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a b s t r a c t

In many applications of biological interest spatially localized phase oscillators present
a non-local coupling characterized by the diffusion of a mediating chemical. The latter
is both produced and absorbed by the phase oscillators according to their dynamical
behavior. We investigate numerically phase and frequency synchronization in a model
for chemical coupling of uniform phase oscillators with natural frequencies randomly
distributed according to some statistical distribution. We study the effect of removal of
oscillators, caused by lesions, on the synchronization properties of the network. The
partial or complete suppression of synchronization is also investigated through the
influence of a time-delayed feedback external signal.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Phase oscillators appear in models for a variety of physical, chemical, and biological systems [1,2]. It is often found
hat, in biological applications, cellular phase oscillators are able to absorb and/or secret some chemical which undergoes
iffusion in the spatial medium embracing the cells. A well-known example is a neuron with chemical synapses, which
eleases a neurotransmitter which rapidly diffuses along the synaptic cleft and is absorbed by a post-synaptic neuron [3].
ince both the release and the absorption of this chemical are often dependent on the dynamics of the systems, it is
ffectively a coupling between them, mediated by the diffusion of a substance, or simply chemical coupling. This is a kind
f non-local coupling, for it considers not only the nearest neighbors, but also all the systems, with an intensity that
epends on their mutual distances.
Kuramoto [4] proposed a mathematical model for chemical coupling in which the coupling term acting on each

scillator is proportional to the local concentration of the mediating chemical. The latter satisfies a diffusion equation, and
he limit of fast relaxation is taken, meaning that the characteristic diffusion time is supposed to be much smaller than
he oscillator typical period. The geometrical setting and the boundary conditions are determined by the corresponding
reen function in each case. Kuramoto and Nakao shown that such a coupling causes the appearance of power-law spatial
orrelations [5].
One of the collective effects that can be investigated in the context of these chemical coupling models is phase and

requency synchronization, which meets a number of examples of biological interest. One of them is the suprachiasmatic
ucleus (SCN), which is a small region in the brain hypothalamus whose function is to control circadian rhythms [6]. The

∗ Corresponding author at: Universidade Federal do Paraná, Setor de Ciências Exatas, Departamento de Física, 81531-990, Curitiba, Paraná, Brazil.
E-mail address: viana@fisica.ufpr.br (R.L. Viana).
ttps://doi.org/10.1016/j.physa.2022.128418
378-4371/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physa.2022.128418
https://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2022.128418&domain=pdf
mailto:viana@fisica.ufpr.br
https://doi.org/10.1016/j.physa.2022.128418


B.M. Czajkowski, C.A.S. Batista and R.L. Viana Physica A 610 (2023) 128418

S
b
S
o
s
e

a
d
p

a
w
c

w
r
A
a
v

d
a
S
l

2

w
a
a

d
A
d
b

d
t

s
r
t
c

w
s

I

CN contains circa 104 clock cells with a natural variety of individual frequencies. Their coupling is thought to be mediated
y a neurotransmitter (GABA) which diffuses through the spatial medium in which the SCN cells are embedded [7].
ince the SCN acts as a pacemaker, in order to generate a collective single rhythm each clock cell must synchronize its
wn frequency, what can be achieved through their chemical coupling [8]. Moreover, in the neurological perspective,
ynchronization of coupled neurons has been linked with a variety of diseases like Parkinson, essential tremor and
pilepsy [9].
In this paper we address the issue of phase and frequency synchronization of phase oscillators with chemical coupling,

ccording to the Kuramoto model. We consider Green functions for the fast-relaxation limit of the coupling in one and two
imensions. We investigate numerically the onset of phase and frequency synchronization of an assembly of nonidentical
hase oscillators whose natural frequencies are randomly distributed according to a normal distribution.
Networks of biological interest involving neurons or related clock cells should exhibit some degree of robustness

gainst lesions that causes the progressive removal of oscillators or simply weaken their connections [10]. In this work
e consider the effect of oscillator removal on the synchronization properties, using different protocols for changing the
oupling strength according to the number of remaining oscillators.
Another theme to be considered in this manuscript is the effect of an external time-delayed feedback control signal,

hose main purpose is to suppress totally or partially phase synchronization of the network. This procedure can be
egarded as a mathematical model of deep-brain stimulation techniques now widely used in neurosurgical practice [11].
low-intensity electrical signal can be applied to a number of carefully chosen neurons in order to take them out of
synchronized state related to some neurological disorder [12]. We show that there are intervals of control parameter
alues for which the control of synchronization is successful, even with small perturbation amplitudes.
The rest of the paper is organized as follows: in Section 2 we outline the Kuramoto model for chemical coupling,

etailing the geometrical settings to be used in one and two spatial dimensions. Section 3 is devoted to the definition
nd numerical characterization of phase and frequency synchronization. The effect of removal of oscillators is treated in
ection 4, whereas the issue of synchronization control through an external feedback signal is addressed in Section 5. The
ast Section contains our Conclusions.

. Model for chemical coupling

Let us consider an assembly of N uniform phase oscillators characterized by their geometrical phases 0 ≤ θj < 2π ,
here j = 1, 2, . . . ,N , such that, in absence of coupling, they satisfy θ̇j = ωj, where ωj are constant frequencies. The latter
re randomly chosen from a probability distribution g(ω), such that g(ω)dω is the probability of finding an oscillator with
frequency between ω and ω + dω. This distribution is unimodal, normalized to the unity, and centered at ω = 0.
The model proposed by Kuramoto for chemical coupling assumes that: (i) the oscillators occupy fixed positions rj in a

-dimensional Euclidean space; (ii) the coupling term for each oscillator depends on the local concentration of a chemical
(r); (iii) the oscillators are able to produce the chemical at a rate dependent on their phases; (iv) the mediating chemical
iffuses through the spatial region containing the phase oscillators [4,5]. The model is thus mathematically represented
y the following coupled ordinary/partial differential equations

θ̇j = ωj + KA(rj, t), (j = 1, 2, . . . ,N) (1)

ε
∂A
∂t

= −ηA + D∇
2A +

N∑
k=1

h(θk)δ(r − rk), (2)

where K > 0 is the coupling strength, ε is a small constant, η is a coefficient of chemical degradation, and D is the
iffusion coefficient. The source term for the diffusion equation depends on the oscillator phases by the function h(.). All
he quantities here are assumed to be suitably normalized.

Additionally, we assume that the diffusion characteristic time is much smaller than any of the oscillator periods 2π/ωj,
uch that we can set ε ≈ 0 and consider that the chemical concentration undergoes a fast relaxation and converge very
apidly to its stationary limit. Recently we have obtained a similar model, but with arbitrary diffusion time, with respect
o the oscillator periods [13]. The resulting (time-independent) form of Eq. (2) can be solved to yield the local equilibrium
oncentration of the mediating chemical, namely

A(r) =

N∑
k=1

h(θk)G(r, rk), (3)

here G(r, r′) is the corresponding Dirichlet–Green function. For simplicity we have considered free boundary conditions,
uch that lim|r|→∞ G(r, r′) = 0. Substituting (3) into (1) results a general equation for chemical coupling

θ̇j = ωj + K
N∑

k=1

h(θk)G(rj, rk), (j = 1, 2, . . . ,N). (4)

n the following we will consider a nonlinear form of the coupling given by
h(θk) = sin(θk − θj). (5)

2



B.M. Czajkowski, C.A.S. Batista and R.L. Viana Physica A 610 (2023) 128418

a

W

Considering an infinite one-dimensional chain of oscillators the corresponding Green function yields [14]

θ̇j = ωj + KC1,j(γ ,N)
N∑

k=1

e−γ |xk−xj| sin(θk − θj), (6)

where C1,j is a normalization factor and

γ =

√
η

D
, (7)

is a coupling length. In regular lattices the sites are separated by a normalized distance ∆, and we choose periodic
boundary conditions such that

|xk − xj| = ∆ × min
{
Ψ

j
k,N − Ψ

j
k

}
, (8)

where Ψ
j
k is the remainder of the integer division of |k − j| by N .

By imposing the following normalization condition for the Green functions∫
ddr G(r, rk) = 1,

there follows that

C1,j(γ ,N)−1
=

{∑N
k=1 e

−γ |xk−xj| − 1, N even
2
∑(N−1)/2

k=1 e−∆γ k. N odd
(9)

For N odd Eq. (6) can thus be recast in a symmetrical form

θ̇j = ωj + KC1,j(γ ,N)× (10)
(N−1)/2∑

k=1

e−∆γ k {
sin(θj−k − θj) + sin(θj+k − θj)

}
.

In a two-dimensional region the Green function is proportional to the modified Bessel function of the second kind
K0(γ |r − rk|), such that the equation for the chemical coupling reads in this case

θ̇j = ωj + KC2,j(γ ,N)
N∑

k=1,k̸=j

K0(γ |rk − rj|) sin(θk − θj), (11)

where the corresponding normalization factor is

C2,j(γ ,N)−1
=

N∑
k=1,k̸=j

K0(γ |rk − rj|). (12)

Considering a rectangular lattice with n × n sites with uniform spacing Lx in the x-axis direction and Ly in the y-axis
direction, and assuming periodic boundary conditions, the distance between two oscillators located at rk = (i1Lx, j1Ly)
nd rj = (i2Lx, j2Ly) is

|rk − rj| =

√
(∆x)2k,j + (∆y)2k,j, (13)

(∆x)k,j = Lx min
{
Ψ

i2
i1

, n − Ψ
i2
i1

}
, (14)

(∆y)k,j = Ly min
{
Ψ

j2
j1

, n − Ψ
j2
j1

}
. (15)

3. Phase and frequency synchronization

In the numerical simulations to be shown in this paper we adopt a normal distribution for the uncoupled oscillator
frequencies.

g(ω) = (2/π ) e−4ω2/π . (16)

e use initial profiles with randomly chosen phases in the interval [0, 2π ) with a uniform probability distribution. The
coupled differential equations for coupled oscillator lattices in one and two dimensions have been numerically solved
using a fourth-order Runge–Kutta method with variable stepsize and a tolerance of 10−6. For simplicity we assume
∆ = Lx = Ly = 1. The number of oscillators in the one-dimensional and two-dimensional lattices will be chosen as

2
N = 3000 and 55 = 3025, respectively.

3
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Fig. 1. (a) Mean order parameter magnitude and (b) frequency order parameter as a function of the coupling strength K and length γ for a
ne-dimensional chain of N = 3000 phase oscillators with randomly chosen natural frequencies.

As a numerical diagnostic of phase synchronization, for a fixed time we compute the order parameter magnitude of a
ne-dimensional chain as [15]

R(t) =
1
N

⏐⏐⏐⏐⏐
N∑

k=1

eiθk(t)
⏐⏐⏐⏐⏐ , (17)

with an analogous definition for a two-dimensional lattice. After some transient R(t) oscillates with time and we take its
mean R̄ over the interval 1500 < t < 2000. If R̄ ≈ 1 all the oscillators are phase-synchronized. Numerically we used
¯ = 0.95 as a threshold for complete phase synchronization, lower values characterizing partial synchronization.

The coupling parameters are the strength K and the effective length γ . For each pair of their values we computed the
mean order parameter magnitude R̄, the results being shown in Fig. 1(a). For small values of γ we have a transition from
non-synchronized states to completely synchronized ones, for K > Kc . In particular, for γ = 0 we estimate Kc ≈ 1.2.
Indeed, taking the limit γ → 0 in Eq. (10) we obtain essentially the classical Kuramoto model for global coupling, in
which every oscillator interacts with all other neighbors with the same intensity, no matter how far or close they are.
From (7) there follows that γ → 0 means either large diffusion coefficient or vanishing chemical degradation of the
coupling substance, both factors resulting in a global coupling. A mean-field analysis of the classical Kuramoto model in
the thermodynamical limit (N → ∞) reveals that Kc = 2/(πg(0)) [16]. From (16), it results that Kc = 1. On the other
hand, for finite N this value turns to be close but slightly higher than the limit value, as we have observed here. The
same trend can be observed for γ ≲ 0.015, where a qualitatively different behavior shows up. A dramatic increase of Kc
s found, with a narrow ‘‘valley’’ of non-synchronized behavior in between. We observed that this valley results from the
mergence of spatially inhomogeneous oscillators coexistent with synchronized regions, the so-called chimera states [17].
he net result is that the order parameter magnitude experiences a decrease for those states.
For even larger values of the coupling length γ we found that phase synchronization cannot be achieved for values of

he coupling strength in the interval 0 ≤ K ≤ 5.0. This can be understood by taking the limit γ → ∞ in Eq. (10), for which
nly the nearest neighbors of a given site are included in the coupling term. In this case we have the diffusive (or local)
oupling limit, for which synchronization is not likely since the coupling strength is usually too small to overcome the
4
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Fig. 2. (a) Mean order parameter magnitude and (b) frequency order parameter as a function of the coupling strength K and length γ for a
wo-dimensional lattice of 552 phase oscillators with randomly chosen natural frequencies.

atural disorder of the oscillator frequencies. This fact can also be inferred from Eq. (7), since γ → ∞ means a vanishing
iffusion coefficient or large degradation, both factors preventing a long-range coupling.
A weaker form of collective behavior of coupled phase oscillators is frequency synchronization, in which the oscillators

ave not necessarily the same phases but their frequencies [18]

Ωj = lim
t→∞

(1/t)
{
θj(t + T ) − θj(T )

}
, (18)

re equal (up to a given tolerance). Numerically we found that the above limit always exists and is independent on T .
et us divide the frequency interval [minΩj,maxΩj] into sub-intervals of size δ and consider the fraction of oscillators
elonging to the sub-interval with the largest number of oscillators. If the largest number of oscillators in a given interval
s Nmax, we define a frequency order parameter by P = Nmax/N . If all the oscillators have the same frequency, then P = 1,
n analogy with the former order parameter. In the numerical simulations we have chosen δ = σ/2001, where σ =

√
π/8

is the standard deviation of the ωj-distribution.
In Fig. 1(b) we plot the frequency order parameter P as a function of K and γ for the same parameter values as before.

or γ < 0.022 we observe a similar behavior in comparison with the phase order parameter. As a matter of fact, the
esults should be similar, since phase synchronized oscillators are always frequency synchronized. The converse, however,
s not always true, and hence the critical K for frequency synchronization should be slightly smaller than for phase
ynchronization. For γ > 0.02, however, the difference between phase and frequency synchronization is pronounced,
ince we find a large region of (K , γ )-values for which the frequency order parameter is large (> 0.8), whereas the phase
rder parameter is between 0.4 and 0.8. Another difference with the previous case is that the narrow valley observed in
ig. 1(a) at γ ≈ 0.015 is absent in Fig. 1(b).
The phase and frequency order parameters are plotted in Fig. 2(a) and (b), respectively, for a two-dimensional

ectangular lattice of 552 oscillators. We have here the same overall features already described for one-dimensional chains:
or example, when γ is small we still have a transition to synchronized behavior for K > Kc ≈ 1.0. Examples of non-
ynchronized and synchronized lattices are shown in the snapshots of the phases (in colorscale) of Figs. 3(a) and (b),
espectively. A noteworthy difference with the one-dimensional case, however, lies in the range of the coupling length
, which has a nearly ten-fold increase: a diffusive process in two dimensions involves a larger range for the same value
f γ .
5



B.M. Czajkowski, C.A.S. Batista and R.L. Viana Physica A 610 (2023) 128418

a

4

o
w
s
t
w

s
a
u

p
r
u
p

N

Fig. 3. Snapshots of the oscillator phases for a two-dimensional lattice of 552 phase oscillators with randomly chosen natural frequencies, γ = 0.8
nd (a) K = 0.9 and (b) 2.5.

. Removal of oscillators

As we have commented in the Introduction, there is a biological interest in studying the effect of lesions in assemblies
f coupled phase oscillators, specifically with respect to their synchronization properties. We consider lesion protocols
hereby, given a network initially with N oscillators and a coupling strength Ki, a number Nd of them is removed over
ome time interval. The remaining Na = N − Nd ones will be called active oscillators. The network is supposed to adapt
o these alterations, such that the coupling strength will vary with the number of removed oscillators in three possible
ays [10]

1. enhanced coupling: K (Nd) = KiN/(N − Nd);
2. invariant coupling: K (Nd) = Ki;
3. reduced coupling: K (Nd) = KiN/(N + Nd)

In our numerical experiments we start from picking up values of (Ki, γ ) which lead to completely phase-synchronized
tates and solving the coupled oscillator equations for a long time, until the transients have died out. Then we remove
small quantity of sites and resume integration, such that the order parameter is recomputed. The process is repeated
ntil the number of removed oscillators reaches a specified value of Nd.
The effect of this procedure on a one-dimensional chain with initially Ni oscillators is shown in Fig. 4(a), where we

lot the order parameter as a function of time with invariant coupling, i.e. the coupling strength does not vary as we
emove sites from the lattice. The dashed vertical bars indicate the times at which a small quantity of sites is removed
ntil we get N = Nd. The oscillators are kept synchronized (R > 0.95) until, after a time ∼ 104, they progressively lose
hase synchronization and eventually become completely non-synchronized.
In Fig. 4(b) we show the average value of the order parameter ⟨R⟩ as a function of the number of removed oscillators
, considering the three protocols already mentioned. The average of R is taken over those time intervals for which the
d

6
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Fig. 4. (a) Order parameter magnitude as a function of time for a one-dimensional chain with γ = 0.01 and Ki = 4. (b) Average order parameter
s a function of the number of removed oscillators for the reduced (black), invariant (blue), and enhanced (green) couplings, for a one-dimensional
hain. (c) The same as (b), but for a two-dimensional lattice with γ = 0.4 and Ki = 4.0.

umber of active oscillators Na = N−Nd is constant. To understand how relevant the way we remove the oscillators is for
he results, we have made for each protocol eight simulations that differ only in the order of removal of the oscillators.
o the points in this figure are actually the mean value of ⟨R⟩ in these eight simulations, and the error bars refer to one
tandard deviation from this mean. In this sense, small errors imply that the values of ⟨R⟩ are not greatly affected by how
the oscillator removal occurs.

Using the invariant coupling (blue points) the chain goes progressively non-synchronized as the number of removed
oscillators Nd is increased. In order to avoid this effect, we can use the enhanced coupling, for which K is increased
according to the ratio N/N (green points). Indeed, using this protocol the chain is able to keep itself synchronized even
a

7
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Fig. 5. Critical fraction of removed oscillators as a function of γ for different values of Ki with (a) invariant, (b) reduced coupling protocols.

f Nd is as large as 2500, out of a chain with initially 3000 sites. If, on the other hand, we use a reduced coupling (black
oints), the coupling strength decreases with N/Na and, accordingly, the transition to non-synchronized behavior occurs
ven before the case for which K does not vary with Nd. These observations hold for two-dimensional lattices as well, as
hown by Fig. 4(c), provided we choose appropriate values of the coupling length (namely, γ = 0.4).
We observed in our numerical experiments that the value of Nd for which the lattice start losing synchronization is

ractically not affected by the order by which each oscillator is removed, this can be seen by the small error bars at
he beginning of the decline in synchronization in the Figs. 4(b) and 4(c). This suggests a critical value of Nd, denoted
y Ncrit , for given K and γ , such that, if Nd ≥ Ncrit , the lattice cannot synchronize. We estimate the critical fraction of
emoved oscillators, fcrit = Ncrit/N , by taking the minimum value of Nd yielding R(Nd) ≤ 0.9R(Nd = 0). The values of
crit as a function of the coupling length γ , for a two-dimensional lattice, are depicted in Figs. 5(a) and (b) for invariant
nd reduced couplings, respectively, and three different values of Ki. We did eight simulations for each pair (Ki, γ ) that
iffered only in the order of removal of the oscillators. The points in the figure are the average values of fcrit in these 8
imulations, and the error bars represent one standard deviation from this average. We can clearly see that for lower γ
alues, fcrit is better defined by the model’s parameters, as indicated by smaller error bars. While when we increase γ ,
crit has greater dependence on how the removal of oscillators takes place.

In all of these cases the value of fcrit decreases with γ , indicating that lattices with local coupling desynchronize earlier
han globally coupled ones, as the number of removed oscillators increase. Moreover, for a fixed γ , lattices with smaller
will also desynchronize first. As for the different coupling protocols considered, the values of fcrit are smaller for the

educed coupling in comparison with the invariant coupling, as can be concluded by comparing Figs. 5(a) and (b).

. Time-delayed feedback control

In biological applications it is sometimes desirable to suppress phase synchronization of a given network of coupled
scillators, either completely or in a partial way. One manner to achieve phase synchronization suppression is to apply
n external control signal on a given number of oscillators [19]. A feedback control can be implemented by applying a
ime-delayed signal proportional to the coupling term at an early time [20].
8
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Fig. 6. Mean field of a two-dimensional lattice (a) without control and (b) with a delayed feedback control applied at α = 1500, ε = 4, and τ = 100.

Let us write the coupled oscillator Eqs. (6) and (11) in the following form

θ̇j = ωj + KYj(t), (19)

here Yj(t) represents the coupling term corresponding to the respective Green function

Yj(t) =

N∑
k=1

G(rj, rk) sin(θk(t) − θj(t)). (20)

We suppose that the coupling parameters K and γ are chosen so as to yield completely phase-synchronized behavior.
he external time-delayed feedback control is applied in the following way

θ̇j = ωj + KYj(t) + εYj(t − τ )H(t − α), (21)

here τ is the time delay and ε is the control amplitude. H(t − α) is the Heaviside unit-step function, where α is the
ime after which the control is continuously applied, and it is chosen after transients have died out.

In order to measure to what extent the control is able to suppress phase synchronization, we use – instead of the order
arameter – the mean field of the network at a given time

Θ(t) =
1
N

N∑
j=1

θj(t), (22)

nd the corresponding variance Var(Θ). If there is complete phase synchronization, the mean field will have the same
ariation in time as any of the oscillator themselves, with a finite variance. However, if the lattice is completely non-
ynchronized, for large N we can assume that the phases are more or less uniformly distributed over the interval [0, 2π ),
and the mean field have fluctuations of low amplitude, and a corresponding small variance.

We present numerical results for two-dimensional lattices only, since they are qualitatively similar to the one-
dimensional chains. In Fig. 6(a) we plot the mean field Θ(t) of a free-running lattice, i.e. without control, showing regular
oscillations characteristic of a completely synchronized behavior. The effect of a time-delayed feedback signal, applied
after α = 1500, is shown in Fig. 6(b). The evolution of the mean field, in this case, shows an irregular behavior dominated
by low-amplitude fluctuations.
9
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Fig. 7. Suppression coefficient for a two-dimensional lattice as a function of the control amplitude and time-delay, for K = 6.0 and (a) γ = 0.02,
b) 0.4 and (c) 0.6.

To quantify the ability of the control signal to suppress phase synchronization, Pikowsky and Rosenblum defined the
ollowing coefficient [21]

S =

√
Var(Θ)
Var(Θf )

, (23)

here Θf (t) is the mean field after the control signal in (21) has been applied. Hence, if the control is able to suppress
ynchronization the denominator in (23) is small and S can be as large as the control is efficient in its goal. Conversely,
f the control has no effect then S = 1. Values of 0 < S < 1 would mean an enhanced synchronization, and hence of no
interest in the present discussion.

We plot in Fig. 7 the suppression coefficient (in colorscale) as a function of the control amplitude ε (normalized by
K ) and the time delay τ (normalized by the period T0 of the synchronized mean field oscillations). The control signal is
switched on at α = 1500 and the mean field is computed at t = 15000. We kept K = 6 and consider three values of γ .
For γ = 0.02 [Fig. 7(a)] and small values of the time-delay the suppression becomes noticeable only for ε > 0.2K and
ε < −0.2K . There is an approximate symmetry ε → −ε. As the time delay increases, this critical ε increases, showing that
the suppression effect becomes progressively more difficult. If γ = 0.4 [Fig. 7(b)] there are two tongues of suppression
centered at ε ≈ ±0.8K . These tongues fade out, however, as γ increases further [Fig. 7(c)].

6. Conclusions

In the context of the model for a non-local coupling mediated by the fast diffusion of some chemical, we compared
phase and frequency synchronization as we vary the parameters K and γ . In one-dimensional oscillator chains, for γ ≲
0.02 we observe a transition between non-synchronized and synchronized behavior as K is increased. The critical value
of K for this transition is around 1.0, in accordance with the value predicted by the mean-field approach of the classical
c

10
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uramoto model. If γ > 0.02 this transition still occurs but with important differences: frequency synchronization takes
lace before phase synchronization, and the value of Kc increases with γ . For γ ≈ 0.015 there is a narrow region of non-
ynchronized behavior related to the emergence of chimera states. For two-dimensional lattices the picture is roughly the
ame, with quantitative differences.
Removing oscillators from the lattice causes the degradation of its synchronized behavior. Finite size effects in non-

ocal chains have been long observed: in the classical Kuramoto model (global coupling), for large coupling strengths
t has been numerically found that decreasing N deteriorates the synchronization properties of the lattice. Extending
his observation to our model of chemical coupling there follows that, on diminishing N by oscillator removal, the
ynchronization worsens [18]. One way to circumvent this effect would be to adjust the coupling strength in order to
ope with the deterioration of synchronized behavior, what we achieved by enhancing the parameter K according to the
raction of remaining oscillators. We also studied the critical fraction of removed oscillators, showing that it decreases
ith γ (for fixed K ) and increases with K (for fixed γ ).
It is worth mentioning that there is another class of lesions, characterized by impairing of connections rather than

emoving the oscillators themselves. This distinction has been investigated in the context of neuronal bursting oscillators,
here we distinguish between type-I lesions, causing only deactivation of the synapses without taking neurons off the
etwork; and type-II lesions, for which the neurons are actually removed from the network [10]. Notice that the transition
o non-synchronized behavior resembles a first-order phase transition for a type-I lesion, and a second-order one for a
ype-II lesion.

Finally, we considered the issue of partial or total suppression of synchronization through the application of an external
ime-delayed feedback signal. This control procedure has been inspired by a surgical practice of deep-brain stimulation
iming to reduce pathological neurological rhythms. The control signal is applied according to the network mean field at
n earlier time: the variance of the mean field is a diagnostic of synchronization as well. We observed good suppression
ffects as the control amplitude increases, this effect being weakened as the time delay increases.
This control procedure works well since it represents an external time-dependent forcing which is able to perturb
number of sites of the synchronized lattice. As these sites become non-synchronized, due to the perturbation, the

emaining ones, while still synchronized, cause the global mean field to have smaller variances. While the control effect
e are interested in should take the coupled system out of the synchronized state, our numerical results suggest that
he external signal can also actually enhance synchronization of the network, depending on the coupling parameters. We
ound that this is particularly true for very small coupling strength. Hence, we can combine both approaches shown in this
aper: the deteriorating synchronization caused by oscillator removal can be partially reversed by application of a small
mplitude control signal, without changing the coupling strength, which is not always possible in real-world networks.
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