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Abstract: We consider open non-twist Hamiltonian systems represented by an area-preserving two-
dimensional map describing incompressible planar flows in the reference frame of a propagating
wave, and possessing exits through which map orbits can escape. The corresponding escape basins
have a fractal nature that can be revealed by the so-called basin entropy, a novel concept developed
to quantify final-state uncertainty in dynamical systems. Since the map considered violates locally
the twist condition, there is a shearless barrier that prevents global chaotic transport. In this paper,
we show that it is possible to determine the shearless barrier breakup by considering the variation in
the escape basin entropy with a tunable parameter.

Keywords: basin entropy; shearless barriers; non-twist maps; open Hamiltonian systems

1. Introduction

The study of the non-integrable Hamiltonian system is one of the main disciplines in
the field of nonlinear dynamics [1]. A large number of Hamiltonian systems of physical
interest can be analytically and numerically investigated through the use of area-preserving
mappings in a Poincaré surface of section of the phase space. In particular, those systems
satisfying the so-called twist property for which, loosely speaking, there are no orbits with
the same frequency in terms of the corresponding angle variables in phase space [2], have
been most extensively studied. One outstanding example of area-preserving mappings
satisfying the twist property is the Chirikov–Taylor map [3].

One major advantage of working with area-preserving twist maps is that many pow-
erful results of Hamiltonian theory such as KAM and Poincaré–Birkhoff theorems and
Aubry–Mather theory are valid provided the system obeys the twist property [2]. However,
in various Hamiltonian systems of physical interest, chiefly fluids and plasmas, the twist
property fails to be satisfied, which has motivated the study of area-preserving non-twist
maps [4]. One paradigmatic example of the latter category is the standard non-twist map
introduced by del Castillo-Negrete and Morrison, for which the twist condition is locally
violated [5].

The non-twist character of such maps has a profound influence on their dynamical
properties [6]. For example, due to the non-monotonic character of the frequency profile,
there appear twin island chains failing to exhibit the well-known island overlapping.
Instead, the islands suffer a kind of reconnection process and produce robust shearless
transport barriers that modify the transport properties displayed by non-twist maps [7].

Among the wide variety of physically relevant systems described by area-preserving
non-twist maps, we mention the magnetic field line structure in tokamaks and stellara-
tors [8–10], planetary orbits [11,12], stellar pulsations [13], atomic physics [14,15], con-
densed matter [16] and sheared geostrophic flows [5,17]. In all these non-twist systems, the
existence of shearless transport barriers represent a local obstruction to chaotic diffusion of
phase space trajectories. One of the relevant problems involving non-twist systems is how
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to characterize numerically the destruction of those shearless barriers [18]. This problem
has been investigated in considerable detail for the standard non-twist map, thanks to a
special property that is the existence of the so-called indicator points [19].

For general area-preserving non-twist maps, however, the absence of such indicator
points makes the numerical task of determining the breakup of the shearless barrier a
difficult one. Some methods have been proposed for this task. In the present paper,
we propose an alternative method to determine the shearless curve breakup by using
a definition of entropy applied to basins of behavior [20,21]. The latter is an extension,
for general dynamical systems, of the usual basin of attraction concept. Since Hamiltonian
systems do not possess attractors, we can define an analogous behavior by opening its
domain and considering the escape of trajectories. In this sense, the basin of escape is
the set of initial conditions (in the Poincaré surface of section) generating trajectories that
escape through that exit.

Due to the underlying structure of the dynamics in a chaotic orbit of a non-integrable
Hamiltonian system, the structure of escape basins is highly fractal [22]. The basin entropy
quantifies the uncertainty related to the fractality of the escape basins and of their common
boundary, and has been used in many Hamiltonian systems with this purpose. In the
present work, however, we used the basin entropy specifically to determine for which
value of the perturbation parameter (measuring, so as to speak, the strength of the system
non-integrability) the shearless barrier suffers a breakup.

This paper is structured as follows: in Section 2, we introduce the specific area-
preserving non-twist map used. In Section 3, we exhibit the escape basin structure and its
characterization using an uncertainty exponent. Section 4 introduces the concept of basin
entropy for the escape basins of an open Hamiltonian system. In Section 5, we show how
to use this concept to characterize the shearless barrier breakup. Our Conclusions are left
to the final section.

2. Area-Preserving Non-Twist Maps

Let us consider a Hamiltonian system with N degrees of freedom, characterized by
canonical pairs (pi, qi), i = 1, 2, . . . N. This is an integrable system if one can obtain a
symplectic transformation to action-angle coordinates

(I, θ)→ (q(I, θ), p(I, θ)), (1)

where I = {I1, I2, . . . IN} ∈ B ⊂ N (B is an open set) and θ = {(φ1, φ2, . . . φN) mod 2π},
such that φi parameterize the motion on a N-dimensional torus. In terms of these action-
angle coordinates, the Hamiltonian becomes

H(q(I, θ), p(I, θ)) = K(I), (2)

and the corresponding Hamilton’s equations are

dI
dt

= −∂K(I)
∂θ

= 0, (3)

dθ

dt
=

∂K(I)
∂I

= ω(I), (4)

where ω ∈ {(ω1, ω2, . . . ωN)} are the frequencies corresponding to each irreducible circuit
on the N-torus.

Provided that the energy surfaces in the phase space are closed and bounded, a one-
degree of freedom system with a time-independent Hamiltonian is integrable, so that,
the simplest non-integrable systems have N = 2. In addition, let us consider that the non-
integrability comes from a weak perturbation of an integrable system, in the standard form

H(I1, I2; θ1, θ2) = H0(I1, I2) + εH1(I1, I2; θ1, θ2), (5)
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where ε� 1 for a quasi-integrable system. The integrable system is characterized by two
frequencies, ω1(I1, I2) and ω2(I1, I2). The Hamiltonian H0 is said to satisfy the so-called
twist condition if

∂ωi
∂Ij

=
∂H0

∂Ij∂Ii
6= 0, (6)

i.e., the integrable system does not have two phase-space trajectories with the same fre-
quency. Conversely, if this condition fails to be satisfied at any value of the action, the system
is said to be non-twist.

Many Hamiltonian systems of physical interest satisfy the twist property. Moreover,
for this class of systems many powerful results of Hamiltonian theory are valid, such as
Kolmogorov–Arnold-Moser theorem, Poincaré–Birkhoff theorem, Aubry–Mather theory,
and so on. On the other hand, there are non-twist systems of interest, mainly in hydrody-
namics and plasma physics, as commented on in the Introduction. For non-twist systems,
there are different dynamical properties that have been investigated in recent years [23,24].

The energy H = E is a constant of the motion inasmuch that the Hamiltonian does
not depend explicitly on time. Hence, the motion, which occurs in a 4-dimensional phase
space, actually is limited to a 3-dimensional energy surface H = H(I1, E; θ1, θ2). More-
over, considering a Poincaré surface of section θ2 = const. mod 2π, we can reduce the
continuous-time flow generated by solving (3) and (4) to a discrete-time mapping in the
plane I1 × θ1, with the general form

In+1 = In + εh(θn, In+1), (7)

θn+1 = θn + f (In+1) + εg(θn, In+1) mod 2π, (8)

where f (I) is the so-called winding number, and h and g represent the effects of the
perturbation term in the Poincaré map. The twist condition (6) reads [25]

dθn+1

dIn+1
6= 0. (9)

The Poincaré map preserves the symplectic area in the surface of section if

∂g(θn, In+1)

∂θn
+

∂h(θn, In+1)

∂In+1
= 0. (10)

A further simplification consists in choosing g(θn, In+1) = 0 and h(θn, In+1) = sin θn,
a choice that fulfills the symplectic condition (10). In this case, the twist condition (9)
reduces to d f /dI 6= 0, i.e., the winding number profile should be monotonic over the range
of the action variable.

An example of an area-preserving non-twist map, where f (I) = k(I2 − 1), was
introduced by Weiss [26,27] in the context of advection of passive scalars (see Appendix A)

In+1 = In − k sin(θn) (11)

θn+1 = θn + k
(

I2
n+1 − 1

)
mod 2π, (12)

where k is a parameter representing the non-integrable perturbation. Since d f /dI = 2kI,
the twist condition is not satisfied at I = 0. Indeed, non-twist maps usually have non-
monotonic winding number profiles. A shorthand notation for this map is x 7→ M(x),
where x = (I, θ) and M are given by (11) and (12). Since this is a Hamiltonian system, there
exists an inverse map M−1.

In the k→ 0 limit, we have an identity map (I 7→ I, θ 7→ θ). For relatively small values
of k, the system becomes non-integrable and one can observe quasiperiodic orbits spanning
the entire interval [−π, π] and invariant curves inside islands centered at a periodic orbit
of the map (11) and (12). This is a consequence of the non-monotonicity of the winding
number profile, i.e., there will be two orbits with the same winding number (a phenomenon
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also known as degeneracy, and which appears only for non-twist systems) [28]. For a
larger value of the perturbation parameter k, we observe such a collision of periodic orbits,
involving a reconnection of the islands’ separatrices. This is actually a global bifurcation
changing the topology of the orbits as some parameter is varied through a critical value.

In the Figure 1a–d, we show phase portraits generated using the Weiss map (11) and (12)
for different values of the parameter k. Chaotic orbits near the former islands’ separatrices
that no longer exist due to the homoclinic tangle formed after reconnection can be observed.
A distinguished feature of non-twist maps is the presence of a robust shearless barrier between
the two islands (depicted in blue in Figure 1a). Such a shearless barrier corresponds to a
local extremum of the winding number profile for the map (11) and (12). This barrier prevents
global transport related to the chaotic orbits; the shearless barrier clearly separates the chaotic
regions near the separatrices.

(a) (b)

(c) (d)

Figure 1. Phase space of the map for (a) k = 0.50, (b) k = 0.55, (c) k = 0.60 and (d) k = 0.70. The red
line in (a) represents the shearless curve, which separates the two chaotic regions.

An increase of k, however, causes the shearless barrier breakup and the mixing of the
chaotic regions associated with each island (Figure 1b). The latter, on its turn, occupies a
wider fraction of the phase space as k is further increased (Figure 1c,d). The shearless barrier
breakup occurs for a critical value of k between 0.50 and 0.55 but a precise determination
is difficult to make only from these phase portraits. In the following, we will consider a
systematic way to accomplish this task.

In order to distinguish between chaotic and non-chaotic orbits, we have computed the
Lyapunov exponents for this map [29]

λ1,2 = lim
n→∞

1
n

log ||DMn(x) · u1,2||, (13)
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where DM is the tangent map corresponding to Equations (11) and (12) and u1,2 are
mutually orthogonal eigendirections. Due to the area-preserving nature of the Weiss’s map,
it follows that λ1 + λ2 = 0, such that it suffices to present results for the largest Lyapunov
exponent λ1. A color map for the latter is shown in Figure 2 for different values of the
parameter k, and corresponding to the same values used in the phase portraits of Figure 1.

The islands’ interior, comprising quasi-periodic closed orbits, is related to vanishing
Lyapunov exponents, whereas the chaotic region near the islands’ separatrices have positive
values of λ1 (Figure 2a). Moreover, the existence of a shearless barrier clearly separates the
local islands’ separatrices. The same pattern is observed for higher k, but the chaotic orbits
have a considerably higher value of λ1, an almost tenfold increase (Figure 2b). By the same
way, the shearless barrier breakup can be observed by the Lyapunov exponent colormap
(Figure 2c). The value of λ1 also increases for higher k (Figure 2d).

(a) (b)

(c) (d)

Figure 2. Largest Lyapunov exponent for (a) k = 0.50, (b) k = 0.55, (c) k = 0.60 and (d) k = 0.70.

3. Escape Basins

The Hamiltonian system given by the map Equations (11) and (12) is opened by
considering that the particles can escape by one or more exits in the (x, y) phase space [30,31].
The sets of initial conditions, that reach each one of the exits, after a given number of map
iterations, form their corresponding basins of escape. If the exits are placed at regions with
non-chaotic orbits, their basins are relatively simple. On the other hand, if the exits are
placed in chaotic orbits, their corresponding escape basins are fractal, with a fractal basin
boundary. This results from the properties of the chaotic saddle, an invariant non-attracting
chaotic set formed by the intersections of the unstable and stable manifolds of unstable
periodic orbits embedded in the chaotic region [32].

We will consider two possible square exits of width 0.2, centered at the points (0.0,−1.1)
and (π − 0.1, 1.0) near the islands separatrices, so that we have an escape of particles for
small values of the perturbation parameter. The corresponding exits are denoted by B1
and B2, respectively. As a matter of fact, the absolute values of the basin entropy would
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change according to the exit width: smaller widths would result in slightly higher values
of the basin entropy [33]. However, since we are considering in this work the relative
values of the basin entropy, with respect to changes in the parameter k, our final results
would not be modified if different exit widths would be used (provided we use the same
width during the variation of k). For each iteration of maps (11) and (12), we make the
following test: if In, θn inside one of the squares we stop iterations and save the values of
the initial condition.

In Figure 3, we showed the escape basins for different values of the parameter k;
the purple pixels correspond to the initial conditions that escape through the square located
in B1, the orange one escapes thorough the exit B2 and the white ones correspond to initial
conditions that do not escape in our computation time 105. These points are trapped
inside islands. For the case k = 0.5 Figure 3a, the basins are separated by invariant curves.
In Figure 3b the basins are mixed; However, the initial conditions that are close to the
central island tend to belong to B1, while the initial conditions close to the points θ = −π
and θ = π tend to belong to the B2 exit. The intermixing of the basins increases with the
increment of k, as shown in Figure 3c,d. Figure 4 shows the fractal structure form by the
basins in a fine scale.

(a) (b)

(c) (d)

Figure 3. Escape basins for k = (a) 0.50, (b) 0.55, (c) 0.60 and (d) 0.70. Purple pixels escape through
B1 the internal region, close to the central island, orange pixels belongs to B2. White pixels are points
that do not escape, because they are inside islands. Black squares represent the exits and the the black
frame in (c) is show in detail in Figure 4.

The escape basins are mixed at arbitrarily fine scales, as is also the escape time, i.e., the
number of map iterations that an orbit takes to reach one of the openings has a complicated
distribution in the phase space. The time that an initial condition takes to leave the system
is shown in Figure 5 (in a color bar), as a function of the initial condition. Reddish colors
correspond to higher escape times. This occurs around the islands and the invariant curves
in Figure 5a. Bluish colors correspond to a small escape time, and white pixels are orbits
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that do not escape. It is clear the formation of escape channels, paths to each of the initial
conditions, escapes for very small times.

Figure 4. Zoom of the rectangular in Figure 3c. The purple and orange basins are intermixed at a fine
scale, with a fractal pattern.

(a) (b)

(c) (d)

Figure 5. Time to escape for k = (a) 0.50, (b) 0.55, (c) 0.60 and (d) 0.70. The color bar indicates the
number of iterations of the map until an initial condition reaches one of the openings. Red colors
correspond to a high number of iterations and blue colors to a small number. Black squares represent
the exits.

4. Basin Entropy

In order to quantify the final state uncertainty produced by the fractality, we apply
the concept of basin entropy, developed by Daza and coworkers [20,21]. It was originally
developed for basins of attraction and their boundaries, but it can be extended for a
more general setting, which is basins of behavior. For open systems, for which the desired
behavior is the escape of orbits, we can work with the corresponding escape basins and their
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boundaries. We have applied this methods in a variety of problems involving magnetic field
lines in Tokamaks [34], drift motion of charged plasma particles [35] and light scattering
through black holes [36]. Moreover, the basin entropy serves as a means to classify basins
of escape (or attraction, in dissipative systems), using the fact that each type of basin
maximizes one aspect of the basin entropy [37]. The classification provides a framework for
understanding the unpredictability associated with different types of basins, and to deepen
our understanding of concepts such as fractality and smoothness, Wada boundaries [38],
riddled basins [39] and more [40].

Let us consider a bounded phase space region A, which includes a part of the escape
basin boundary, and cover this region into boxes by using a mesh of M×M points. We
assign to each mesh point a random variable, whose values characterize each different
escape. The basin entropy is obtained by applying the information entropy definition to
this set. For open systems, we consider a number NA of exits through which orbits can
escape. We assign to each mesh point (which stands for an initial condition) an integer
(pseudo-)random variable (called color) labeled from 1 to NA.

Region A is covered with a regular grid of N boxes with sidelength ε = n/M, where
n ∈ N. Let pi,j denote the probability that the jth color is assigned to the ith box, where
i = 1, 2, . . .. The fraction of points pij belonging to a basin inside a box i is computed for
each box, considering that the colors inside a box are equiprobable, i.e., there is statistical
independence. The information (Gibbs) entropy of the ith box is

Si = −
mi

∑
j=1

pij log pij. (14)

where mi ∈ [1, NA] is the number of colors for the ith box. The total entropy for the mesh
covering the region A results from summing over the N boxes, or S = ∑N

i=1 Si. The basin
entropy is defined as the total entropy divided by the number of boxes

Sb =
S
N

= − 1
N

N

∑
i=1

mi

∑
j=1

pij log pij. (15)

The system considered in the present work has two exits, named B1 and B2, with the
corresponding escape basins, as described in the previous section. The corresponding
probabilities pi,j satisfy pi,1 + pi,2 = 1 for each i, such that the basin entropy reads

Sb = − 1
N

N

∑
i=1

(pi,1 log(pi,1) + pi,2 log(pi,2)), (16)

= − 1
N

N

∑
i=1
{pi,1[log(pi,1)− log(1− pi,1)] + log(1− pi,1)} = −

1
N

N

∑
i=1

Si.

From the computational point of view, the escape basins are discretized into pixels
with equal size, such that each square box contains N2

p pixels, where Np is the number
of pixels contained by the box with sidelength ε. For any given box i, the corresponding
probability pi,1 takes on a discrete value out of the following set

pi,1 ∈
[

0,
1

N2
p

,
2

N2
p

, . . . , 1− 1
N2

p
, 1

]
.

Notice that those boxes for which pi,1 = 0 or 1 do not contribute to the computation of the
basin entropy Sb because Si = 0 for such cases. What remains is the contribution of the
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boxes at the escape basin boundary, namely those containing pixels of both escape basins.
Hence, the possible values of the probabilities pi,1 for the remaining Nb boxes are given by

pm =
m
N2

p
, (m = 1, 2, . . . N2

p − 1). (17)

Considering that a given fraction qm of the Nb boxes has a basin probability given
by (17), the basin entropy (16) becomes

Sb = − 1
N

N2
p−1

∑
m=1

qm Nb Sm

= −Nb
N

N2
p−1

∑
m=1

qm Sm = −C
Nb
N

, (18)

where C is a constant that depends on the distribution of the quantity qm. For fractal basin
boundaries, which is just the case of the escape basins investigated here, the values of qm
are concentrated around a mean value with a Gaussian-like distribution.

Let us denote by d and D the box-counting dimensions [41] of the escape basin and its
corresponding basin boundary, respectively. Considering that it takes a number N of boxes
with sidelength ε in the phase space region A, it follows that N ∼ Ñε−d for small enough
ε, where Ñ is a constant. By the same token, since it takes a number Nb of those boxes to
cover the corresponding basin boundary, then Nb ∼ Ñbε−D, where Ñb is another constant
and ε is also small enough. Substituting both expressions into Equation (18), we obtain a
relation between the basin entropy and the box-counting dimensions of the basin and its
corresponding boundary.

This equation can be further transformed by using the concept of uncertainty exponent.
Since each initial condition is determined, in the two-dimensional phase space, up to a
given uncertainty ε, it can be represented by a disk of radius ε centered at that initial
condition. If this disk does not intercept the basin boundary, all its interior points converge
to the same escape and the initial condition is ε-certain. Otherwise, if the disk intercepts
the basin boundary, it is called ε-uncertain. The fraction of ε-uncertain disks is known
to scale with the uncertainty δ as a power-law: f (ε) ∼ εα, where α = d− D is called the
uncertainty exponent. Substituting into (20) there results

ln Sb(ε) = α ln ε + ln
(

Ñb

Ñ
C
)

. (19)

We used linear relation Equation (19) to estimate the uncertainty exponent α for the
escape basins of the Weiss map considered in Section 2. For each value of the box sidelength
ε, we computed the basin entropy using (16), and we repeated the procedure for a number
of values of ε with M = 1000 and n in the interval [15, 35], the results being depicted in
Figure 6. We have used a least squares fit to obtain a value of α = 0.0066± 0.0003 in (a) and
α = 0.0054± 0.0002 in (b), where the numerical error arises from the fitting.

The fractality is quantified with the aid of the basin entropy. We consider a grid of
boxes, so that each box contains 25 initial conditions. From Daza et al. [20], this value
produces the optimum results of the basin entropy. In Figure 7a, we showed the entropy
as a function of the parameter k. The basin entropy is zero until k reaches a critical value
kc where the shearless curve is broken, leading to the mix of the two basins. We estimate
the value of kc as the value of k that produced Sb 6= 0, meaning that the basins are mixed.
This value is kc = 0.535. The entropy sets close to the maximum value ln 2, meaning that
there is a great uncertainty of the final state, caused by the fractal structures of the system.
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In Figure 7b, a magnification of the basins for kc is presented, in the region where the
invariant curves existed, but now that is a mixture of the two basins.

Sb = −C
Ñb

Ñ
εd−D. (20)

(a) (b)

Figure 6. Basin entropy as a function of the sidelength ε for the Weiss’ map with (a) k = 0.6 and
(b) k− 0.7. The blue line is a least squares fit.

(a) (b)

Figure 7. (a) In black: basin entropy as a function of the parameter k for boxes containing 25 initial
conditions each. The red diamond is the first non-zero value where the shearless curve is broken,
corresponding to k = 0.535. In blue, the mean escape time as a function of k. (b) Zoom-in of the
basins for k = 0.535, showing that there is a mixture of the two basins.

In Figure 7a, the average escape time t̄ as a function of the perturbation parameter k is
also shown, as well as the basin entropy Sb in function of the same parameter. While the
entropy goes from zero to almost the maximum value, the mean escape time has an extreme
in k∼0.4. This is most probably caused by the stickiness effect around the invariant curves
and islands in the phase space that trap the orbits for long periods of time. After the last
invariant curve is broken, the basin entropy approaches the maximum theoretical value ln 2
and the mean escape time increases to a higher value. The entropy close to its maximum
means that the final state unpredictability of the system is very high and that the boundary
of the basins is an area filling curve with an almost zero uncertainty exponent. Moreover,
the large mean escape time suggests suggests that the trajectories are very close to the
stable manifold of the chaotic saddle, given that this is the closure of the basins boundary
area filling curve, high entropy implies in high mean escape time.

The low uncertainty exponent and the high entropy indicates that the opening causes
the system to practically become nondeterministic. This is an effect of the size of the exits.



Entropy 2023, 25, 1142 11 of 14

Aguirre and Sanjuán [33] found that the unpredictability grows indefinitely as the size of
the exits decreases and tends to zero. This leads to total indeterminism, which is a general
feature of open Hamiltonian systems.

5. Conclusions

In this work, we investigated the escape of chaotic orbits in a non-twist map called a
Weiss map. Considering the opening in the phase space, we can calculate the escape basins.
They present a fractal structures given by the underlying dynamical structure of the chaotic
orbits. The escape time also showed a fractal structures with the presence of paths where
the escape is very fast.

In order to quantify the fractality, we used the concept of basin entropy, a quantity of
the uncertainty of the final state caused by the fractal structures. Moreover, we showed a
way to compute the uncertainty exponent with the basin entropy. For k = 0.6, α = 0.0066,
which indicates that the basin boundary is extremely involved. The system exhibits a
collection of invariant curves that act as boundaries between chaotic regions surrounding
two main islands. However, as k increases, these curves become broken, until only one
curve remains the shearless curve. This is broken when k = kc, so that the two chaotic
regions are connected. The values of kc were estimated using the entropy basin concept,
to which we found the value of kc = 0.53.

The basin entropy concept we used in this work is based on the Boltzmann–Gibbs
–Shannon–von Neumann version of the entropy, which is an extensive quantity by defini-
tion. However, in dynamical systems exhibiting complex behavior, including coexistence
among periodic, quasiperiodic and chaotic orbits such as the Weiss map we considered
in the present paper, it has been argued that a non-extensive entropy would be better
suited, such as Tsallis entropy [42,43]. This is particularly interesting when the chaotic
transport is characterized by anomalous diffusion, which is heavily influenced by stickiness
and other dynamical features of the chaotic orbit [44]. A further extension of the present
approach would be, therefore, to adapt the basin entropy concept vis-a-vis of the Tsallis
non-extensive entropy.
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Appendix A. Derivation of Weiss’ Map

In this Appendix, we will present a derivation of the Weiss map based on a paradig-
matic model of particle advection by a two-dimensional incompressible flow in a reference
frame comoving with a single-frequency wave and perturbed by periodic impulses [26].
The latter influence brings about an explicit time-dependence for the fluid flow and thus the
non-integrable character of the advected particle motion, which includes chaotic behavior.

It is well known from fluid mechanics that a two-dimensional incompressible and
inviscid flow can be described by a streamfunction Ψ(x, y, t), where (x, y) are Cartesian
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coordinates in the plane of motion [45]. Passive scalars are advected by this incompressible
flow, with equations of motion

dx
dt

=
∂Ψ(x, y, t)

∂y
, (A1)

dy
dt

= −∂Ψ(x, y, t)
∂x

, (A2)

where the finite-size effects and molecular diffusion effects have been neglected. Interpret-
ing (x, y) as a coordinate and its canonically conjugated momentum, these are Hamilton’s
equations, with Ψ playing the role of Hamiltonian.

Let us also consider a single-frequency traveling wave propagating along the direction
x, in such a way that the phase plane (x, y) is actually a cylinder. Using a reference frame
comoving with the wave, the two-dimensional flow on the cylinder is time-independent
and thus represents an integrable one degree-of-freedom dynamical system. This system
is expected to contain both trapped and untrapped particles, separated by a homoclinic
trajectory emanating from an unstable periodic orbit of the steady flow [27]. The explicit
time-dependence, on its turn, will appear due to a periodic sequence of delta-function
impulses.

A minimal model exhibiting these features is given by the following stream function

Ψ(x, y, t) = Ψ0(y) + Ψ1(x, y, t), (A3)

where [26]

Ψ0(y) =
1
3

y3 − y, (A4)

Ψ1(x, y, t) = cos x

{
1− k

∞

∑
n=−∞

δ(t− nT)

}
, (A5)

where k and T represent the intensity and period of the time-dependent external impulses.
In the absence of the latter (i.e., for k = T = 0) we have an integrable system with stable
fixed points at (x, y) = (0, 1) and (π,−1), around which trapped particles orbit. Untrapped
(free) particles are separated from them by homoclinic trajectories emanating from unstable
fixed points at (x, y) = (0,−1) and (π, 1).

In order to investigate the effects of the external impulses, we substitute (A4) and (A5)
into (A1) and (A2), which gives the equations of motion for passively advected particles
under a time-dependent perturbation

dx
dt

= y2 − 1, (A6)

dy
dt

= sin x− k sin x
∞

∑
n=−∞

δ(t− nT). (A7)

The presence of delta functions enables us to obtain an analytical mapping for this
Hamiltonian system by defining the following discrete-time variables

xn = lim
ε→0

x(t = nT + ε), (A8)

yn = lim
ε→0

y(t = nT + ε). (A9)

Integrating Equations (A6) and (A7), knowing that the integral of sin x over a period is null
and using the above definitions results in Weiss’ map
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xn+1 = xn + T
(

y2
n+1 − 1

)
, (A10)

yn+1 = yn − k sin xn. (A11)

In order to reduce the number of parameters, in the following we set T = k. Since the
phase plane is a cylinder along the x-direction, we rename x → θ as an angle and y→ I as
an action variable, which leads to (11) and (12).
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