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a b s t r a c t

Chimera states are Spatio-temporal patterns in coupled oscillator arrays, in which
incoherent domains coexist with coherent ones. To characterize chimeras, however, is
a nontrivial problem since it is difficult to distinguish between coherent domains and
incoherent domains. A useful tool for this task is machine learning, in particular deep
learning techniques like reservoir computing and multilayer perceptrons. In this work
we use these quantifiers in order to identify chimera states in logistic map lattices
with non-local coupling. We compare our results from machine learning techniques
with more conventional characterizations, such as Lyapunov exponents and a local order
parameter.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Chimera states are spatio-temporal patterns in coupled oscillator arrays, in which incoherent domains coexist with
oherent ones [1]. Even before its nomenclature, chimera states were observed in arrangements of forced-coupled Duffing
scillators [2] and complex Ginzburg–Landau equations not locally coupled [3]. However, non-local coupling is not the
nly way to achieve chimera states, since they can also occur due to spatially modulated delayed feedback coupling [4].
he presence of chimera states has been identified in network models [4,5] such as the Kuramoto model of coupled
scillators [6], neural networks [7] and lattices of coupled oscillators of van der Pol- Duffing [8]. Chimera states have also
een observed in experiments involving a liquid crystal spatial light modulator, which controls the polarization properties
f an optical wavefront. It is an experimental realization of a network of nonlocally coupled maps [9]. Other observations
f chimera states were in populations of coupled chemical oscillators [10], coupled metronomes [11,12] and electronic
scillators [13].
For a one-dimensional chain of coupled oscillators, the chimera states are typically characterized by a coherent domain

oexisting close to an incoherent one [14]. Batista et al. [15], through the order parameter(which is defined in Section 2.3),
eveloped a quantifier that determines the ratio between coherent and non-coherent oscillators. Through this ratio, they
uantified when a state can be chimera or no, limiting this ratio to a certain interval. In [16,17], the authors use machine
earning techniques to classify coherent, non-coherent and chimera states. For this they use non-recurring classifiers.
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In this work, we use a modern recurrent deep learning network that is widely used in time series both for use as
classifiers and to predict new values of the time series. This is thanks to the ability to keep the memory of entries and
thereby learn the dynamics of these series. And unlike other classifiers that often require extensive data handling such as
feature extraction using other quantifiers, this network only needs the time series without any other quantifiers. The great
advantage in using deep learning is its efficiency and versatility, managing to learn patterns and dynamic characteristics
that go beyond the human perspective, resulting in a much more efficient process of characterizing spatio-temporal
pattern.

This paper is organized as follows. Section 2 introduces the coupled chaotic logistic map lattice with finite range
coupling and quantifiers. Section 3 introduces the artificial neural network. Section 4 presents our results. The last Section
contains our conclusions.

2. Coupled map networks

We build a coupled logistic map network with two different types of nonlocal coupling: chemical coupling and mean
field coupling. Many investigations of spatiotemporal dynamics in discrete time have been used local coupling, in which
each map x −→ f (x) is coupled to its nearest neighbors, in the form

x(i)n+1 = (1 − ε)f (x(i)n ) +
ε

2
{f (x(i+1)

n ) + f (x(i−1)
n )}, (1)

here x(i)n is the state variable at discrete time n and belonging to a chain of N identical systems, such that i = 1, 2, . . . ,N;
ε standing for the coupling strength. This type of coupling is also called laplacian and represents the discretization of a
second derivative with respect to the position along a one-dimensional lattice.

In contrast, in a network of globally coupled maps, each map is coupled by means of a ‘‘mean field’’ generated by all
other sites, regardless of their relative position or to a chemical coupling where the interaction is mediated by the rapid
diffusion of some chemical into the medium in which systems are embedded.

2.1. Logistic map with chemical coupling

This type of non-local coupling appears in models of dynamical systems (henceforth represented by maps) whose
interaction is mediated by the rapid diffusion of some chemical in the medium in which the systems are embedded. In
this case, each site releases a chemical substance at a rate that depends on its own dynamics. The dynamics of other
maps are affected by the local chemical concentration. Kuramoto showed that as long as the diffusion is fast enough,
the coupling in a spatial dimension is not local, the relative coupling strength decreases exponentially with the lattice
position with a decay rate γ . The network is given by

x(i)n+1 = f (x(i)n ) + Cε
(N−1)/2∑

j=1

1
e2γ j

(f (x(i+j)
n ) − 2f (xi) + f (x(i−j)

n )), (2)

ith

C =
2∑(N−1)/2

j=1 eγ j
, (3)

where r is the nonlinearity, ε is the coupling force (coupling laplacian [18]) and C is the term responsible for the chemical
coupling. When γ −→ ∞, the coupling is local and when γ −→ 0, the coupling is global (all to all). The xin is the discrete-
time state variable n and belongs to a chain of N identical systems with periodic boundary condition (xi±N

n = xin), with
i = 1, 2, . . . ,N .

We assume that the local dynamics is governed by the logistic map f (x) = rx(1 − x) with r = 3.8, for which the
uncoupled maps exhibit chaotic behavior (this value is held constant unless indicated otherwise). It is known that, if the
coupling is local, there is high-dimensional space–time chaos [19]. For nonlocal coupling, however, many chimera states
have been observed, with different wavenumbers for the coherent domains, as the coupling parameters (radius r and
force ε) are varied.

2.2. Logistic map with mean field coupling

A model that considers the relative coupling strength as decreasing with the lattice position in a power-law fashion
with exponent α is given by:

x(i)n+1 = f (x(i)n ) +
ε

η(α)

(N−1)/2∑
j=1

1
jα
(f (x(i+j)

n ) − 2f (xi) + f (x(i−j)
n )), (4)

where the normalization factor is η(α) = 2
∑(N−1)/2 jα .
j=1

2
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Mean field [20] is a type of global coupling in which each site is influenced by the average effect of all sites in the
network. The limiting behavior as α varies from zero to infinity is the same as before. The local dynamics is also governed
by the logistic map f (x) = rx(1 − x) with r = 3.8. xin is the discrete-time state variable n and belongs to a chain of N
dentical systems with periodic boundary condition (xi±N

n = xin) with i = 1, 2, . . . ,N .
If α = ∞ only the terms with j = 1 survive in the summation, and only the nearest neighboring sites contribute to

the coupling and α −→ 0, the coupling is global (all to all).

2.3. Quantifiers

One way to analyze our results obtained from an algorithm is to compare them with some dynamic quantifiers. The
first quantifier used to characterize each of these patterns is the local order parameter Ri [21]. It is a quantifier that
determines the degree of coherence of the lattice. We introduce a phase for the jth map from the following definition:

sinψj =
2xj − maxj{xj} − minj{xj}

maxj{xj} − minj{xj}
, (5)

for j = 1, . . . ,N . The values maxj{xj} and minj{xj} are, respectively, the maximum and minimum values of the state
variable for a network (snapshot), so that a spatial half-cycle is mapped in the phase interval [−π/2, π/2]. The magnitude
of the local order parameter is defined as:

Ri = lim
N−→∞

1
2δ(N)

⏐⏐⏐⏐⏐⏐
∑
j∈C

eiψj

⏐⏐⏐⏐⏐⏐ , (6)

for (i = 1, . . . ,N). The sum is restricted to the range of j-values,

C :

⏐⏐⏐⏐ j
N

−
i
N

⏐⏐⏐⏐ ≤ δ(N), (7)

where δ(N) −→ 0 when N −→ ∞.
For the Ri ≈ 1.0 the sites belong to coherent domains. When Ri takes values less than 1.0, the sites are in inconsistent

domains.
We define a new parameter known as the P degree of coherence, which determines the number of sites with Ri ≈ 1.0.

In relation to the size of the lattice, we add all sites with Ri ≈ 1.0 and divided by the size of the network (snapshot).
Another quantifier widely used to determine the dynamics of a lattice of coupled maps is the Lyapunov spectrum [22]

{λi}
N
i=1, where λi is greater than 0 for a chaotic dynamic. The normalized sum of the positive Lyapunov exponents is a

numerical estimate for the Kolmogorov–Sinai density (KS).

3. Bidirectional deep read echo state (BDES) networks

We consider a neural network with the objective of classification. The network is trained to classify the time series into
one of the groups. For the classification model, we use two coupled neural networks. A recurrent network with echo state
(ESN) [23,24] coupled with a multilayer perceptron network (Fig. 1) and using Principal Component Analysis (PCA) [25]
as a dimension reducer.

3.1. Reservoir computing

The reservoir computing (RC) has been used for modelling nonlinear time series. In the learning context, state echoes
(ESNs) are more common in (RC) models, where the input sequence is projected into a larger space through the use of
the non-linear reservoir. Learning is accomplished through the application of simple linear techniques in the space of the
reservoir.

The proposed architecture is adapted from [26], called bidirectional deep read ESN (BDESN), which combines the
speed of the RC with the trainable precision of RNNs. The model is equipped with a bidirectional reservoir. Bidirectional
architectures have been successfully applied in RNNs to extract temporal resources from the time series that have a very
long time dependency.

The BDESN is utilized for the classification of time series x = {xt}Tt=0 labeled with class c through the following
rocedure. We first project the time series with smaller dimension x(t) to a larger space through the reservoir (h(t)).
hen a dimension reduction algorithm projects the reservoir outlet into a smaller space represented by the state vector
. Finally, a multilayer perceptron (MLP) classifies the vector representative of x, as shown in Fig. 1.
x

3
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Fig. 1. It represents a deep network composed of a computational reservoir followed by a dimensional reduction (PCA) and a reading layer formed
f a multilayer perceptron network trained for classification.

.2. Reservoir

The reservoir acts as an encoder that generates the input representation in a larger space. This state produced by
he reservoir brings all the dynamic information from the original input. This encoding is performed using the weights
enc = {W i,W h

}. The dynamics of this process is performed by the following equation

h(t) = (1 − α) + αf (Whh(t − 1)
+Wix(t) + η(t)) , (8)

where h(t) is the time-dependent internal state, which combines the current input x(t) with the previous state h(t − 1).
he function f is a non-linear activation function (tanh), Wh is the sparse matrix that defines the recurrent self-connects
n the reservoir, and Wi defines the incoming connections. Both matrices are randomly generated and are not trained.
he behavior of the reservoir is mainly controlled by five hyper parameters, that are: the size of the states N , the spectral
adius ρ of W h, the dimensioning of the inputs ω, the hyper leakage parameter α, and the noise η which is used for
egularization in the reservoir. The η term represents additive white Gaussian noise with spherical covariance matrix and
nit standard deviation. By means of an optimal fit of these hyper parameters, the reservoir produces rich dynamics and
ts internal states can be used to solve many prediction and classification tasks. The state generated by the reservoir h(t),
fter all inputs have been processed, is a high-dimensional representation that incorporates the temporal dependencies
f x. Since the reservoir exchanges its internal stability with a memory at time T [27], the state tends to lose information
rom the initial times. To get around this problem, we feed the same reservoir with the inverse order of the time series
′
= {xT−t}

T
t=0 and generate a new state h(t)′ that is more influenced with the first inputs. The final resultant state is

btained by concatenating the two states, hT = [h(t);h(t)′]. The bidirectional reservoir has recently been used for time
series prediction [28]. From the sequence of the RNN states generated over time,

H = [h(1), . . . ,h(T )], (9)

it is possible to extract a representation rX = r(H) of the input x.
The rX vector brings us all the information about the characteristics of the x input, in this case the rX vector is formed

by the weights and bias learned when a later state is generated by the previous state, as shown in the equation

h(t + 1) = Wrh(t) + br , (10)

where rX = {Wr , br} ∈ RR(R+1) and R is the number of neurons that form the reservoir.
In summary, all dynamic characteristics of the input are represented by the vector rX , which is formed by the weights

{Wr , br}. After constructing rX , we can decode in the output space, which are the y classes for the classification case
(Fig. 3(a)) or for the regression case (Fig. 1). This decoding can be performed by

y = g(rX , θdec), (11)

where g is a multilayer perceptron network (Fig. 1) and the θdec weights to be learned.
As the reservoir has a large dimension due to the number of neurons, this takes an overfit and computational resources.

The PCA [25] dimensionally reduces the states, showing a better performance. The PCA aims to reduce the feature space,
choosing a space that better separates these features, facilitating the decision surface.

iii. Multilayer perceptron (MLP)
These state vectors with their reduced dimensions become the input vectors to the network (MLP), where the

classification or regression takes place. The weights of these layers will undergo adjustments during training. At this
point, a normal training of an MLP network is made.

These deep MLPs are known for their generalizability and adaptability, important characteristics for the problem
at hand. Nowadays, deep layer networks can be efficiently trained using sophisticated regularization techniques and
pre-training techniques that help to avoid overfit and null or explosive gradient problem.
4
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Fig. 2. Snapshots of chimera examples in coupled map networks. For each time series, we use a Gaussian initial condition with a transient of
n = 2 000 iterated and chemical coupling, where we observe coherent and non-coherent states for a network with N = 300. We consider (a)
r = 3.8, ε = 0.2 and γ = 0.02, (b) r = 3.58, ε = 0.1 and γ = 0.0029, (c) r = 2.8, ε = 0.8 and γ = 0.029 and (d) r = 3.58, ε = 0.4 and γ = 1.4.
The panels (a) and (b) are examples of spatio-temporal patterns with incoherent and desynchronized domains coexist with coherent(chimera). In
the panel (c), we see a periodic spatio-temporal pattern with only coherent domain and the panel (d) exhibits chaos spatio-temporal pattern.

In our architecture, we use a reading layer formed by an MLP network with three hidden layers of 400 neurons each
one and an input layer with 500 neurons. On the hidden layers of MLP, we consider dropout= 0.2 [29] and ‘‘Greedy Layer-
Wise’’ [30] as pre-training of the network. The optimizer and error function were ‘‘adam [31]’’ and ‘‘MSE(mean square
error)’’, respectively. The best hyper parameters of the reservoir are: N = 500, α = 0.96, ρ = 0.95, ω = 0.9, η = 0.0011
and PCA = 100, which is used in the learning process.

4. Results and discussions

Our network is trained through time series with chimera state profiles (as examples of Figs. 2(a)–(b)), series with
periodic behavior (Fig. 2(c)) and chaotic behavior (Fig. 2(d)). We use a network of coupled maps with two different types
of coupling, chemical coupling and mean field coupling. For the evolution of these maps, we consider the logistic map. To
compare the results found by our network, we calculate two quantifiers in the same parameter space, the order parameter
and the Kolmogorov–Sinai density.

The main objective of our algorithm is to characterize the regions in the parameter space, where chimeras are formed.
For this, we train our neural network with three different classes: the first class (labeled as class 0) containing 705
periodic time series, second class (labeled as class 1) containing 1601 chimera state time series and 820 time series with
chaotic dynamics. These datasets are divided into 70% for training, 5% for validation and 25% for testing. We compute
the performance measurement through the confusion matrix (Fig. 3). The performance is evaluated based on three main
measurement performances in RNN models, which are the accuracy, precision and recall.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (12)

Precision =
TP

(TP + FP)
,

Recall =
TP

TP + FN
,

F1score =
2 ∗ Precision ∗ Recall

.

Precision + Recall

5
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Table 1
Confusion matrix.

Predicted positive Predicted negative

Current Positive TP FN
Current Negative FP TN

Fig. 3. Confusion matrix of test data. 0 - periodic time series, 1- chimera state time series, and 2 - time series with chaotic dynamics. The top
values represent precision and low values represent recall for each time series, respectively.

where TP(True Positive), FN(False Negative), FP(False Positive) and TN(True Negative). These measurements are described
using the confusion matrix that considers a two-class classification problem, as illustrated in Table 1. The main diagonal
values are the correctly predicted values while the off-diagonal values are the wrongly predicted ones.

In neural networks, an important rule is the choice of hyper parameters for a better performance in the classification
odel without suffering overfit. After choosing these hyper parameters, using Bayesian optimization, we can apply our
etwork for the classification problem. The best hyper parameters of the reservoir are: N = 500, α = 0.96, ρ = 0.95,
ω = 0.9, η = 0.0011 and PCA=100. For the classification layer, the architecture of the MLP network (Fig. 1) is made with
three hidden layers with 500, 400 and 400 neurons. For the regularization, we consider a dropout of 20% with an adaptive
learning rate of 0.01 and with a minibatch of 32. In the output layer, we apply the softmax function, and for the gradient,
we use adam [31]. In the reservoir (BDESN), we utilize the hyper parameters: N = 500, α = 0.96, ρ = 0.95, ω = 0.9,
η = 0.0011 and PCA=100. After the training phase, the best accuracy is 98.72% in the test data with 98.76% f1 score.

Fig. 4 shows the validation in the training phase, this procedure is important due to fact that it shows if the network
is suffering overfitting or underfitting. In this phase, in each epoch, the network is trained and updated with the data
separated for training, after updating its parameters (at the end of each epoch). We apply the network in the training and
validation data for the prediction of its classes. Comparing the predicted classes with the real classes, we determine the
accuracy as a function of each training epoch. It is important to note that the separate data for validation are the unknown
data of the algorithm, while the training data are the data used in the network update, so the accuracy of the training
data tends to be higher. Overfitting occurs when the accuracy of training data continues to improve over time, but there
is a gradual decrease in validation accuracy. The training phase where this starts to occur and where overfiiting starts,
and this is not desirable. We can observe that there is a convergence of the accuracy of the data used for the training as
the data separated for the validation, in function of each training epoch(epoch 30), showing that our network has a good
generalization.

After the training phase of our models, we can now apply this network in the parameter space to the two coupled map
networks. For each pair of parameters, we compute the time series and use this series in the artificial neural network,
consequently the algorithm predicts which class this series belongs to.

In the first model, we consider a chemically coupled logistic map. In Fig. 5 for r = 3.8, we observe that the region
where the network classifies as a chimera state is immersed in a region with chaotic dynamics. The region that contains
the chimeras has the order parameter ranging from (0.4 to 0.9) and its KS density ranging from (0.12 to 0.48). These
regions, which the network classified as chimeras, have a mixture of sites with chaotic and periodic dynamics (Fig. 5(b))
and a mixture of synchronized and desynchronized oscillators (Fig. 5(c)). In Fig. 6, we observe that (γ /ε), becomes almost
constant as a function of the coupling.

In Fig. 7, we obtain the prediction of our network by varying r and ε, keeping γ fixed. We see that one of the regions
where our algorithm classified as chimera is a transition region between chaotic and periodic dynamics. There are also
regions with chimera profiles within both the chaotic region and the periodic region. Looking at the order parameter

(Fig. 7(c)) and the KS density (Fig. 7(b)), the regions where chimeras are formed have a dynamics with chaotic oscillators

6



S.T. da Silva, R.L. Viana, C.A.S. Batista et al. Physica A 610 (2023) 128394

w
2
c

t

m

p
c
b

Fig. 4. Validation phase plot, where the blue curve represents the accuracy of the data used in the training and the yellow curve is the accuracy of
the data used in the validation.

Fig. 5. Plot for the chemically coupled logistic map, where we vary ε and γ with r = 3.8. For each time series, we use a Gaussian initial condition
ith a transient of n = 2 000 iterated. The panel (a) displays the classes predicted by the network, where class 1 (color red) is chimera and class
(color blue) is chaotic. The panel (b) shows the KS density for the same pairs of parameters and the panel (c) exhibits the order parameter. The

olor bar is for the three figures.

Fig. 6. Ratio between γ /ε as a function of the growth of ε. We see that the ratio decreases when ε increases. The values of these parameters are
he values present in the red region highlighted in Fig. 4.

ixed with periodic oscillators (0.48 > KS > 0.12) and synchronized oscillators mixed with unsynchronized oscillators
(0.8 > P > 0.4).

For the second model of networks of coupled maps (Logistic map with midfield coupling), we again compute the
arameter space. In Fig. 8, we vary ε and α for r = 3.8. As we know that for r equal to 3.8 in uncoupled logistic map, only
haotic dynamics are formed, this is confirmed in Fig. 8 and this profile is maintained even for low coupling, as predicted
y network and shown by the quantifiers KS > 0 and P ≈ 0. As we increase the coupling values (ε), we observe the

formation of chimeras interspersed with chaotic and periodic regions, where for larger values of ε, periodic dynamics
begin to predominate. Again, we identify that the regions where our network classified as being chimera are regions
that separate the chaotic dynamics from the periodic dynamics, that is, a kind of transition between these two dynamic
behaviors. These same characteristics are observed when we vary ε and r , keeping α fixed (Fig. 9).
7
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Fig. 7. Plot for the chemically coupled logistic map, where we vary ε and r with γ = 0.029. For each time series, we use a Gaussian initial condition
ith a transient of n = 2 000 iterated. The panel (a) display the classes predicted by the network, where class 0 is periodic time series, class 1 is
himera and class 2 is chaotic. The panel (b) shown display the KS density for the same pairs of parameters and the panel (c) exhibits the order
arameter. The color bar is for the order parameter and also for KS.

Fig. 8. Plot for the chemically coupled logistic map, where we vary ε and α for r = 3.8. For each time series, we use a Gaussian initial condition
ith a transient of n = 2 000 iterated. The panel (a) shown the classes predicted by the network, where class 0 is periodic time series, class 1

s chimera and class 2 is chaotic. The panels (b) and (c) display the entropy KS and order parameter, respectively. The color bar is for the order
arameter and also for KS.

Fig. 9. Plot for the chemically coupled logistic map, where we vary ε and r for α = 1.08. For each time series, we use a Gaussian initial condition
ith a transient of n = 2 000 iterations. The panel (a) exhibits the classes predicted by the network, where class 0 is periodic time series, class 1

s chimera and class 2 is chaotic. The panels (b) and (c) display the entropy KS and order parameter.

Comparing the predicted classes with the values of entropy and the order parameter, we observe an agreement
etween them. In the regions with chaotic behavior, the is KS density greater than zero (KS ≈ 0.6) with the parameter
f order close to zero and in the regions classified as periodic, the entropy is close to zero and the parameter of order
lose to 1, as expected. The regions where the network exhibit chimera states, looking at the quantifiers, we calculate
he KS density with values above zero, but below 0.4 and with the order parameter between 0.4 to 0.9. This shows that
he chimera state has desynchronized and synchronized oscillators, as well as the desynchronized oscillators have chaotic
ynamics.

. Conclusions

We observe that our method is able to detect chimera states with great precision. We also show that the chimera
tate is always found in the transition region between the periodic and chaotic states. To evaluate the predictions of our
lgorithm, we complement our analysis using two dynamic quantifiers (order parameter and entropy KS). Comparing
he regions of the phase space, where our algorithm classified as chimera states, with the two dynamic quantifiers, we
onclude that the chimera is composed of a chaotic dynamics together with a periodic dynamics and the chaotic regions
ave a desynchronized behavior while the periodic regions have a synchronized behavior.
Our main result is to show that recurrent neural networks are able to learn the dynamic behavior of a time series,

ven for series with more complex behaviors such as chaotic series and chimera state. In this work, considering different
ime series (periodic, chimera and chaotic state), our network was able to learn the dynamics of the classes and predict
hem with great precision.
8
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