waves travelling in the poloidal and toroidal directions, 

̃( 𝑡, 𝜃, 𝜑 ) = 
∑
𝑛 

𝜙𝑛 cos ( 𝑀𝜃 − 𝐿𝜑 − 𝑛𝜔 0 𝑡 − 𝛼𝑛 ) , (4)

here 𝑀 and 𝐿 are their dominant wave numbers, respectively, 𝜔 0 their
undamental angular frequency, 𝜙𝑛 the amplitude and 𝛼𝑛 the phase for
ach perturbation mode. 
2 
Now, on using two new variables, the action and the angle, defined,
espectively, as 

 = 
(

𝑟 

𝑎 

)2 
, 𝜓 = 𝑀𝜃 − 𝐿𝜑, (5) 

he equations of motion (1) reduce to the time dependent one-degree-
f-freedom dynamical system 

d 𝐼 
dt 

= 2 𝑀 

∑
𝑛 

𝜙𝑛 sin ( 𝜓 − 𝑛𝜔 0 𝑡 − 𝛼𝑛 ) , 

dψ 
dt 

= 𝜖𝑣 ∥( 𝐼 ) 
[ 𝑀 − 𝐿𝑞( 𝐼 )] 

𝑞( 𝐼) − 𝑀 √
𝐼 
𝐸 𝑟 ( 𝐼 ) , 

(6) 

 ( 𝐼) = 
dψ 
dt 

, (7)

here we adimensionalize (1) using the characteristic scales 𝑎 ,
 0 = |𝐸 𝑟 ( 𝑎 ) | and 𝐵 according to the relations 

 

′
𝑟 
= 

𝐸 𝑟 

𝐸 0 
, 𝜙′

𝑛 
= 

𝜙𝑛 

𝑎𝐸 0 
, 𝑣 ′∥ = 

𝐵 

𝐸 0 
𝑣 ∥, 

𝑡 ′ = 
𝐸 0 
𝑎𝐵 

𝑡, 𝜔 

′
0 = 

𝑎𝐵 

𝐸 0 
𝜔 0 , 

(8) 

nd 𝜔 ( 𝐼) is the angular frequency of the motion. Note that in Eqs. (6) and
7) the prime notation was omitted. 

According to (6) , the radial particle transport will be mainly gov-
rned by the electrostatic potential perturbation, �̃�( 𝑡, 𝜓) , and the parti-
le rotation by the plasma radial profiles: 𝐸 𝑟 ( 𝐼) , 𝑣 ∥( 𝐼) , and 𝑞( 𝐼) . In par-
icular, these profiles can alter the poloidal rotation of the plasma, for
nstance, through 𝐄 𝑟 × 𝐁 𝜑 , corresponding to the last term of the angular
quation of motion. 

The variables 𝐼 and 𝜓 represent the action-angle canonical set of the
nperturbed Hamiltonian 

 0 ( 𝐼) = ∫
𝐼 

𝜔 ( 𝐼 ′) d 𝐼 ′, (9)

hereas the system (6) describes the evolution of these variables when
 perturbation 𝐻 1 ( 𝑡, 𝜓) is introduced, resulting in the perturbed Hamil-
onian 𝐻 ( 𝑡, 𝜓 , 𝐼 ) , given by 

 ( 𝑡, 𝜓 , 𝐼 ) = 𝐻 0 ( 𝐼) + 𝐻 1 ( 𝑡, 𝜓) , (10)

here 

 1 ( 𝑡, 𝜓) = 2 𝑀 �̃�( 𝑡, 𝜓) , 
d 𝐼 
dt 
= − 𝜕𝐻 

𝜕𝜓 

, 
dψ 
dt 

= 𝜕𝐻 

𝜕𝐼 
. (11) 

We notice that if 𝑀 = 0 , i.e. the perturbation does not propagate
long the poloidal direction, or if 𝜙𝑛 = 0 for all modes, the dynamical
ystem will be integrable and fully described by 𝐻 0 ( 𝐼) . For these scenar-
os, 𝐼 remains constant and, consequently, the guiding centre of the test
article traces a helix of constant radius. Now, when we consider the
erturbation 𝐻 1 ( 𝑡, 𝜓) , the integrability of the system is broken, leading
o chaotic behaviour and particle transport outside the plasma, as we
how in the next sections. 

The presented model, given by (6) , was introduced in [18] . It con-
iders robust shearless transport barriers (STBs) which can appear when
on-monotonic radial plasma profiles are regarded [18,21,22,24] , e.g.
or the equilibrium electric field, 𝐸 𝑟 ( 𝐼) , the parallel velocity, 𝑣 ∥( 𝐼) , or
he safety factor, 𝑞( 𝐼) . 

In this work, we investigate the effect of the radial equilibrium elec-
ric field profile on chaotic transport at the plasma edge, 𝐼 edge = 1 . 0 .
pecifically, we consider that, near 𝐼 edge , 𝐸 𝑟 ( 𝐼) have either a well-like
r a hill-like structure. These kinds of profiles can be found, for instance,
n tokamaks operating in an H-mode regime [12,25] . As we know, in the
-mode, close to the edge, a pedestal structure appears in the plasma
ensity, pressure, and temperature profiles [13,26] , which reflects in
he typical radial electric field profile [12,15,27] and in the appearance
f a transport barrier [12,28,29] . 
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Fig. 1. Plasma radial profiles for the (a) equilibrium radial electric field, 𝐸 𝑟 ( 𝐼) , 
(b) parallel velocity, 𝑣 ∥( 𝐼) , and (c) safety factor, 𝑞( 𝐼) . In panel (d), we show 

the resonance conditions profile, indicating in red dots the resonant modes we 
are considering for the electrostatic potential perturbation, 𝑛 = 2 , 3 and 4 . The 
amplitude 𝜙1 , which is related in this figure to the non-resonant mode 𝑛 = 1 , is 
taken as one of the control parameters. The vertical dashed line and the blue 
square represent the shearless point position, 𝐼 ⋆ STB , of the profile (Colour online). 
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. Shearless edge transport barriers 

We construct a numerical map by integrating the dynamical sys-
em (6) and considering the solution at times 𝑇 𝑗 = 2 𝑗𝜋∕ 𝜔 0 , with
 = 0 , 1 , 2 , 3 , … , 𝑁 . This procedure defines a 𝜓 × 𝐼 stroboscopic Poincaré
hase portrait, that, given an initial condition 𝐏 0 = ( 𝜓 0 , 𝐼 0 ) , will describe
he regular or chaotic orbit Σ𝑁 

= ( 𝐏 0 , 𝐏 1 , … , 𝐏 𝑁 

) . The results were ob-
ained using the numerical integrator Runge-Kutta-Dormand-Prince of
(7) order [30] , which is a numerical integrator method of order  ( ℎ 8 )
hat uses an error estimate of order  ( ℎ 7 ) to control the adaptive step
ize, ℎ [31] . The Poincaré phase portraits presented in this section were
btained using an error tolerance of 10 −13 . 

Additionally, we take into account the plasma profiles and param-
ters for the tokamak TCABR, mainly, the radial equilibrium electric
eld [21] , 𝐸 𝑟 ( 𝐼) , the parallel velocity [32,33] , 𝑣 ∥( 𝐼) , and the safety fac-
or [34] , 𝑞( 𝐼) , which are specified in the Eqs. (12) and (13) , and in Fig. 1 ,
espectively. For TCABR, the minor and major plasma radii are 𝑎 = 0 . 18
 and 𝑅 = 0 . 61 m, respectively, the tokamak minor radius 𝑏 = 0 . 21 m

nd the toroidal magnetic field 1.20 T. Moreover, the characteristic scale
f the electric field is taken as 𝐸 0 = 2 . 274 kV/m. Explicitly, 

 𝑟 ( 𝐼) = 𝐸 L ( 𝐼) , 

 ∥( 𝐼) = 𝜒 + 𝜁 tanh ( 𝜉𝐼 1∕2 + 𝜅) , 

( 𝐼) = 
{ 

𝜌 + 𝜍𝐼 if 𝐼 ≤ 1 
( 𝜌 + 𝜍) 𝐼 if 𝐼 > 1 , 

(12) 

here 

 L ( 𝐼) = 3 𝛼𝐼 + 2 𝛽𝐼 1∕2 + 𝛾 (13)

nd all the greek letters are dimensionless parameters which are kept
xed for the purpose of this work. They correspond to 𝛼 = −1 . 14 ,
= 2 . 53 , 𝛾 = −2 . 64 , 𝜒 = −3 . 16 , 𝜁 = 6 . 22 , 𝜉 = 20 . 30 , 𝜅 = −16 . 42 , 𝜌 = 1 . 00

nd 𝜍 = 3 . 00 . 
In relation to the electrostatic potential perturbation parameters,

ased on the experimental data analysis made in [35] , we take for the
undamental angular frequency 𝜔 0 = 60 rad ∕ ms (approximately 5.70 rad
fter carrying out the adimensionalization), and as dominant spatial
odes, 𝑀 = 16 and 𝐿 = 3 . The phase constant is kept for all modes as
= 𝜋. 
𝑛 

3 
The resonance conditions for the dynamical system (6) are given by

d 
dt 
(
𝜓 − 𝑛𝜔 0 𝑡 − 𝛼𝑛 

)
= 0 , 

i . e . 𝑛 = 𝜔 ( 𝐼) 
𝜔 0 

. (14) 

When considering all the plasma profiles and parameters already de-
ned above, we obtain the resonance conditions, or the angular fre-
uency ratio, see (14) , radial profile indicated in Fig. 1 (d). Here, we
ark with red dots the main resonant modes 𝑛 = 2 , 3 and 4; any contri-

ution of 𝜙𝑛 for 𝑛 > 4 is neglected. From the figure, we note the modes
 = 2 and 𝑛 = 3 are resonant in two positions, while 𝑛 = 4 just in one. The
lectrostatic potential perturbation amplitudes for each of these modes
re taken, respectively, as 0.80 V, 1.50 V and 0.85 V, which become the
imensionless fixed parameters 𝜙2 = 1 . 95 × 10 −3 , 𝜙3 = 3 . 66 × 10 −3 and

4 = 2 . 08 × 10 −3 . 
Additionally, we regard 𝜙1 , which is related to the non-resonant

ode 𝑛 = 1 in the former case, see Fig. 1 (d), as one of the control pa-
ameters to study the chaotic transport in the plasma edge. As we will
emonstrate in Section 4 , the amplitude of this perturbation mode serves
s a reliable indicator of the STB robustness. Specifically, we will con-
ider the shearless barrier to be strong if it exists for high values of 𝜙1 . 

Previous studies [21,24] have demonstrated that non-resonant per-
urbation modes can lead to the emergence or break-up of STBs in a
ecurrent manner, even when their amplitudes increase. However, we
bserve that the influence of 𝜙1 on transport does not significantly differ
hen this mode becomes resonant, and the onset and break-up of the
TB remain frequent as 𝜙1 varies. 

The amplitude 𝜙1 is varied taking values in the interval [0 V , 15 . 00 V] ,
.e. 𝜙1 = [0 , 3 . 66 × 10 −2 ] after carrying out the adimensionalization. So,
he electrostatic perturbation, �̃�, will oscillate with a maximum ampli-
ude of 18.15 V, which is consistent with experimental observations in
CABR [35] . 

The existence of STBs can be associated with the extreme values of
he rotation number profile, Ω( 𝜓 0 , 𝐼 0 ) , which can be determined numer-
cally by (15) , for a fixed initial value 𝜓 0 : 

( 𝜓 0 , 𝐼 0 ) = lim 

𝑁→∞
1 
2 𝜋

1 
𝑁 

𝑁−1 ∑
𝑖 =0 
( 𝜓 𝑖 +1 − 𝜓 𝑖 ) 

= lim 

𝑁→∞
1 
2 𝜋

𝜓 𝑁 

( 𝐼 0 ) − 𝜓 0 
𝑁 

. (15) 

In non-twist systems, STBs can appear and KAM theory does not ap-
ly [17,36] . These barriers exhibit more resistance to perturbations than
egular KAM tori, whose resistance is related to their rotation number,
ccording to the KAM theorem [37] . Even when an STB is broken up, a
tickiness region can emerge preventing the chaotic flux [38,39] . 

So, when (dΩ( 𝜓 0 , 𝐼 0 )∕d 𝐼 0 ) 𝐏 STB = 0 , the KAM assumption is violated
nd a shearless curve can be identified through the initial condition
 STB = ( 𝜓 0 , 𝐼 STB ) . This is why we refer to these types of barriers as
shearless ” [17] . It is important to remark the rotation number con-
erges only for regular orbits, and it is independent of the choice of 𝐏 0 ,
s long as 𝐏 0 lies on the orbit. Nevertheless, the radial profile of the
otation number depends on the chosen 𝜓 0 due to the arrangement of
rbits on the Poincaré section, resulting in different profiles for different
 0 values. Explicitly, to find the shearless curve, any value of 𝜓 0 can be
sed since the barrier is a continuous line, so that there exists at least
ne point on the barrier for every 𝜓 , as the Poincaré sections in Fig. 2
llustrate. 

The radial profile of the rotation number for 𝐻 0 ( 𝐼) can be ob-
ained analytically, it corresponds to the angular frequency ratio pro-
le 𝜔 ( 𝐼)∕ 𝜔 0 . From Fig. 1 (d), we observe that our system is non-twist
nd has a shearless curve where (d 𝜔 ( 𝐼 )∕d 𝐼 ) 𝐼 ⋆ STB = 0 , i.e. approximately

t 𝐼 ⋆ STB = 0 . 472 , where the superscript “⋆ ” is used to distinguish the
nperturbed scenarios ( 𝐻 = 0 ) from the perturbed ones ( 𝐻 ≠ 0 ). On
1 1 
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Fig. 2. Poincaré sections (left panels) and rotation number profiles (right panels) for (a) 𝐸 𝑟 ( 𝐼) = 𝐸 L ( 𝐼) , (b) 𝐸 𝑟 ( 𝐼) = 𝐸 L ( 𝐼) + 𝐸 H ( 𝐼) with 𝜂 = 𝜎0 = 7 × 10 −3 and 𝜇 = −1 . 32 , 
and (c) 𝐸 𝑟 ( 𝐼) = 𝐸 L ( 𝐼) + 𝐸 H ( 𝐼) with 𝜂 = 𝜎0 and 𝜇 = 1 . 32 . For the three scenarios 𝜙1 = 0 . 0 , 𝜙2 = 1 . 95 × 10 −3 , 𝜙3 = 3 . 66 × 10 −3 and 𝜙4 = 2 . 08 × 10 −3 . To the right of each 
Poincaré section we show the radial equilibrium electric field profile which was used in each case. Shearless transport barriers are highlighted in green (inner), 
orange (edge) and cyan (edge) on the Poincaré sections. They are identified through the shearless points, marked with filled circles according to their corresponding 
colour, in the rotation number profiles, for which we fixed 𝜓 0 = 0 . Here, we show both cases the unperturbed, in red, and perturbed, in black and grey for regular 
and non-convergent chaotic orbits, respectively (Colour online). 
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he other hand, for 𝐻 ( 𝑡, 𝜓 , 𝐼 ) , the rotation number profile is obtained
umerically using (15) . It is expected to be similar to 𝜔 ( 𝐼)∕ 𝜔 0 , ex-
ept for the non-convergent chaotic regions that emerge after some tori
re destroyed. Consequently, if the shearless curve exists for certain
alue of the perturbation, it is expected to be near 𝐼 ⋆ STB , as we show
elow. 

Thus, let us consider 𝜙1 = 0 , the amplitudes for modes 𝑛 = 2 , 3 and
 as they were set earlier, and the electric field given in Eq. (13) , see
anels (a) of Fig. 2 . In this case, we found an STB, coloured in green,
ee Fig. 2 (a.1), using the rotation number profile shown in Fig. 2 (a.2).
ere, the rotation number profile for 𝐻 ( 𝑡, 𝜓 , 𝐼 ) , in black and grey for the

egular and non-convergent chaotic orbits, respectively, and the profile
or 𝐻 0 ( 𝐼) , in red, are presented. We see that, although some tori are de-
troyed, the ones which survive compose the non-monotonic part of the
otation number profile by which we identified the STB at 𝐼 STB = 0 . 434 .
his value is close to 𝐼 ⋆ STB as we see from the magnification presented

n the inset of Fig. 2 (a.2). 
s  

4 
However, even though there is a shearless curve, a reasonable frac-
ion of chaotic orbits above it are escaping and reaching the vessel wall,
t 𝐼 wall = ( 𝑏 ∕ 𝑎 ) 2 = 1 . 36 , see Fig. 2 (a.1). Beyond this value, the trajectories
ack physical sense; nevertheless, we plot the phase space a little further.
dditionally, also the orbits trapped by the main island are crossing the
lasma edge. And, because of this, the current configuration is not sat-
sfactory for particle confinement. 

In this article, we show that better confinement configurations can
e obtained if we add, to our current 𝐸 𝑟 profile, a local pronounced
hear reversal close to 𝐼 edge . For this, let us assume a well/hill-like edge
adial electric field profile, 𝐸 H ( 𝐼) , as the one given by 

 H ( 𝐼) = 𝜇 exp 
⎡ ⎢ ⎢ ⎣ − 1 2 

( √
𝐼 − 𝛿
𝜂

) 2 ⎤ ⎥ ⎥ ⎦ , (16)

here 𝛿 = 𝑟 s ∕ 𝑎 = 0 . 988 is a fixed dimensionless parameter which repre-
ents an estimation of the local electric field shearless point position.
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Fig. 3. As we vary the control parameter 𝜇, (a.1) a hill-like and (b.1) a 
well-like radial electric field profiles, for 𝜇 > 0 and 𝜇 < 0 , respectively, and 
𝜂 = 𝜎0 = 7 × 10 −3 , appear near the plasma edge. At the right panels, (a.2) and 
(b.2), it is observed that these profiles can activate new resonances directly re- 
lated to the appearance of a shearless edge transport barrier at 𝐼 ⋆ e STB . The point 
𝐼 ⋆ i STB corresponds to the internal STB, already indicated in the Fig. 1 (d) for the 
former case, 𝜇 = 0 . The vertical dashed lines and the blue squares represent the 
shearless point positions of the profile (Colour online). 
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2  

o  

O  
he well (hill) depth (height), 𝜇 < 0 ( 𝜇 > 0) , and the associated width,
, will be treated as control parameters. 

With that, the new radial equilibrium electric field profile is given
y 

 𝑟 ( 𝐼) = 𝐸 L ( 𝐼) + 𝐸 H ( 𝐼) . (17)

The use of expression (16) rests on the fact that it is easier to treat
he most common parameters associated with H-mode regimes, such as
epth (height), width and well (hill) position of the edge radial electric
eld. Moreover, it fits the experimental data [12,15,40] . 

From Fig. 3 , we observe that the inclusion of this kind of profile will
ctivate new resonant perturbation modes at the plasma edge as 𝜇 is var-
ed. As a consequence, a new dynamics is induced close to 𝐼 edge , which,
ventually, will provoke the onset of new shearless curves. Namely, by
ooking at the right panels of the figure, two shearless points in each fre-
uency ratio profile can be noticed, where in the unperturbed scenarios
 𝐻 1 = 0 ) the STBs will appear. For both the well-like and the hill-like
rofiles, at 𝐼 ⋆ i STB = 0 . 472 and near the edge at 𝐼 ⋆ e STB = 0 . 976 , where “i ” and
e ” are used to identify the internal and the edge shearless points, respec-
ively. A third shearless point might be found, to the left of 𝐼 edge when
> 0 and to the right of 𝐼 edge when 𝜇 < 0 . However, it is not noticeable

either in Fig. 3 nor in the maps of Fig. 2 and will not be significant in
ur results. 

Furthermore, notice from the right panels of the figure that the
oloured-in-black segments of the frequency ratio profiles are the same
s in the previous case where 𝜇 = 0 , indicating that the internal shear-
ess curve is also the same at 𝐼 ⋆ i STB . Then, the inclusion of 𝐸 H ( 𝐼) will only
ffect the edge of the plasma, as we will show next. Additionally, no-
ice that for hill-like scenarios the mode 𝑛 = 1 can be resonant, explicitly
hen 𝜇 ≥ 0 . 687 . 

In Fig. 2 (b.1) and (c.1), when 𝜇 = −1 . 32 and 𝜇 = +1 . 32 , respectively,
nd 𝜂 = 𝜎0 = 7 × 10 −3 , we show that the shearless edge transport barri-
rs, coloured in orange and cyan, respectively, exist and confine most
f the orbits inside the plasma. So, for the well-like (hill-like) 𝐸 profile,
𝑟 

5 
he chaotic blue (magenta) orbit cannot go through the orange (cyan)
hearless curve, which already indicates being an improved confinement
egime for plasma. The shearless internal transport barriers are coloured
n green, as in the previous scenario. 

These barriers were found using the rotation number profiles shown
n Fig. 2 (b.2) and (c.2). There, we observe that, in comparison with
ig. 2 (a.2), where 𝜇 = 0 , the inner part of the profiles (i.e. for 𝐼 < 0 . 6
pproximately) is unchanged and does not depend on 𝜇. The invariant
ori and internal STBs are the same in the three cases, as we can ver-
fy from the Poincaré sections. The appearance of shearless edge trans-
ort barriers does not affect the dynamics closer to the plasma centre.
urthermore, as in the previous case, the rotation number profiles of
he perturbed scenarios, in black and grey, are similar to the unper-
urbed ones, in red. At the plasma edge, we found that 𝐼 e STB = 0 . 992
hen 𝜇 = −1 . 32 and that 𝐼 e STB = 0 . 962 when 𝜇 = +1 . 32 . 

Moreover, we see that, in order to allow the edge transport barrier
o appear, the main resonance, see Fig. 2 (a.1), is shrunk, as shown in
ig. 2 (b.1) and (c.1). Here, the outer tori are destroyed and the ones
hich survive, closer to the centre of the island, conserve their rotation
umber Ω = 3 . 0 . By looking at the rotation number profiles, it is notice-
ble that, for 𝜇 = 0 , there is a large plateau which is shrunk approxi-
ately in the interval 1 . 02 < 𝐼 0 < 1 . 09 when |𝜇| = 1 . 32 . Here, instead of
 large plateau, there are non-convergent chaotic regions and the non-
onotonic part of the rotation number profile by which we identify the

hearless edge transport barriers in both cases. 
Now, a natural question remains after observing the existence of the

ndicated barrier: does the edge STB become more resistant to perturba-
ions as |𝜇| increases? Experimental observations have shown that one
f the main distinctions between the L-mode, I-mode and H-mode is the
adial electric field intensity at the plasma edge since the electric well
tructure is deeper as the confinement regime improves [15] . To answer
his question, we surveyed the parameter space 𝜇 × 𝜙1 to identify when
he barrier can appear or be broken up. We study, as well, the influ-
nce of the width, 𝜂, of the 𝐸 H ( 𝐼) profile on the shearless edge transport
arrier robustness. 

. Influence of the edge radial electric field on chaotic transport 

In the previous section, we found that an STB can appear and confine
ost of the orbits inside the plasma when the equilibrium radial elec-

ric field profile exhibits a pronounced reversed-shear behaviour at the
lasma edge. This STB was observed regardless of whether the sheared
rofile has a positive-to-negative or negative-to-positive shear, corre-
ponding to hill-like or well-like 𝐸 H ( 𝐼) profiles, respectively. 

Now, in this section, we study the robustness of such STBs in terms
f the electrostatic potential perturbation amplitude 𝜙1 , which is related
o the non-resonant mode 𝑛 = 1 in the former case. We explore the pa-
ameter spaces of 𝜇, 𝜂 and 𝜙1 to determine the existence of barriers and
valuate whether they persist at high values of 𝜙1 . By doing so, we aim
o gain insights into the effects of the 𝐸 H ( 𝐼) profile on the STB robustness
nd also the chaotic transport at the plasma edge. 

So, in first place, let us consider an ensemble of 𝐾 IC randomly cho-
en initial conditions in the chaotic region below 𝐼 edge , which will be
terated a maximum of 𝑁 max crossings in the Poincaré section, and also
 reference threshold, 𝐼 up , such that 𝐼 up > 𝐼 edge . By recording the time,

𝑗 , each orbit spends to reach 𝐼 up , we can estimate a mean escape time,
, for a given radial electric field configuration, such that 

= 1 
𝐾 IC 

𝐾 IC ∑
𝑗=1 

𝜏𝑗 , (18) 

here, for orbits which do not escape, we set 𝜏𝑗 as being equal to 𝑁 max .
Then, when 𝜏 = 𝑁 max , we will say that, up to the integration time

 𝜋𝑁 max ∕ 𝜔 0 , no particle escapes beyond the plasma edge, which, for most
f the cases, is related to the onset of a shearless edge transport barrier.
n the other hand, when 𝜏 < 𝑁 , there will be no shearless curve. In
max 
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Fig. 4. (a) 700 × 700 parameter space for the well-like radial electric field sce- 
nario with the depth 𝜇 of the electric field and the amplitude 𝜙1 of the electro- 
static potential perturbation. (b) Same resolution magnification inside the white 
rectangle in panel (a). The colour bar indicates the mean escape time for an en- 
semble of initial conditions, calculated as shown in Eq. (18) . We fixed 𝜂 = 𝜎0 . 
(Colour online). 
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Fig. 5. (a) 700 × 700 parameter space for the hill-like radial electric field sce- 
nario with the height 𝜇 of the electric field and the amplitude 𝜙1 of the electro- 
static potential perturbation. Panels (b) and (c) are magnifications of the same 
resolution inside the white lower and upper rectangles in panel (a), respectively. 
The colour bar indicates the mean escape time for an ensemble of initial condi- 
tions, calculated as shown in Eq. (18) . We fixed 𝜂 = 𝜎0 (Colour online). 
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ome cases, associated with long mean escape times, huge resistances
o chaotic transport might appear, such as stickiness regions [39,41] ,
hich we will refer to as effective barriers from this point henceforth. 

An MPI parallel code was written to calculate per core the mean
scape time of some edge radial electric field configuration ( 𝜇, 𝜂) per-
urbed by 𝜙𝑛 , where 𝑛 = 1 , 2 , 3 and 4. We used 352 cores from 11
odes with the processor Intel Xeon Gold 6142, belonging to the
igh-performance computing resources of the Centre de Calcul Inten-
if d’Aix-Marseille, to compute 23,500 electric field scenarios repre-
ented in seven figures of parameter spaces (including magnifications),
ee Figs. 4–7 . 

To generate those parameter spaces, we degraded the numerical inte-
rator tolerance to to limit the computational effort, selected 𝐾 IC = 100
andomly chosen initial conditions in a line at 𝐼 = 0 . 7 , and integrated
hem until they reach the threshold 𝐼 up = 1 . 05 , or until a maximum of
 max = 5 × 10 4 crossings in the Poincaré section. 

With this, in Figs. 4 and 5 , we show the 𝜇 × 𝜙1 parameter space, for a
xed 𝜂 = 𝜎0 , to analyze, in the first place, the influence of 𝜇 on the onset,
reak-up and robustness of the shearless edge transport barriers. From
hese results, we notice that, in the well-like 𝐸 H scenario, for small val-
es of |𝜇|, see Fig. 4 (a), no STB or opposition to the chaotic flux outside
he plasma appears, all the orbits escape fast no matter the amplitude of
he perturbation. We see an onset of a barrier, associated with 𝜏 = 𝑁 max ,
or values of 𝜇 slightly higher than −1 . 0 , however the barrier is broken
p easily with a small perturbation. 
6 
In the same way, similar results were obtained in the hill-like 𝐸 H 
cenario, see Fig. 5 (a). Nevertheless, we found that, for small values of
, the barrier, which has not emerged for small perturbations allowing
he escape of orbits, now appears by increasing notably the parameter

1 . Associated with this barrier, there is a structure on the upper region
f the parameter space, which does not cover a great area and has a
elf-similarity with the whole space. 

Now, as we increase |𝜇|, i.e. deeper wells or higher hills of the edge
adial electric field, the barrier gains resistance to the perturbation since
t breaks up for larger amplitudes of 𝜙 . It seems that we are accessing
1 
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Fig. 6. Well-like 𝐸 H ( 𝐼) scenario: (a) approximated boundary of the 𝜇 × 𝜙1 pa- 
rameter space for 𝜂 = 𝜎0 (black), 2 𝜎0 (blue) and 3 𝜎0 (red); (b) maximum value 𝜙1 , 
up to the precision 𝛿𝜙1 = 5 . 0 × 10 −5 , at which the shearless edge transport bar- 
rier exists for the 100 × 100 radial electric field configurations. In black colour, 
we indicate the cases in which no STB appears (Colour online). 
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Fig. 7. Hill-like 𝐸 H ( 𝐼) scenario: (a) approximated boundary of the 𝜇 × 𝜙1 pa- 
rameter space for 𝜂 = 𝜎0 (black), 2 𝜎0 (blue) and 3 𝜎0 (red); (b) maximum value 𝜙1 , 
up to the precision 𝛿𝜙1 = 5 . 0 × 10 −5 , at which the shearless edge transport bar- 
rier exists for the 100 × 100 radial electric field configurations. In black colour, 
we indicate the cases in which no STB appears (Colour online). 
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mproved confinement regimes as the depth (height) of the electric field
ell (hill) increases. So, in that sense, the sign of 𝜇 is not significant in
rder to reduce particle transport, as identified by Biglari et al. [1] ,
urrell [2] , Weynants et al. [6] . Even so, notice that, in general, for
< 0 , larger perturbations are needed in order to break up the STB.
his result seems to be in agreement with [42] , that says the plasma
onfinement is improved when the radial electric field becomes more
egative. 

So, in some way, strictly qualitative, we are seeing an L-H transi-
ion through the description of shearless transport barriers which, anal-
gous to the experimental results, exhibit better confinement regimes
or larger radial electric fields at the plasma edge. 

Furthermore, we notice that, for some windows of the parameter 𝜇,
he shearless barrier can appear and disappear recurrently by only vary-
ng 𝜙1 , consistently with what has been shown in [21,24] . And the same
appens if we fix 𝜙1 and vary 𝜇, as we see clearly from the magnifica-
ions shown in Figs. 4 (b), 5 (b) and (c). This parameter space suggests
hat there is a fractal behaviour, already discovered in other systems
ith shearless transport barriers, for example, the standard non-twist
ap [43] . 

Also, it is interesting to notice that effective barriers appear every
ime the STB breaks up, as we can see by the region with great resistance
o the chaotic transport associated with large values of 𝜏. This region
overs a larger area of the parameter space when we are in a fractal-like
oundary. When we are close to a regular boundary of the parameter
pace, the area covered by the region is smaller and the huge opposition
o the chaotic transport ends easily. 
7 
Finally, we investigate the effect of the parameter 𝜂, which is related
o the width of the profile 𝐸 H ( 𝐼) , on chaotic transport at the plasma
dge. For that, we implement an algorithm that, as we did previously,
alculates the mean escape time for a given pair ( 𝜇, 𝜂) varying 𝜙1 from
ax ( 𝜙1 ) to min ( 𝜙1 ) with step size 𝛿𝜙1 until obtaining 𝜏 = 𝑁 max . If we

each 𝜙1 = min ( 𝜙1 ) and 𝜏 ≠ 𝑁 max , we say that for this electric field con-
guration no STB appears. This allows us to estimate the maximum
alue of 𝜙1 , up to the precision given by 𝛿𝜙1 , at which the STB might
e found. 

Additionally, on varying 𝜇, we can estimate the boundary of the
× 𝜙1 parameter space for a given 𝜂, as shown in Figs. 6 (a) and 7 (a),

or the associated widths 𝜎0 , 2 𝜎0 and 3 𝜎0 , in black, blue and red, respec-
ively. By doing so, we do not need to calculate the entire parameter
pace for each 𝜂, but rather an approximate boundary. This allows us
o investigate the effect of 𝜂 on STBs without excessive computational
ost. 

Those approximated boundaries are already enough to show that
n increasing 𝜂 higher perturbations are needed to break up the trans-
ort barriers, for both the well-like and the hill-like scenarios. The
idth of the electric field profile at the plasma edge is then related to

he robustness of the STB. Moreover, we conclude once again that for
< 0 more-resistant-to-perturbations transport barriers can be found

han when 𝜇 > 0 , since the boundaries of the 𝜇 × 𝜙1 parameter space
teepen more by doubling and tripling the width of the 𝐸 H profile, see
igs. 6 (a) and 7 (a). 

The 𝜇 × 𝜂 parameter space provides a clearer view of this STB ro-
ustness, as seen in Figs. 6 (b) and 7 (b). These figures illustrate how
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Fig. 8. (a) Magnification at the plasma edge of the Poincaré section in Fig. 2 (b), 
where 𝜂 = 𝜎0 . (b) By increasing 𝜂 = 3 𝜎0 , we suppress chaos in the vicinity of the 
STB (orange). As a result, higher perturbations are needed in order to allow 

chaotic transport outside the plasma (Colour online). 
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he barrier is broken up by typically smaller perturbations when 𝜇 > 0
han when 𝜇 < 0 , and also how it gets robust on increasing 𝜂 for both
ypes of profiles. Basically, by increasing the width of the electric field
t the plasma edge, we increase the regular region (suppress chaos) in
he vicinity of the STB, as shown in Fig. 8 . For that reason, destroying
he transport barrier becomes harder as 𝜂 increases in value. In general,
his also happens by increasing 𝜇. 

Regarding the band shown in Fig. 7 (b), characterized by high values
f 𝜙1 and small values of 𝜇, it is associated with the structure displayed
n Fig. 5 (c). However, further investigation is required to understand
he reasons behind its emergence. Also, notice that a comparable region
an be identified in Fig. 6 (b), although it is not as evident. On the other
and, further progress should be done to verify the effect of additional
esonant modes for 𝑛 > 4 ( 𝑛 < 0 ) on the STBs in the presence of localized
trong well-like (hill-like) radial electric fields. 

. Conclusions 

Shearless transport barriers (STBs) have been described using an
 × 𝐁 drift transport model for a magnetized plasma, considering the
lectric field as the result of an equilibrium radial part with non-
onotonic profile and a perturbation caused by electrostatic fluctu-

tions propagating along the poloidal and toroidal directions. In our
odel, we also considered radial profiles for the safety factors of the

quilibrium magnetic surfaces and the plasma parallel velocity. Accord-
ng to these profiles, a non-monotonic behaviour in the rotation number
adial profile can be found, for which the STBs occur at those positions
f no shear at all. The numerical simulations presented in this paper
ere obtained using parameter values taken from the TCABR tokamak,
ut the results are valid for a wide class of toroidal machines. 

This work has provided an analysis of the effect of the electric field
adial profile on the emergence of STBs at the edge of a tokamak plasma.
e have explored the influence of the intensity and the width of the

lectric field radial profile on chaotic transport by implementing as di-
8 
gnostic the mean escape time of an ensemble of particle orbits, which
llowed us to characterize the quality of the confinement. In particular,
e showed that, due to H-mode radial electric field well-like profiles,
TBs can emerge at the plasma edge and may contribute to the decrease
f the particle radial flux, thereby improving the plasma confinement.
dditionally, we showed that this type of barrier can also be found for
ill-like radial electric field profiles. 

By shaping the electric field radial profile, we were able to introduce
ew resonance conditions near the plasma edge, leading to a new dy-
amics that results in the emergence of a shearless curve which reduces
ignificantly the particle transport. In particular, this barrier is sensitive
o the amplitude of the perturbations, emerging and being destroyed in
 recurrent way by the variation of the perturbation amplitudes. With
his, we were able to investigate the STB robustness, which is an indirect
easurement of the quality of the confinement, in terms of the pertur-

ation strength for several edge radial electric field configurations. 
One of our key results is that the STBs become more robust as the

epth (height) of the radial electric field well-like (hill-like) profile in-
reases. This is qualitatively in accordance with experimental results
bout L-H transition. So, the deeper (higher) the electric field well (hill)
i.e. the more pronounced the electric field shear), the larger has to be
he perturbation strength in order to break up the shearless barrier and
ave an effective chaotic transport at the plasma edge. We observed a
imilar behaviour by increasing the width of the profiles. Even so, we
ound that well-like electric field radial profiles are, in general, related
o more-resistant-to-perturbations barriers. 

As a numerical diagnostic of the existence of the shearless barrier,
e computed the average escape time it takes for a set of guiding-centre
rbits to achieve a given threshold above the barrier location. If this
scape time reaches its maximum value, we say that, up to the numer-
cal accuracy, no particle escapes and, therefore, the shearless barrier
xists. The appearance and disappearance of barriers were found to de-
end on the control parameters in an intermittent fashion, where, from
he two-dimensional parameter spaces surveyed, we observed a frontier
arrier-non-barrier transiting between a fractal behaviour and a regular
ne. Moreover, this technique also allowed us to characterize parame-
er space regions of effective confinement or effective barrier behaviour,
ccurring when the particles spend a long time in the plasma before es-
aping away (there is not an STB). We found that these regions exist
efore the appearance of the STB and after its disappearance, no matter
ow small the transition interval is considered. 

In conclusion, our findings suggest that both the intensity and the
idth of the radial electric field profile play a crucial role in promoting
 more-robust STB, which may contribute to the decrease of the particle
adial flux at the plasma edge. These results highlight the importance of
arefully shaping the edge radial electric field profile to achieve optimal
onfinement in fusion devices. 
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