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A B S T R A C T

In this work, we study the unpredictability of seasonal infectious diseases considering a SEIRS model with
seasonal forcing. To investigate the dynamical behaviour, we compute bifurcation diagrams type hysteresis
and their respective Lyapunov exponents. Our results from bifurcations and the largest Lyapunov exponent
show bistable dynamics for all the parameters of the model. Choosing the inverse of latent period as control
parameter, over 70% of the interval comprises the coexistence of periodic and chaotic attractors, bistable
dynamics. Despite the competition between these attractors, the chaotic ones are preferred. The bistability
occurs in two wide regions. One of these regions is limited by periodic attractors, while periodic and chaotic
attractors bound the other. As the boundary of the second bistable region is composed of periodic and chaotic
attractors, it is possible to interpret these critical points as tipping points. In other words, depending on the
latent period, a periodic attractor (predictability) can evolve to a chaotic attractor (unpredictability). Therefore,
we show that unpredictability is associated with bistable dynamics preferably chaotic, and, furthermore, there
is a tipping point associated with unpredictable dynamics.
1. Introduction

The study of the spread of diseases is an important interdisciplinary
research topic [1]. Mathematical models are essential to understand-
ing, forecasting, and studying control measures for infectious dis-
eases spread [2]. In general, the epidemic models are compartmental,
i.e., they divide the host population (𝑁) into compartments, for in-
stance susceptible (𝑆), exposed (𝐸), infected (𝐼), and recovered (𝑅) [3].
𝑆 is related to healthy individuals who can contract the disease. 𝐸 cor-
responds to the individuals in latent [4] and/or incubation period [5].
In the latent period, the individuals cannot transmit the disease [2].
In the incubation period, the exposed can transmit the disease with a
lower incidence than the infected individuals [6,7]. 𝐼 is associated with
individuals who transmit the disease. 𝑅 is related to the individuals
who were infected and got immunity, permanent [2] or temporary [8].
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The composition of these compartments forms the classical epidemics
models: Susceptible–Infected (SI) [9], Susceptible–Infected–Susceptible
(SIS) [10], Susceptible–Infected–Recovered (SIR) [11], Susceptible–
Infected–Recovered–Susceptible (SIRS) [12], Susceptible–Exposed–
Infected–Recovered (SEIR) [2,13], and Susceptible–Exposed–Infected–
Recovered–Susceptible (SEIRS) [8]. An introduction to these models
can be found in Ref. [3]. These models have been used to study
the dynamic of many diseases, for example, COVID-19 [14], dengue
fever [15], and childhood epidemics (e.g., measles, diphtheria, and
chickenpox) [16].

Some of these diseases have seasonal behaviour, like measles, chick-
enpox, pertussis, and others [17,18]. The common characteristic of
seasonal diseases is the recurrence of new outbreaks after a period of
time. The motivation to work with seasonal models is to predict future
outbreaks and propose control measures [19].
960-0779/© 2022 Elsevier Ltd. All rights reserved.
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Seasonal models have been introduced since 1928 [20]. They
present a rich variety of oscillatory phenomena [21]. London and
Yorke [22] considered an epidemic model with seasonally varying
contact rates forcing, studied the recurrent outbreaks of measles, chick-
enpox, and mumps in New York City. Their simulations reproduced
the observed pattern in annual outbreaks of chickenpox, mumps and
biennial outbreaks of measles and also verified that the mean contact
rate is higher in winter than in summer. Considering a SEIR model
with seasonal components, Olsen and Schaffer [16] showed, from real
data, that measles epidemics are inherently chaotic. Aguiar et al. [23]
analysed a seasonally forced SIR epidemic model for dengue fever with
temporary cross-immunity and the possibility of secondary infection.
Their results showed that the addition of seasonal forcing induces
chaotic dynamics, which is related to the decrease in predictability.
Similar results in a SIR model were reported by Stollenwerk et al. [24].
He et al. [25] explored a SEIR epidemic model based on the COVID-
19 data from Hubei province. With the introduction of seasonality
and stochastic infection, the model becomes nonlinear with chaos.
In addition to this work, from the analysis of epidemiological data
from 14 countries, the work of Jones and Strigul [26] suggested that
the COVID-19 spread is chaotic. Bilal et al. [27] studied changes
in the bifurcations of the seasonally forced SIR model considering a
transmission rate modulated temporally. By analysing the bifurcation
diagrams and respective Lyapunov exponents, in the forward and
backward directions of the strength of seasonality, their results showed
the coexistence between periodic and chaotic attractors, known as
bistability dynamics. Bistability in an epidemic model also was reported
by Ventura et al. [28]. They considered a model with mobility where
the spreading of disease occurs in temporal networks of mobile agents.
In their model, they considered the movement of susceptible in the
oppositive direction of infected agents. By developing a semi-analytic
approach, they showed that the bistability is caused by the spatial
emergence of susceptible clustering.

Many natural processes exhibit multistability, i.e., the asymptotic
state evolves to a large number of coexistence attractors for a fixed
parameter set [29]. In these systems, the transient for the final attractor
depends strongly on the initial condition [30,31]. The existence of
two alternative states is very important to climate science [32], ecol-
ogy [33], and epidemiology [11,27,28]. When the multistability region
is bounded by contrasting attractors and an abrupt shift between these
attractors occurs, the threshold points in which this transition occurs
are called tipping points [34].

Tipping points are found in the process of desertification [34], can-
cer epidemiology [35], Duffing oscillator [36], epidemic models [37–
39], ecological models [40], and others [41]. Mathematically, the
tipping points correspond to bifurcations [34], that, in general, have
long transient lifetimes [42]. In the ecological sense, long transients
were studied by Hastings et al. [43].

In seasonal disease spread, an unclear problem is the limit to fore-
cast precision for the outbreak, as observed by Scarpino and Petri [44].
They studied the time series from ten different diseases (for exam-
ple, dengue, influenza, measles, and mumps) and demonstrated that
the predictability decreases when the time series length is increased.
Furthermore, their results showed that the forecast horizon varies by
different illnesses. From the other works, it is known that unpredictabil-
ity is associated with the chaotic dynamics [45]. However, only chaotic
dynamics do not provide a satisfactory answer to understanding the
mechanism behind unpredictability, since the chaotic attractors are
predictable until a Lyapunov time in the order to the inverse of the
largest Lyapunov exponent.

Our main goal in this research is to study the mechanism behind
the unpredictability in seasonal infectious diseases. In order to that,
we consider a SEIR model with temporary immunity and seasonal
forcing [46,47]. Firstly, we show that the basic reproductive rate 𝑅0
epends on the seasonality parameters, such as seasonality degree
2

nd frequency. In sequence, we consider numerical simulations which f
Fig. 1. Schematic representation of SEIRS model, where 𝑁 is the host population, 𝑏 is
he natural birth rate, 𝜇 is the natural death rate, 𝛽 is the effective per capita contact
ate, 𝛼 is the rate at which 𝐸 evolves to 𝐼 , 𝛾 is the recovered rate, 𝛿 is the rate in
hich 𝑅 return to 𝑆 compartmental.

xhibit the existence of bistability for all parameters in the model,
hich is characterised by the coexistence of periodic and chaotic
ttractors. We verify this dynamical behaviour by bifurcations diagram
ype hysteresis and the largest Lyapunov exponent. Despite the rich
ynamics in all the parameters, we select the inverse of the latent
eriod to study the unpredictability phenomenon. A wide range of this
arameter comprises diseases with short (hours) and large (days) latent
eriod. Our results show that the dynamics are sustained over 70% by
istability between chaotic and periodic attractors. This bistability ap-
ears in two large ranges. In the first one, the probability of one initial
ondition evolving to the chaotic attractor is 51%, while in the second
ange is 63%. Furthermore, these two ranges are delimited, in their
risis points, by periodic and chaotic attractors (without bistability).
n this sense, it is possible to interpret these bifurcations as tipping
oints. In this way, as novelty, we exhibit that the unpredictability in
nfectious disease spread is associated with bistable dynamics and exists
ne tipping point associated with it.

Our work is organised as follows: In Section 2, we present the
odel. Section 3 is dedicated for the study of bifurcations and crisis
oints. In Section 4, we interpret the crisis points as tipping points.
inally, in Section 5, we draw our conclusions.

. Model

The SEIRS model divides the host population (𝑁) into four com-
artments [2,3,8]: 𝑆, 𝐸, 𝐼 , and 𝑅. A schematic representation of the
EIRS model is shown in Fig. 1. The 𝑅 individuals lose immunity after
period time given by 1∕𝛿 and return to 𝑆 compartmental. The model

s given by
𝑑𝑆
𝑑𝑡

= 𝑏𝑁(𝑡) − 𝜇𝑆(𝑡) − 𝛽
𝑆(𝑡)𝐼(𝑡)
𝑁(𝑡)

+ 𝛿𝑅(𝑡),

𝑑𝐸
𝑑𝑡

= 𝛽
𝑆(𝑡)𝐼(𝑡)
𝑁(𝑡)

− (𝛼 + 𝜇)𝐸(𝑡),

𝑑𝐼
𝑑𝑡

= 𝛼𝐸(𝑡) − (𝛾 + 𝜇)𝐼(𝑡),

𝑑𝑅
𝑑𝑡

= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡) − 𝛿𝑅(𝑡),

(1)

where 𝑏 is the natural birth rate, 𝜇 is the natural death rate, 𝛼 is the rate
t which exposed individuals evolve to be infected, 𝛾 is the recovered
ate, 𝛿 is the rate at which the recovered individuals return to the
usceptible class after losing immunity. The mean latent period is given
y 1∕𝛼, the mean infectious period by 1∕𝛾, and the mean time immunity
y 1∕𝛿. The force of infection is 𝛽𝐼

𝑁 , where 𝛽 is the effective per capita
contact rate of infective individuals and the incidence rate is 𝛽𝑆𝐼

𝑁 .
We consider the transmission rate with a seasonal forcing given by

𝛽(𝑡) = 𝛽0(1 + 𝛽1 cos𝜔𝑡), (2)

here 𝛽0 is the average contact rate, 𝛽1 (0 ≤ 𝛽1 ≤ 1) measures the
easonality degree, and 𝜔 is the frequency [16,46,47]. Considering
= 𝑏, we obtain, from Eq. (1), 𝑆 + 𝐸 + 𝐼 + 𝑅 = 𝑁 . Therefore,

t is possible, without loss of generality, to rewrite Eq. (1) using the

ollowing transformations: 𝑠 = 𝑆∕𝑁 , 𝑒 = 𝐸∕𝑁 , 𝑖 = 𝐼∕𝑁 , 𝑟 = 𝑅∕𝑁 .
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The equilibrium solutions of SEIRS model are found by solving the
following equations

0 ≡ 𝑏 − 𝜇𝑠 − 𝛽𝑠𝑖 + 𝛿𝑟,

0 ≡ 𝛽𝑠𝑖 − (𝛼 + 𝜇)𝑒,

0 ≡ 𝛼𝑒 − (𝛾 + 𝜇)𝑖,

0 ≡ 𝛾𝑖 − 𝜇𝑟 − 𝛿𝑟,

(3)

where the disease-free equilibrium is (𝑠∗, 𝑒∗, 𝑖∗, 𝑟∗) = (1, 0, 0, 0), since
𝑏 = 𝜇. However, a very important equilibrium solution is the endemic
solution, which is given by

𝑠∗ =
(𝛼 + 𝜇)(𝛾 + 𝜇)

𝛽(𝑡)𝛼
≡ 1

𝑅0
,

∗ =
𝛾 + 𝜇
𝛼

𝜇 + 𝛿
𝛽(𝑡)(𝜇 + 𝛿) − 𝑅0𝛿𝛾

(𝑏𝑅0 − 𝜇),

𝑖∗ =
𝜇 + 𝛿

𝛽(𝑡)(𝜇 + 𝛿) − 𝑅0𝛿𝛾
(𝑏𝑅0 − 𝜇),

𝑟∗ = 1 − 𝑠∗ − 𝑒∗ − 𝑖∗,

(4)

where 𝑅0 is the basic reproductive ratio [48]. We consider 𝜇 = 𝑏 to
btain a fixed population size. If 𝛿 = 0 and 𝜇 = 𝑏, we recover the
xpression 𝑖∗ = 𝜇

𝛽 (𝑅0 − 1) that is the endemic fixed point for the SEIR
odel, as shown in Ref. [48] without seasonal forcing. In this way,

he terms 𝛿, 𝑏, 𝛾, 𝛽0, and 𝛽1 appear as correction terms in the infected
individuals. 𝑅0 = 𝑅0(𝑡) ∝ 𝛽0(1+𝛽1 cos𝜔𝑡) is proportional to the seasonal
parameters.

However, Eq. (2) makes the system become nonautonomous. To
build an autonomous system, we introduce a new variable 𝑇 = 𝜔𝑡
and a new differential equation, that is given by 𝑑𝑇

𝑑𝑡 = 𝜔. With these
onsiderations, the equations become
𝑑𝑠
𝑑𝑡

= 𝜇 − 𝜇𝑠 − 𝛽(𝑇 )𝑠𝑖 + 𝛿𝑟,

𝑑𝑒
𝑑𝑡

= 𝛽(𝑇 )𝑠𝑖 − (𝛼 + 𝜇)𝑒,

𝑑𝑖
𝑑𝑡

= 𝛼𝑒 − (𝛾 + 𝜇)𝑖,

𝑑𝑇
𝑑𝑡

= 𝜔,

𝑟 = 1 − 𝑠 − 𝑒 − 𝑖,

(5)

where the differential equation for 𝑟 is replaced by the constraints. As
an example, a solution of Eq. (5) is shown in Fig. 2(a) for all variables.
Differently from the standard SEIRS, the seasonal forcing produces
oscillations in the epidemic curves in accordance with 𝜔. The exposed
and infected curves are amplified in Fig. 2(b), in log scale. This result
shows a solution like a forced damped oscillator.

The influences of 𝛽0, 𝛿, 𝛽1, and 𝛾 in the dynamical system are
xhibited in Figs. 3(a–d), respectively, by the bifurcation diagrams
ollowed by the largest Lyapunov exponent (𝜆1) [49]. The Lyapunov

exponent is a tool to identify chaos [50]. A positive largest Lyapunov
exponent (𝜆1 > 0) corresponds to chaotic dynamics [51]. The bifur-
ations are constructed by the collection of the 𝑖 maxima points in
he forward (red) and backward (blue) directions. The combination
f distinct bifurcation in forward and backward directions comprises
hysteresis [36]. Also, the Lyapunov exponents are calculated in

oth directions. By considering these results, it is possible to locate
anges where two attractors coexist, both looking at the bifurcation and
yapunov exponent. These regions are delimited by the black dotted
quare in the panels (a–d). The regions where this dynamical behaviour
xists are called bistability. Systems with these dynamics are extremely
ensitive to the initial state [31] and the presence of chaotic attractor
n these systems is rare [30,52].

The result in Fig. 3(a) shows bistability dynamics in the range
0 ∈ [287, 332] and 𝛽0 ∈ [480, 491]. The bistability comprehends 14%
f the 𝛽0 range. However, for this parameter set, the dynamics is
ostly periodic. The bifurcation for 𝛿 is very similar to the bifurcation
3

or 𝛽0, as shown in Fig. 3(b). For this parameter set, the bistability t
Fig. 2. (a) SEIRS time series. (b) Magnification in log scale of the exposed (blue) and
infected (red). We consider 𝜇 = 0.02, 𝜔 = 2𝜋, 𝛼 = 37.35, 𝛾 = 100, 𝛿 = 0.25, 𝛽1 = 0.15,
nd 𝛽0 = 800. (For interpretation of the references to colour in this figure legend, the
eader is referred to the web version of this article.)

etween periodic and chaotic attractor only exists in 𝛿 ∈ [0.19, 0.22],
hich comprehends 7.5% of the 𝛿 range. Therefore, the time to lose

mmunity is relevant for the epidemic dynamics. Diseases with long
ime immunity, for example > 10 years, or short time immunity, as
or example < 3 years, have periodic dynamics. Another analysed
arameter is the seasonality strength 𝛽1, as displayed in Fig. 3(c). Our
imulations show one region of bistability in 𝛽1 ∈ [0.25, 0.32] (7% of
1 range) and most of the dynamics is sustained by chaotic attractors.
ig. 3(d) exhibits the bifurcation as a function of 𝛾, where one region
f bistability in 𝛾 ∈ [108, 123] (19% of the 𝛾 range), however, it is
ominated by periodic behaviour. The 𝜔 parameter also is associated
ith the creation or annihilation of bistability dynamics, for example,

or 𝜔 in the range 12 up to 30 months, the bistability is found. For
alues under 12 months the dynamics is periodic.

We observe that the parameters 𝛽0, 𝛿, 𝛽1, and 𝛾 are relevant to
nderstand the disease spread dynamics. However, we select the 𝛼
arameter as the control parameter, once the bifurcation diagram for
his parameter exhibits rich dynamic, it is possible to study the crisis
nd critical points, known as tipping points.

. Bifurcation analysis

The latent period is an important variable in the dynamics of the
pidemics [53] and is defined as 1∕𝛼 [3]. To understand the effects of
in the dynamical system (Eq. (5)), we consider 𝛿 = 0.25, 𝛽0 = 270,

1 = 0.28, 𝛾 = 100, and 𝜇 = 𝑏 = 0.02, where the time unity is year. We
hoose 𝛼 as the control due to the fact that the bistability and tipping
oints are more evident.

Fig. 4 displays the bifurcation diagram (considering 𝑖 maximum) in
he panel (a) and the largest Lyapunov exponent (𝜆1) in the panel (b).
iven an initial condition, the red point is the maximum value of 𝑖 in

he forward 𝛼 direction following the attractor, i.e., the initial condition
or the current step is equal to the last step. The blue points are obtained
n the backward 𝛼 direction. In Fig. 4(a), the vertical lines (𝑇𝑖) are

he critical points that delimit the bifurcation, where 𝑖 = 1, 2, 3, 4. The
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Fig. 3. Bifurcations diagram and respective largest Lyapunov exponent (𝜆1) for 𝛽0 in the panel (a), for 𝛿 in the panel (b), for 𝛽1 in the panel (c), and for 𝛾 in the panel (d). The
𝑖 variable in the panels (a) and (b) is in log scale. We consider 𝛼 = 35.84, 𝜇 = 0.02, 𝜔 = 2𝜋, (a) 𝛾 = 100, 𝛿 = 0.20, 𝛽1 = 0.28, (b) 𝛾 = 100, 𝛽0 = 300, 𝛽1 = 0.28, (c) 𝛾 = 100, 𝛿 = 0.25,
𝛽0 = 270, and (d) 𝛿 = 0.25, 𝛽0 = 300, 𝛽1 = 0.28.
Fig. 4. (a) Bifurcation diagram and (b) largest Lyapunov exponent. The red points and
lines are forward and the blue points and lines are backward in the 𝛼 parameter. We
consider 𝑇1 = 27, 𝑇2 = 130.88966, 𝑇3 = 161.69990, 𝑇4 = 303.88407, 𝛿 = 0.25, 𝛽0 = 270,
𝛽1 = 0.28, and 𝛾 = 100. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

bistable chaotic–periodic occupies ≈ 70% of the 𝛼 range, while the
coexistence between periodic–periodic ≈ 1%. The ranges [𝑇1, 𝑇2] and
[𝑇3, 𝑇4] encompass the coexistence of 𝜆1 < 0 and 𝜆1 > 0 which confirms
the bistability between periodic and chaotic attractors, as illustrated in
Fig. 4(b).

Due to the coexistence of two attractors, we compute two basins
of attractions for different 𝛼 values. For 𝛼 = 100 in Figs. 5(a–c) and
for 𝛼 = 200 in Figs. 5(d–f). The colour scheme follows the colour of
the attractor in Fig. 4. For 𝛼 = 100, 43% of the basin formed by red
points that evolve to the chaotic attractor is separately displayed in
4

Fig. 5(b), while 57% of the basin is composed of blue points, which
evolve to the periodic attractor as displayed in Fig. 5(c). The colour
scale in Figs. 5(b), 5(c), 5(e) and 5(f) is 𝑟0. The composition of the basin
attraction is not preserved by 𝛼 translation. However, in other ranges,
for example [𝑇3, 𝑇4], the shape of the basin attraction changes, as shown
in Fig. 5(d), for 𝛼 = 200. For this 𝛼 value, 57% of the points evolve
to the chaotic attractor. The basin for the chaotic attractor is shown
in Fig. 5(e). The 43% of the remaining points evolve to the periodic
attractor and are plotted in Fig. 5(f). The structure of this basin remains
in the range [𝑇3, 𝑇4]. However, translations in 𝛼 change the composition
of the basin attraction, which decrease as a cubic function.

The sudden change in the dynamical behaviour occurs at certain
values of the control parameter, that are the critical points 𝑇1 = 27,
𝑇2 = 130.88966, 𝑇3 = 161.69990, and 𝑇4 = 303.88407. These events are
called crises [54,55] and are defined by the collision between a chaotic
and a periodic attractor.

In the point 𝑇1 occurs a rising of a bistable region by bifurcation. It
starts by the existence of two different attractors, that are represented
by blue and red branches. The bistability is formed by two periodic
attractors until the point in which the red branch becomes chaotic by
bifurcation. After that, the dynamics is sustained by the coexistence of
periodic (blue) and chaotic (red) attractors until 𝑇2.

The 3-dimensional and 2-dimensional projections of the attractors
merging in [𝑇1, 𝑇2] range are displayed in Figs. 6(a) and 6(b), respec-
tively, for 𝛼 = 130. The attractor shape is invariant by 𝛼 ∈ [𝑇1, 𝑇2]
translation. The attractors are constructed considering the stroboscopic
map, that is a collection of the dynamical variables every 𝑇 = 𝑛𝜋,
where 𝑛 = 0, 2, 4,…. Figs. 6(c) and 6(d) display the 3 and 2-dimensional
projections of the chaotic (blue points) and periodic (red points) in the
range [𝑇3, 𝑇4] for 𝛼 = 161.70276. Figs. 6(e) and 6(f) show the projections
of the chaotic attractor for 𝛼 > 𝑇4. In this regime, only chaotic attractor
survives.

Once crossed 𝑇2, the bistability disappears and periodic behaviour
prevails. In this point, the chaotic attractor collides with the periodic
one by a saddle-point bifurcation. Around the crisis point, it is expected
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Fig. 5. Basin attraction calculated for 𝛼 = 100. In panel (a) there is the total basin attraction, in panel (b) the basin of chaotic attractor, and in panel (c) the periodic basin. In
panels (d), (e), and (f), we calculate the basin for 𝛼 = 200. We compute the chaotic and periodic basins in the panels (e) and (f), respectively.
Fig. 6. Coexistence of periodic and chaotic attractors. Three dimensional projection in the panels (a), (c), and (e). Bidimensional projection in the panels (b), (d), and (f). We consider
𝛼 = 130 ((a) and (b)), 𝛼 = 161.70276 ((c) and (d)), and 𝛼 = 303.88411 ((e) and (f)). In the panels (a) and (b), the initial conditions for periodic is (𝑠0 , 𝑒0 , 𝑖0 , 𝑟0) = (0.074, 0.144, 0.186, 0.596)
and for chaotic is (𝑠0 , 𝑒0 , 𝑖0 , 𝑟0) = (0.075, 0.145, 0.185, 0.595). For the panels (c) and (d), the initial conditions for periodic and chaotic are (𝑠0 , 𝑒0 , 𝑖0 , 𝑟0) = (0.074, 0.144, 0.186, 0.595) and
(𝑠0 , 𝑒0 , 𝑖0 , 𝑟0) = (0.060, 0.100, 0.110, 0.730), respectively. For the panels (e) and (f) are (𝑠0 , 𝑒0 , 𝑖0 , 𝑟0) = (0.074, 0.144, 0.186, 0.596) and (𝑠0 , 𝑒0 , 𝑖0 , 𝑟0) = (0.031, 0, 026, 0, 073, 0, 870). We consider
𝜇 = 0.02, 𝜔 = 2𝜋, 𝛾 = 100, 𝛿 = 0.25, 𝛽1 = 0.28, and 𝛽0 = 270.
that the transient time tends to infinity. We calculate the average tran-
sient time ⟨𝜏⟩ for 200 initial conditions in the interval [𝑇2, 130.89666],
as displayed in Fig. 7 by red points. 𝜏 parameter represents the time
to the chaotic attractor dynamics goes to the periodic one. The black
curve is a Gaussian fit displayed by the equation

𝑦 = 𝑦0 +
𝐴

𝜎
√

𝜋
4 ln(2)

𝑒−
4 ln(2)(⟨𝜏⟩−⟨𝜏⟩c)2

𝜎2 . (6)

The 𝑦0, 𝐴, 𝜎 are parameters for the fitting. We observe the existence of a
transient chaos around 𝑇2, that has a distribution type Gaussian centred
in ⟨𝜏⟩c = 28 × 104 years. In the range where transient chaos exists, the
basin of attraction is composed of chaotic and periodic orbits. However,
the initial conditions that evolve to chaotic attractor dissipate linearly
and smoothly with the increase of the transient time.

The point 𝑇3 denotes the birth of a new bistable region. That
happens by a transition from a periodic branch (blue) to a chaotic by
a saddle point. In this transition also exists a transient chaos, which
is displayed in Fig. 8 by the red points. The transient time in the
range [𝑇 , 161.70849] follows a binomial distribution, indicate by the
5

3

Fig. 7. Distribution for the average transient time ⟨𝜏⟩ in red points and range
[𝑇2 , 130.89666]. The average is calculated for 200 samples of chaotic initial conditions.
The black curve is a gaussian fit. We consider 𝜇 = 0.02, 𝜔 = 2𝜋, 𝛾 = 100, 𝛿 = 0.25,
𝛽1 = 0.28, and 𝛽0 = 270.
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Fig. 8. Distribution for the average transient time ⟨𝜏⟩ in [𝑇3 , 161.70849] (red points).
The black curve is the fit given by a log normal. The average is calculated for 200
samples. We consider 𝜇 = 0.02, 𝜔 = 2𝜋, 𝛾 = 100, 𝛿 = 0.25, 𝛽1 = 0.28, and 𝛽0 = 270. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

Fig. 9. Average transient lifetime versus 𝛼 − 𝛼c in log scale for 200 periodic initial
conditions (red points). The black line indicates the fitting. We consider 𝜇 = 0.02,
𝜔 = 2𝜋, 𝛾 = 100, 𝛿 = 0.25, 𝛽1 = 0.28, and 𝛽0 = 270. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

continuous black lines 𝑦1 and 𝑦2, given by the log normal distribution

𝑦 = 𝑦0 +
𝐴

√

2𝜋𝜎𝜏
𝑒−

(ln(⟨𝜏⟩∕⟨𝜏⟩c))2

2𝜎2 , (7)

here the first peak value is ⟨𝜏⟩ = 1.9 × 104 years and the second one
s ⟨𝜏⟩ = 3 × 104 years. For 𝛼 < 𝑇3 and close to 𝑇3, there is transient
haos. The basin of attraction for the chaotic attractor is extinct linearly
mooth with the increase of the transient.

After crossing 𝑇3, we observe a bistable regime that comprehends
0% of the 𝛼 range. The bistability is sustained by the coexistence
f periodic and chaotic attractors, as shown in Figs. 6(c) and 6(d).
rossing this bistable regime, we find the last crisis point (𝑇4). The
ransient time goes to infinity, following a decay ∝ 𝑥−1∕2 as we move
way from 𝑇4. However, at this point, the transient is periodic. Fig. 9
xhibits our result for 200 periodic initial conditions. Differently from
he two first cases, the transient goes to infinity for 𝑇4 = 𝛼𝑐 and decays
ith (𝛼 − 𝛼𝑐 )𝛾 , where 𝛾 = −0.5025 ± 0.0002 and 𝛼 > 𝛼𝑐 , with this

tandard deviation value we can say that 𝛾 = 1∕2 that is the universality
xponent for average duration of chaotic transients. The black line
ndicates the fit curve, that is given by 𝑦 = 167.06(𝛼 − 𝛼𝑐 )−0.5025 with

correlation coefficient equal to −0.9999549. After this transient, the
eriodic points, in the phase space, coalesce in a chaotic attractor by a
addle-point. The basin of attraction in the crisis point is formed by 19%
f the initial conditions that evolve to a periodic attractor. Increasing
he transient time until 𝜏 = 50800, we verify an abrupt change and the
raction of periodic points goes to zero, discontinuously. The periodic
ransient persists until 1% above 𝛼 calculated through (𝛼 − 𝛼 )∕𝛼 .
6

𝑐 𝑐 𝑐
. Tipping points

Tipping points mark changes in the system between alternative
tates [34]. It occurs when a threshold is crossed due to an external
erturbation or by shift in the parameters of the system [56]. The tran-
itions correspond to saddle–node or fold bifurcations [36]. Between
wo tipping points, the system is bistable, i.e., it can be found in one
f two possible states [34].

In the seasonal disease context, the desired state is one in which the
uture outbreak is predictable. If the disease spread is predictable, based
n the data from previous years, it is possible to construct more efficient
ontrol strategies and, consequently, decrease the number of infected
ndividuals. The undesired state, on the other hand, is when the evo-
ution of the disease spread is unpredictable. The unpredictability is
ssociated with chaotic dynamics [45] and was studied by Scarpino
nd Petri [44]. However, until the moment, the mechanism behind
he unpredictability is not satisfactorily explained by only the chaotic
ynamics. In this work, we show that unpredictability is associated with
istable dynamics and has a tipping point.

Fig. 10 exhibits the state variable as a function of the parameter
ontrol. We observe a state related to the predictable (green line) and
nother to the unpredictable (red line). The state variable can be the
umber of infected and the parameter control can be the 𝛼 variable.
ith regard to the green curve, the control parameter is increased until

ipping point 1. At this point, the system reaches threshold 1. Once
rossed, the state variable evolves to the red branch, which represents
he unpredictable state. If we start in the red branch and decrease the
ontrol parameter, then, after crossing threshold 2, the system shifts
o the green branch. Therefore, the state system can alternate between
npredictable and predictable due to parameter control. This situation
llustrates what happens in points 𝑇3 and 𝑇4, as shown in Fig. 4.

Firstly, we focus on the range [𝑇1, 𝑇2] shown in Fig. 4. The system
xhibits periodic behaviour for 𝛼 < 𝑇1 and 𝛼 > 𝑇2. However, it
ncompasses a bistable chaotic–periodic dynamics in the considered
nterval. In this region, the maximum number of infected individuals
ncreases by 20 times from 𝑇1 to 𝑇2, however, in the boundary the
ttractors are periodic. The bistable region is interesting in terms of
redictability, for the reason that small changes in the initial condition
an leave the system from periodic to chaotic behaviours. In this region,
he average probability of an initial condition evolving to the periodic
ehaviour is 49%. Therefore, with this measure, the predictability is
ncertain in the interval [𝑇1, 𝑇2].

In the range [𝑇3, 𝑇4] are the tipping points illustrated in Fig. 10.
onsidering 𝑇2 < 𝛼 < 𝑇3, all the initial conditions evolve to a periodic
ttractor, namely the dynamics is predictable. For example, based on
he date of one year, it is possible to implement restrictions for the next
ear. Once crossed 𝑇3, the dynamic becomes bistable. The range [𝑇3, 𝑇4]
s connected by the coexistence of chaotic and periodic dynamics. The
robability of one initial condition evolving to a periodic attractor is
isplayed in Fig. 11. The probability distribution for 𝛼 has a cubic
ecay as closer to 𝑇4. The average is equal to 37% and we can affirm
hat diseases in [𝑇3, 𝑇4] are preferably unpredictable. After crossing
4, all the initial conditions evolve to the chaotic attractor and, as a
onsequence, the disease spread becomes unpredictable.

. Conclusions

In this work, we study a SEIR seasonal model with temporary immu-
ity. The inclusion of temporary immunity greatly enriches the system
ynamics. Our results show that the bistable dynamics depend on the
ontrol parameters. Thus, by varying 𝛼, 70% of the range exhibits
istability, which is composed of chaotic and periodic attractors. Our
esults show the importance of all parameters in the spread dynamics,
owever, with the crisis present in the 𝛼 bifurcation, it is possible
o study tipping points phenomena. We explore a range that includes
iseases with a latent period in order of days until hours [53].
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Fig. 10. Representation of the tipping points between predictable (green branch) and unpredictable (red branch) states. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
Fig. 11. The probability of an initial condition evolves to the periodic attractor in the
range [𝑇3 , 𝑇4] (vertical lines). We consider 𝜇 = 0.02, 𝜔 = 2𝜋, 𝛾 = 100, 𝛿 = 0.25, 𝛽1 = 0.28,
𝛽0 = 270.

We verify that the dynamics of the disease spread is chaotic for
𝛼 ≥ 300. The diseases in this range have a latent period less than 1.2
days. Only values in 0 < 𝛼 ≤ 30 (very high values of 1∕𝛼 until 12 days)
and 130 ≤ 𝛼 ≤ 161 (2.8 until 2.2 days) are periodic. Values above
𝛼 > 350 are not considered.

The analysed range shows that the latent period is a crucial vari-
able to understand the reason for the unpredictability of infectious
diseases. This unpredictability was observed by Scarpino and Petri [44],
however, the components of the unpredictability were unclear. Our
results show that the unpredictability is closely associated with 𝛼 due
to bistable dynamics.

To finish this work, we answer the question provided in Introduc-
tion: the disease spread becomes unpredictable when the tipping point
𝑇4 is crossed. Therefore, diseases with a short latent period, less than
30 h, are always unpredictable.
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