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ABSTRACT

Under certain circumstances, the equations for the magnetic field lines can be recast in a canonical form after defining a suitable field line
Hamiltonian. This analogy is extremely useful for dealing with a variety of problems involving magnetically confined plasmas, like in
tokamaks and other toroidal devices, where there is usually one symmetric coordinate that plays the role of time in the canonical equations.
In this tutorial paper, we review the basics of the Hamiltonian description for magnetic field lines, emphasizing the role of a variational
principle and gauge invariance. We present representative applications of the formalism using cylindrical and magnetic flux coordinates in
tokamak plasmas.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0170345

I. INTRODUCTION

Creating and confining hot plasmas are the foundation of fusion
studies.1,2 As the increase in the temperature helps to create the
plasma, magnetic fields are able to confine it in suitable containers.
The spatial structure of magnetic field lines is an important ingredient
in many theoretical analyses of magnetically confined plasmas in
toroidal devices like tokamaks, stellarators, reversed field pinches, etc.3

In tokamaks, the magnetic field responsible for the confinement results
from the superposition of the toroidal field, generated by external coils
wound around the entire torus, and the poloidal field, due to plasma
current itself.4 However, the equilibrium magnetic field can be modi-
fied by plasma oscillations or by external coils used to control
instabilities.5

An interesting situation is where the magnetic field is time-
independent, as the case in MHD equilibrium configurations.1

Starting from a symmetric plasma equilibrium configuration with an
ignorable coordinate (e.g., the toroidal angle in tokamaks), the mag-
netic field line equations can be cast in the form of canonical equa-
tions, if the ignorable coordinate plays the role usually assigned to
physical time in classical mechanics.6 Furthermore, as the magnetic
field is divergence free, we can describe the field lines using a two
dimensional area-preserving map, with respect to a surface of section
of the torus at a fixed toroidal angle.7 The resulting phase space of the
field lines is identical to a Hamiltonian phase space, indicating that the

field lines act, at least locally, as trajectories.7 Hence, the dynamics
described by the corresponding Hamiltonian represents not a true
motion but instead a magnetostatic structure parameterized by the
time-like coordinate.8 The main advantage of making this analogy is
to use the powerful toolbox of Hamiltonian theory to investigate the
magnetic field line structure, in particular, if nonsymmetrical perturba-
tions are considered.9

The analogy between magnetic field lines and a Hamiltonian sys-
tem has been first pointed out by Kruskal, in 1952.7,10,11 Kruskal pro-
posed and iterated an area-preserving map, similar to the standard
map, in order to describe the magnetic field lines of stellarators.7,11

This connection between field lines and Hamiltonian formalism was
also recognized simultaneously but independently in the United States
by Donald Kerst (the inventor of betatron)12 and in Soviet Union.13

Nevertheless, an explicit and generalized Hamiltonian description was
only proposed later, by Whiteman14 and Boozer.15

Even though magnetic field lines can be described by low-
dimensional Hamiltonian systems, the numerical integration of the
motion equations can be computationally costly.16 For this reason,
explicit area-preserving maps, derived from the Poincar�e map of the
magnetic field line, are often used. These Hamiltonian maps inform us
about the global and fine scale structure of the edge magnetic topology
in toroidal systems. They serve as an important tool for studying the
kinetic and fluid transport process as plasma turbulence and MHD
stability.5 In addition, these maps permit long-time examination of
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individual trajectories for the statistical analysis of the field lines and
the investigation of transport with a reasonable computational time.2

The theory of magnetic field lines in confined plasma devices
could not guarantee the regularity of the field lines.11 An example is
the study of magnetostatic perturbations produced by coils placed out-
side the plasma: the resulting magnetic field lines may present unex-
pected and complicated behaviors like periodic, quasi-periodic, and
even chaotic orbits.7,17 The latter, in particular, represent a local
destruction of the magnetic surfaces that confine the plasma.18,19

The main motion of the plasma particles is along the field lines
while slowly drifting across the equilibrium fields due to the lines cur-
vature, the particle rotation around the lines, and electric drift.20–22

Thus, as the fastest motion is along the field lines, the particle escape
to the wall can be predicted by the field line configuration.23

Observing magnetic field lines in a surface section of a tokamak, they
can be closed lines within the trace of a toroidal magnetic surface or
they can fill a two dimensional domain. For the first case, the field line
is regular, while the second case indicate chaos.11 Chaotic behavior is
related to the topology of the magnetic field lines and the dynamics of
the particles gyrating along these lines, as well as the turbulent trans-
port, ray dynamics, and radio frequency heating.11,15 Furthermore, the
non-uniform particle transport at the tokamak plasma edge can be
roughly estimated from the field lines escaping to the wall.23,24

Broader reviews between Hamiltonian chaos and fusion plasmas can
be found in Refs. 5, 11, and 16.

From a classic mechanics framework, a general description in
curvilinear coordinate system was proposed by Whiteman14 and
extended later by Boozer,15 Cary and Littlejohn,8 and Els€asser.25 The
general formalism described by Whiteman has been applied to a
variety of coordinate systems: cylindrical,26 helical,27 spherical,28 and
pseudotoroidal.29 Various applications of the magnetic field line
Hamiltonian have been made by Freis et al.30 and Hamzeh31 for a
toroidal machine called Levitron and by Lichtenberg32,33 in an investi-
gation of them¼ 1 island on sawtooth oscillations in tokamaks.

In addition to its applications in fusion plasmas, the Hamiltonian
description of magnetic field lines provides a nice non-mechanical
example of the usefulness of the Hamiltonian formalism to intermediate
and advanced students. Moreover, the magnetic field line problem has
the unique feature that the corresponding phase space actually coincides
with the configuration space, which facilitates the visualization of com-
plex dynamical concepts like Kolmogorov-Arnold-Moser (KAM) tori,
homoclinic tangles, and so on. On the other hand, the basic material on
the Hamiltonian description of magnetic field lines is often available
only in publications targeted to the plasma physics experts, which cre-
ates an additional difficulty for an interested novice reader.

In order to overcome the latter problem, we wrote this tutorial as
an aid to students and researchers interested to master the basic ideas
of the Hamiltonian description for the magnetic field lines. Moreover,
we present some representative applications of this formulation so as
to illustrate its usefulness in plasma physics problems. We emphasize
that this paper is not a review of this subject. While we focused on
fusion plasmas, the methods can also be used in plasmas of astrophysi-
cal and geophysical interest, provided we have situations of MHD
equilibrium with adequate stability properties.

This paper is organized as follows: in Sec. II, we show the deriva-
tion of a variational principle for magnetic field lines and the role
played by gauge invariance. The Hamiltonian description, in general,

curvilinear coordinates is presented in Sec. III. In Sec. IV, we describe
in some detail an application of the description in cylindrical coordi-
nates to a large aspect-ratio tokamak with an ergodic magnetic limiter
(EML), using canonical perturbation theory to derive an analytical for-
mula for the width of magnetic islands, which is an expression of prac-
tical interest for stability and transport theoretical studies of tokamak
plasmas.1 In Sec. V, we present an application of the general formula-
tion for magnetic flux coordinates, which are widely in numerical
codes for computer simulation of plasmas,15 displaying an application
to a magnetic field line map (tokamap) proposed by Balescu and co-
workers.34 The last section is devoted to our Conclusions.

II. VARIATIONAL PRINCIPLE

The equations of motion of a particle can be derived from
Hamilton’s variational principle,9

d
ðt2
t1

dt Lðq; _q; tÞ ¼ 0; (1)

where L is the Lagrangian, q and _q are the generalized coordinate and
velocity, respectively, and t1;2 are fixed instants of time. It means that,
considering the infinite possible paths connecting the particle positions
at fixed times t1;2, the actual trajectory between them is that for which
the integral

Ð
Ldt is an extremum. The exploitation of this principle

gives the Euler–Lagrange equations of motion for the particle.
For a non-relativistic particle with mass m and charge e, sub-

jected to electromagnetic fields, the Lagrangian is

L ¼ 1
2
mv2 � eUþ eA � v; (2)

where U and A are, respectively, the scalar and vector potentials, from
which the electric and magnetic fields are given by35

E ¼ �rU� @A
@t
; B ¼ r� A: (3)

The scalar and vector potentials are not uniquely determined
since they are invariant under gauge transformations,

U! Uþ @v
@t
; A! A�rv; (4)

where vðr; tÞ is an arbitrary function. The gauge freedom can be con-
sidered an analogous transformation to a change of canonical
coordinates.25

The variational principle for the magnetic field can be obtained
from Hamilton’s principle (1) by considering a massless particle under
a pure magnetic field, i.e., U¼ 0,

d
ðt2
t1

A � v dt ¼ 0; (5)

or changing the integration from time to space,

d
ðr2
r1

A � dr ¼ 0; (6)

where r1;2 are fixed spatial positions.3,8 The variational principle (6)
states that, considering the infinite paths in space connecting the fixed
points r1 and r2, for a given time, the magnetic field line is the path for
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which the integral
Ð
A � dr is an extremum. However, for any fixed

time, Eq. (6) is valid also for a time evolving magnetic field. Recently,
Escande and Momo have introduced a novel approach to the varia-
tional principle (6) using Stokes theorem.36 This procedure allows a
general treatment of some problems, like determining the width of
magnetic islands, a subject that will be address in Sec. IV.

In the following, we will use the Einstein sum convention for
repeated indices and express a vector using their contravariant and
covariant components, as well as the corresponding basis vectors, in
the forms

A ¼ Ai ê
i; dr ¼ dxj ê j: (7)

Since contravariant and covariant basis vectors are dual, i.e.,

êi � êj ¼ dij

we can rewrite the variational principle for field lines (6) in the form

d
ð2
1
Ai dx

i ¼ 0: (8)

It is useful to introduce here a variational parameter k, which, as
in mechanics, labels the infinite possible paths connecting the fixed
points in Hamilton’s principle. Each path is, thus, represented by a
function of this variational parameter,

x1 ¼ x1ðkÞ; x2 ¼ x2ðkÞ; x3 ¼ x3ðkÞ: (9)

Considering the function (9), the variational principle (8) can be
written as an integral over k,

d
ðk2

k1

dk A1
dx1

dk
þ A2

dx2

dk
þ A3

dx3

dk

� �
¼ 0; (10)

such that the functions Aiðx1; x2; x3Þ are fixed, but the arguments (9)
have to be varied independently from k, with vanishing variation
dxiðkÞ at the fixed points k1 and k2. As a consequence, the exploitation
of this variational principle gives the equations for the magnetic field
lines,25

dx1

B1
¼ dx2

B2
¼ dx3

B3
; (11)

which are equivalent to the vector equation

B� dr ¼ 0: (12)

In fusion configurations, the magnetic field does not vanish in the inte-
gration domain, otherwise the field lines could not be obtained by Eq.
(11).

We can choose a gauge such that one of the covariant compo-
nents of the vector potential vanishes, e.g.,

A2 ¼ 0; (13)

and the variational principle reduces to

d
ð2
1
A1 dx

1 þ A3 dx
3

� �
¼ 0: (14)

The variational parameter k is arbitrary, but it is convenient to
choose it such that k is an ignorable coordinate, i.e., physically relevant

quantities do not depend on it. In this case, magnetic field lines stream
along the direction of this coordinate. A common choice in toroidal
fusion devices like tokamaks is the azimuthal angle x3. Thus, we take
k ¼ x3, and the variational principle (14) becomes

d
ðx32
x31

dx3 A1
dx1

dx3
þ A3

� �
¼ 0; (15)

where x31;2 are the values of the azimuthal angle at the fixed points.
However, the existence of an ignorable coordinate is a condition used
to describe the tokamak equilibrium, it may not be valid for other plas-
mas configurations or space plasmas. A more general approach that
does not require this assumption is given in Ref. 8 in terms of non-
canonical Hamiltonians.

III. HAMILTONIAN DESCRIPTION

Let us consider a dynamical system with one degree of freedom,
whose state is described by a generalized coordinate q and a general-
ized velocity _q, with Lagrangian Lðq; _q; tÞ. The generalized momen-
tum p canonically conjugated to the coordinate q is given by
p ¼ @L=@ _q. In terms of the latter, the modified Hamilton’s principle
is written as

d
ðt2
t1

dt p _q � Hðp; q; tÞ
� �

¼ 0; (16)

whereH is the system Hamiltonian. We rewrite this expression as

d
ð2
1

p dq� Hðp; q; tÞ dt
� �

¼ 0; (17)

where 1 and 2 represent fixed points, as before.
Comparing (17) with the variational principle (14) for magnetic

field lines, we can make the following associations:

q ¼ x1; (18)

p ¼ A1ðx1; x2; x3Þ; (19)

t ¼ x3; (20)

H ¼ �A3ðx1; x2; x3Þ: (21)

Hence, magnetic field lines can be described as a Hamiltonian system,
where the role usually assigned to physical time in classical mechanics
is played by the ignorable coordinate x3, since the “physical” time is
kept strictly fixed.

In this description, the magnetic field line equations (11) can be
written as Hamilton’s equations

dq
dt
¼ @H
@p

; (22)

dp
dt
¼ � @H

@q
(23)

for an one-degree-of-freedom system described by the canonical pair
of variables (p, q). If the field line Hamiltonian H does not depend
explicitly on time t ¼ x3, as in axisymmetric plasma equilibrium con-
figurations, the Hamiltonian H(p, q) describes an integrable system,
being a constant of “motion,” or a first integral. On the other hand,
magnetic perturbations caused by external fields or instabilities can
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introduce non-axisymmetric terms in the Hamiltonian, resulting on a
time-dependent systemHðp; q; tÞ, which is generally non-integrable.

Instead of the vector potential, we can obtain a Hamiltonian
description directly from the magnetic field components. Writing the
relation B ¼ r� A in curvilinear coordinates, we have

B1 ¼ 1ffiffiffi
g
p

@A3

@x2
� @A2

@x3

� �
; (24)

B2 ¼ 1ffiffiffi
g
p

@A1

@x3
� @A3

@x1

� �
; (25)

B3 ¼ 1ffiffiffi
g
p

@A2

@x1
� @A1

@x2

� �
; (26)

where g ¼ detgij is the determinant of the covariant metric tensor,
whose elements are given by gij ¼ ê i � êj. If the non-diagonal elements
of the metric tensor are identically zero, the coordinate system is called
orthogonal. In this case, the diagonal elements are also called metric
coefficients, and we have that g ¼ g11g22g33.

After choosing a gauge for which A2 ¼ 0, these expressions lead
to the remaining components of the vector potential,

A1 ¼ �
ð ffiffiffi

g
p

B3dx2; (27)

A3 ¼
ð ffiffiffi

g
p

B1dx2: (28)

In terms of the magnetic field components, the Hamiltonian descrip-
tion of field lines is6,14

q ¼ x1; (29)

p ¼ �
ð ffiffiffi

g
p

B3dx2; (30)

t ¼ x3; (31)

H ¼ �
ð ffiffiffi

g
p

B1dx2: (32)

According to Eq. (25), these definitions are subjected to the following
relation:

ffiffiffi
g
p

B2 ¼ @H
@q
þ @p
@t
; (33)

which can also be regarded as a direct consequence of the magnetic
Gauss’ law r � B ¼ 0. Janaki and Ghosh have shown that, under suit-
able canonical transformations, other choices of canonical pairs can be
used, corresponding to different gauge coordinates.37

When using the above formulas, one must have in mind that
quite often the contravariant components of the magnetic field have
not the same dimensions as the field itself due to the metric coeffi-
cients. In the forthcoming section, our aim is to present representative
applications of this description, using different coordinates systems, as
the cylindrical and magnetic flux coordinates.

IV. CYLINDRICAL COORDINATES

Let us consider a toroidal plasma with major radius R0 andminor
radius a. In the local (or pseudotoroidal) system of coordinates
ðr; h;/Þ, h and / are the poloidal and toroidal angles, respectively,

and r is the radial distance to the magnetic axis, which is a circle of
radius R0 centered at the torus major axis.

The torus aspect ratio is e ¼ R0=a. In the large aspect ratio
approximation (R0 � a), we can neglect the toroidal curvature and
consider the torus as a periodic cylinder of radius a and length 2pR0.
In this case, it is possible to use cylindrical coordinates ðr; h; zÞ, where
z ¼ R0/ is the rectified toroidal circumference. Due to the periodicity,
we identify all points for which z is an integer multiple of 2pR0.

The “physical” components of the magnetic field are defined by
Bhii ¼

ffiffiffiffiffi
gii
p

Bi, where no sum in the index i is intended. Identifying
x1 ¼ h; x2 ¼ r; x3 ¼ z, we have the metric coefficients g11 ¼ r2;
g22 ¼ g33 ¼ 1 and the components Bh1i ¼ Bh ¼ rB1; Bh2i ¼ Br ¼ B2;
Bh3i ¼ Bz ¼ B3. The Hamiltonian variables read26

q ¼ h; (34)

p ¼ �
ð
dr rBz; (35)

t ¼ z ¼ R0/; (36)

H ¼ �
ð
drBh: (37)

In the large aspect ratio approximation, we usually suppose the
following equilibrium magnetic field components:4

Br ¼ 0; Bh ¼ BhðrÞ; Bz ¼ B0 ¼ const; (38)

such that the magnetic surfaces r ¼ const: are coaxial cylinders. On
each cylinder, the magnetic field lines are helices such that, after a
complete toroidal turn (which corresponds to a whole excursion of
2pR0 along the periodic cylinder), the corresponding value of its poloi-
dal angle increases by an angle i, called rotational transform (in stella-
rator literature). Hence,

d/
dh
¼ 1

R0

dz
dh
¼ 2p

iðrÞ ; (39)

where, in general, the rotational transform is different for each mag-
netic surface.

In the tokamak literature, we use the so-called safety factor
q ¼ 2p=i (not to be confused with the canonical variable q used
before). From the magnetic field line equations,

rdh
Bh
¼ R0 d/

Bz
; (40)

such that, in the large aspect ratio approximation,

qðrÞ ¼ d/
dh
¼ rB0

R0BhðrÞ
: (41)

If the safety factor varies monotonically with r, the systems actually
presents a different rotational transform i for each magnetic surface.
The derivative dq/dr is also called magnetic shear and is non-null for a
monotonic q-profile. If there are radial positions for which q(r) has
extrema, the magnetic shear is zero (shearless) at those positions, and
the variation of q(r) is non-monotonic.7

The canonical momentum (35) is

p ¼ �B0

ð
rdr ¼ � 1

2
B0r

2 (42)

up to an unessential constant, whereas the Hamiltonian (37)
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H ¼ � B0

R0

ð
rdr
qðpÞ ¼

1
R0

ð
dp
qðpÞ : (43)

Finally, we perform a non-canonical transformation in order to
rescale variables,

ðp; q; tÞ ! J ¼ � p
B0
¼ r2

2
; h;/ ¼ t

R0

� �
; (44)

and the new Hamiltonian isH0 ¼ �R0H=B0, written as

H0 ¼
ð

dJ
qðJÞ ; (45)

where the rescaled variable J is the action, and the poloidal angle h is
the angle of an action-angle pair of variables.

For an example, let us consider a plasma column of radius a, for
which the electric current density j has cylindrical symmetry with
respect to the axis, and carrying a total plasma current Ip,

jzðrÞ ¼ j0 1� r2

a2

� �
; (46)

where j0 ¼ 2Ip=pa2. Applying Ampères circuital law, we obtain the
poloidal field radial profile

BhðrÞ ¼ Bha
r
a

2� r2

a2

� �
; (47)

where Bha ¼ l0IP=ð2paÞ. The corresponding safety factor (41) is
given by

qðrÞ ¼ qa 2� r2

a2

� ��1
; (48)

where qa ¼ ð2pa2B0Þ=ðl0R0IPÞ such that, at the symmetry axis, we
have q0 ¼ qa=2.

Substituting (48) into (45) gives the field line Hamiltonian,

H0ðJÞ ¼
2J
qa

1� J
2a2

� �
: (49)

The integrable equilibrium configuration is described by a “time”-
independent HamiltonianH0ðJÞ, in which the canonical equations are

dh
d/
¼ @H0

@J
;

dJ
d/
¼ 0:

(50)

Hence, J is a constant, and, from (41), the field lines are helices wound
around invariant tori of radii J according to their safety factors q(J). If
qðJÞ ¼ m=n, where m and n are integers, the respective torus is called
“rational,” otherwise the torus is irrational.

A. Ergodic magnetic limiter

Divertors are devices used in tokamak experiments with the pur-
pose to displace the interactions between the plasma particles and the
tokamak wall, thereby avoiding direct contact between them and
improving plasma confinement.4,38 Initially, the divertors were
designed to act directly over the toroidal or the poloidal field of the

plasma and they required additional coil currents of the magnitude of
plasma currents or even larger.39 This led to experimental limitations
and technological problems for the tokamak operation.39 As an alter-
native, Karger and Lackner proposed the helical divertor, which
requires smaller currents and possesses helical symmetry, which gen-
erates a magnetic field that resonates with the field at a surface in the
plasma boundary, which is diverted.39

The resonance created by the divertor can also lead to a chaotic
motion in the plasma edge, a process called “ergodization.”40,41 The
term “ergodic,” however, has been later replaced by “chaotic,” which is
a more adequate description of the area-filling orbit created when the
invariant manifolds stemming from unstable periodic orbits intercept
in a complicated way forming the homoclinic tangle.42 The chaotic
field lines increase the diffusion coefficient at the boundary of the
plasma, reducing the plasma contamination,40 controlling the MHD
oscillations,41 reducing thermal flux density,43 and controlling plas-
ma–wall interaction.44 For more information about the theoretical and
experimental development of helical divertors, confer Refs. 39, 40, 43,
45, and 46.

The external magnetic fields generated by the helical divertor cre-
ate magnetic islands that can overlap and, consequently, form a sto-
chastic layer in the plasma edge. Therefore, such a divertor is also
called ergodic magnetic limiter (EML).43 The EML is a filamentary
current ring with length ‘, wound around the torus (with radius a).
There are two types of current segments in a EML (Fig. 1): straight
segments parallel to the magnetic axis and curved segments along the
poloidal direction. There are m pairs of segments, such that two adja-
cent segments carry a current IL in opposite directions,47 which produ-
ces a resonant helical field.41

Neglecting border effects, the magnetic field produced by an
EML has the following components:48

Bð1Þr ðr; h;/Þ ¼ �
l0mIL
pam

rm�1 sin ðmhÞ f ð/Þ; (51)

Bð1Þh ðr; h;/Þ ¼ �
l0mIL
pam

rm�1 cos ðmhÞ f ð/Þ; (52)

where the factor f ð/Þ is

FIG. 1. Schematic view of a ergodic magnetic limiter in a tokamak with a large
aspect ratio.
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f ð/Þ ¼ 1; if 0 � / < ‘=R0;
0; if ‘=R0 � / < 2p;

	
(53)

whose Fourier decomposition, due to the 2p-periodicity in the ignor-
able variable /, is

f ð/Þ ¼ ‘

2pR0
1þ 2

X1
n¼1

cos ðn/Þ
( )

: (54)

Changing to the action variable J ¼ r2=2 and using (54), the
EML Hamiltonian reads

H1ðJ; h;/Þ ¼ �
l0R0IL
B0pam

ð2JÞm=2 cos ðmhÞ f ð/Þ;

¼ �rAmðJÞ
	
cos ðmhÞ

þ
X1
n¼1

cos ðmh� n/Þ þ cos ðmhþ n/Þ½ �


; (55)

where we define

r ¼ l0IL‘
2p2B0

; (56)

AmðJÞ ¼
ð2JÞm=2

am
: (57)

The effect of an EML upon the equilibrium magnetic surfaces
can be regarded as a quasi-integrable Hamiltonian system

HðJ; h;/Þ ¼ H0ðJÞ þ H1ðJ; h;/Þ (58)

if the perturbation strength is such that jH1j � jH0j. On defining the
non-dimensional quantities

e ¼ IL
IP
; n ¼ ‘

R0
(59)

the perturbation strength (56) given by

r ¼ en
a2

qap

 !
(60)

is small, for typical values of a and qa, provided e� 1 and n� 1.
In order to verify whether or not these conditions are satisfied,

we will take parameters from the TCABR (Tokamak �a Chauffage
Alfv�en Br�esilien at Instituto de F�ısica, Universidade de S~ao Paulo,
Brazil) presented in Ref. 49, where R0 ¼ 0:61 m and a¼ 0.18 m. The
plasma current is about Ip ¼ 0:1MA, and the toroidal field at the
magnetic axis is B0 ¼ 1:1T. The safety factor is qa ¼ 2:95 	 3 at the
plasma edge, and q0 ¼ 1:5 at the magnetic axis. An EML has been
installed in TCABR with m¼ 3 pairs of wires with length ‘ ¼ 0:1 m,
carrying a current about IL ¼ 2500 A.50 These values imply that e ¼
0:025 and n ¼ 0:163 are small enough to justify treating the EML
field as a Hamiltonian perturbation upon the equilibrium magnetic
surfaces. Ergodic limiters have also been used in other tokamaks as in
Textor,2 Tore-Supra,46 and Text.43

B. Resonances and the pendulum approximation

A resonance occurs wherever the phase mh� n/ is constant
with respect to the ignorable variable /, such that

d/
dh
¼ m

n
: (61)

From (41) it follows that, at the radial location r
 of a given resonance,
the safety factor is a rational number. Using the definition of J [Eq.
(44)] and the safety factor q (48), the respective action variable J
 in
the resonance is defined by

J
 ¼ a2 1� nqa
2m

� �
(62)

and it is also the position of a rational torus.
Near the exact resonance position, the term cos ðmh� n/Þ

slowly oscillates, whereas all the remaining terms in the Fourier expan-
sion vary rapidly and vanish if an average is performed over /. There
remains only the resonant term, which reads

HresðJ; h;/Þ ¼ H0ðJÞ � rAmðJÞ cos ðmh� n/Þ: (63)

According to Poincar�e–Birkhoff theorem, all resonant (rational)
tori are destroyed under a non-integrable perturbation, leaving in their
places an even number of fixed points, half of them elliptic and half
hyperbolic ones.51 Let us concentrate our attention on some elliptic
point at a given rational tori with q ¼ m=n. Expanding the resonant
Hamiltonian in the vicinity of J ¼ J
 in powers of the small difference
DJ ¼ J � J
, we have

HresðJ; h;/Þ ¼ H0ðJ
 þ DJÞ � rAmðJ
 þ DJÞ cosðmh� n/Þ;

¼ H0ðJ
Þ þ DJ
@H0

@J

� �
J

þ ðDJÞ

2

2
@2H0

@J2

� �
J


� rAmðJ
Þ cos ðmh� n/Þ (64)

in such a way that, using (49), the Hamiltonian describing the motion
near a resonance is

DHðDJ; h;/Þ ¼ HresðJ; h;/Þ � H0ðJ
Þ;

¼ n
m

DJ � 1
qaa2

ðDJÞ2 � rAmðJ
Þ cos ðmh� n/Þ:

(65)

Performing a canonical transformation ðDJ; h;/Þ ! ðI;wÞ
using the generating function

F2ðI; h;/Þ ¼ ðmh� n/ÞI; (66)

a straightforward calculation gives the pendulum Hamiltonian

H ðI;wÞ ¼ 1
2
GI2 � F cosw; (67)

where w ¼ mh� n/, and

F ¼ rAmðJ
Þ ¼
r
am
ð2J
Þm=2 ¼ r 2 1� nqa

2m

� �	 
m=2

; (68)

G ¼ m2 @£
@J

� �
J

¼ � 2m2

qaa2
: (69)

The phase trajectories described by the pendulum Hamiltonian
are schematically represented in Fig. 2. We observe closed curves
around the Poincar�e–Birkhoff elliptic point ðI ¼ 0;/ ¼ 0Þ, with a
separatrix connecting the hyperbolic points ðI ¼ 0;/ ¼ 6pÞ. The
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half-width Imax of this island structure corresponding to a m/n-reso-
nance is

Imax ¼ 2

���� FG
����
1=2

¼ 2a2

m

ffiffiffiffiffi
en
2p

r
2 1� nqa

2m

� �	 
m=4

; (70)

hence, proportional to the factor
ffiffiffiffiffi
en
p
� 1. By the same token, the

oscillation frequency around the elliptic point is jFGj1=2.
The pendulum Hamiltonian describing the resonance is integra-

ble because we have averaged out the non-resonant terms in (55). If
we include these terms again, the system will become quasi-integrable
and the pendulum separatrices will no longer join smoothly, but rather
will present an infinite number of homoclinic and heteroclinic points.
The dynamics near such points is known to be chaotic, and, as a result,
instead of separatrices, the islands will have a thin stochastic layer of
chaotic motion.51 As long as the intensity of perturbation is small
enough, these locally chaotic layers do not connect themselves, pre-
venting large-scale chaotic transport of field lines. If the limiter cur-
rent, however, is larger than a critical value, the locally chaotic layers
merge together forming a globally chaotic region, and allowing large-
scale chaotic transport. Pendulum approximation have been used to
estimate the islands’ width and to apply Chirikov criterion to find the
critical perturbation amplitudes to create a chaotic layer in the
plasma.52,53 We remark that Escande and Momo have derived a simi-
lar formula for the island half-width without using Fourier compo-
nents like AmðJ
Þ, but rather using the magnetic flux through a
ribbon, the edges of which are lines passing by the elliptic and hyper-
bolic points in a given magnetic island.36

C. Poincar�e map of field lines

The EML Hamiltonian (55) exhibits an explicit dependency on
the ignorable variable /. For non-autonomous systems, the trajectories
belong to an extended phase space, where the time is treated as a coor-
dinate.51 For the quasi-integrable Hamiltonian system in (58), the sol-
utions are in a three dimensional phase space and the flow is
parameterized by the variable /. In this way, a state is determined by
three variables: J, h, and /.

Instead of studying the solution of the system in a three dimen-
sional geometric space, we can reduce the dimensionality of the prob-
lem by the construction of a Poincar�e surface. The Poincar�e map is
formed by the intersection of the solutions in the surface defined at a
constant value of /. In this way, we have the values of J and h for
when the magnetic field lines cross the surface, i.e., for each complete
turn in the toroidal direction.

Associating Eqs. (49), (55), and (58), we obtain the Hamiltonian
function for the magnetic field lines under the effect of EML,

HðJ; h;/Þ ¼ 2J
qa

1� J
2a2

� �
� l0ILR0

pamB0
ð2JÞm=2 cos ðmhÞ f ð/Þ:

(71)

Defining a normalized action I ¼ J=ða2=2Þ, we can write a nor-
malized HamiltonianH ¼ H=ða2=2Þ, given by

H ðI; h;/Þ ¼ I 1� I
4

� �
� 2 e Im=2 cos ðmhÞ f ð/Þ: (72)

The only free control parameter in (72) is the ratio e between the mag-
netic limiter current (IL) and the total plasma current (IP), for a fixed
value ofm.

From (72), we obtain the Hamilton equations as follows:

dh
d/
¼ @H

@I
¼ 1� I

2
�m e Iðm=2Þ�1 cos ðmhÞ f ð/Þ;

dI
d/
¼ � @H

@h
¼ �2m e Im=2 sin ðmhÞ f ð/Þ;

(73)

where f ð/Þ is the factor given by (53) and (54), related to the pertur-
bation created by a limiter ring of length ‘.

Integrating Eqs. (73), for initial conditions [Ið/ ¼ 0Þ; hð/ ¼ 0Þ],
using a symplectic Euler54 method and defining the Poincar�e section
at / ¼ 0ðmod 2pÞ, we construct the Poincar�e sections in Figs. 3(a)
and 3(b), for a scenario of small (e ¼ 0:025) and large (e ¼ 0:15) lim-
iter currents, respectively.

For the Poincar�e section in Fig. 3(a), the limiter current corre-
sponds to 2.5% of the total plasma current IL. In this scenario, we
observe regular solutions in most part of the space, represented by the
rotational circles and the three islands (oscillatory circles). We observe
a thin chaotic layer acting as a “separatrix” of the island. Since e is too
small, the width of this chaotic layer is so tiny it resembles a separatrix
curve, as the one presented in the pendulum phase space in Fig. 2. If
the limiter current is increased until it corresponds to 15% of the total
plasma current [six times the current in Fig. 3(a)], we have the
Poincar�e section shown in Fig. 3(b). The second Poincar�e section also
shows three islands, and the separatrix between them is replaced by a
thick chaotic layer. The chaotic behavior emerges with the increase in
the perturbation parameter e, i.e., with the increase in the current in
the ergodic limiter.

Finally, we would like to estimate until what value of e Eq. (70) is
a good approximation for the half-width of the islands in the phase
space. We numerically solve the system (73), construct the Poincar�e
section, and compare the half-width of the islands for each e with the
value predicted by Eq. (70). The results are presented in Fig. 4, and we
observe that the pendulum approximation is valid for the half-width
of the islands in the phase space until e 	 0:1. For higher values of e,
the value of Imax does not increase at the same rate proportional to

FIG. 2. Phase space for the pendulum described by the Hamiltonian function (67).
The trajectories can be closed curves around the elliptic point (w ¼ 0; I ¼ 0), indi-
cating the oscillation around the fixed point, or the “open” curves that represent the
rotation of the pendulum. The curve that connects the hyperbolic points
ð/ ¼ 6p; I ¼ 0) is the separatrix.
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e1=2. For e > 0:1, we observe small increases and decreases in Imax,
which represents the enlargement and the following destruction of the
island.

V. MAGNETIC FLUX COORDINATES

Magnetic flux coordinates are often used both in theoretical and
computational studies of MHD equilibria in toroidal plasma devices.55

They are denoted by ðh;w; fÞ, where w is a magnetic surface label,
whereas h and f are angle-like variables, often called poloidal and
toroidal angles, although they do not have a direct geometrical mean-
ing as the angles ðh;/Þ introduced in Sec. IV. According to Eqs. (13)
and (18)–(21), the curvilinear coordinates are

x1 ¼ h; x2 ¼ w; x3 ¼ f; (74)

such that h and f increase by 2p after a complete turn around the
torus.

For a stationary plasma without flow, the equilibrium MHD
condition1

rp ¼ j� B (75)

states that the expanding tendency caused by plasma pressure is coun-
terbalanced by a magnetic force produced by a current density j inter-
acting with the resultant magnetic field B. Dotting (75) with B results
in

B � rp ¼ 0; (76)

such that magnetic field lines lie on constant pressure surfaces, which
are also called flux surfaces or magnetic surfaces. In general, a quantity
w is a magnetic surface label if w ¼ const: on all its points,

B � rw ¼ 0: (77)

In other words, a magnetic surface is a coordinate surface for which
x2 ¼ w ¼ const:. Moreover, the magnetic axis—which is a x3-coordi-
nate curve—is a degenerate magnetic surface of zero volume, with
w¼ 0 on each of its points.

Various physical quantities can play the role of a magnetic sur-
face label, such as the pressure itself and the volume enclosed by a
magnetic surface, for example. However, in the specific case of flux
coordinates, w is chosen to be proportional to the toroidal flux, i.e., to
the magnetic flux enclosed by a magnetic surface,

w ¼ 1
2p

ð
St

B � dSð3Þ ¼ 1
2p

ð
St

r� A � dSð3Þ; (78)

where the vectorial area element perpendicular to a coordinate surface
x3 ¼ const: is

dSð3Þ ¼ ffiffiffi
g
p

dx1dx2ê3; (79)

and St is the cross section of the magnetic surface with the plane
f ¼ const:

Applying Stokes theorem in (78) gives

w ¼ 1
2p

þ
Ct

A � dl; (80)

where Ct is the boundary of the surface St, with the line element

dl ¼ dx1ê1; (81)

such that the path integral corresponds to a short turn along the poloi-
dal angle h,

FIG. 3. Poincar�e sections for the ergodic
limiter systems, defined by (73), with
parameters m¼ 3 and n ¼ 0:163, for (a)
e ¼ 0:025 (small limiter current scenario)
and (b) e ¼ 0:15 (large limiter current
scenario).

FIG. 4. Half-width of the islands in the phase space for different values of e. The
value of Imax, indicated by the black squares, was obtained analyzing the islands
for the Hamiltonian system (72) for each e, with m¼ 3 and n ¼ 0:163. The red
curve is obtained by Eq. (70) multiplied by a scale factor. For smaller values of e,
the red curve agrees with the black points, i.e., Imax follows the relation Imax / e1=2

given by the pendulum approximation for e � 0:1.
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w ¼ 1
2p

ð2p
0
A1dx

1: (82)

Equation (82) is the definition of action coordinate, and it is canonical
conjugate with an angle, here the poloidal angle h.56

Since we are considering a toroidal magnetic surface, A1 does not
depend on the toroidal angle f. In principle, A1 depends on x1 and x2,
however, if it does not depend on x1, then the canonical momentum is
the toroidal flux itself,

p ¼ A1 ¼ w; (83)

canonically conjugated to the coordinate

q ¼ x1 ¼ h; (84)

and with the time-like variable equal to the toroidal angle,

t ¼ x3 ¼ f; (85)

which is an ignorable coordinate for toroidal magnetic surfaces.
Now, consider the magnetic flux through a ribbon-like surface

that extends from the magnetic axis to the magnetic surface, being a
coordinate surface x1 ¼ const: The poloidal flux is proportional to the
magnetic flux through this surface Sp,

a ¼ 1
2p

ð
Sp

B � dSð1Þ ¼ 1
2p

ð
Sp

r� A � dSð1Þ; (86)

where

dSð1Þ ¼ ffiffiffi
g
p

dx2dx3ê1 (87)

is the vectorial area element perpendicular to a coordinate surface
x1 ¼ const: By Stokes’ theorem, it results as

a ¼ 1
2p

þ
Ct

A � dl; (88)

where Ct is the boundary of the surface St, with the line element

dl ¼ dx3ê3; (89)

and the integral amounts to a long turn along the toroidal angle f,

a ¼ 1
2p

ð2p
0
A3dx

3: (90)

Here, the sign of the poloidal flux a depend on the direction of the
plasma current.

If A3 does not depend on x3, then the field line Hamiltonian is
the poloidal flux,

H ¼ �A3 ¼ �a: (91)

With these associations, the magnetic field line equations are equiva-
lent to Hamilton’s equations,

dq
dt
¼ @H
@p

; ) dh
df
¼ @a
@w

; (92)

dp
dt
¼ � @H

@q
; ) dw

df
¼ � @a

@h
: (93)

A. Clebsch representation

Since êi ¼ rxi are the contravariant basis vectors, according
to (74), we can write the vector potential in magnetic flux coordi-
nates as

A ¼ Ahrhþ Awrwþ Afrf: (94)

Let us define a scalar function G by the condition

@G
@w
¼ Aw; (95)

such that its gradient is

rG ¼ @G
@h
rhþ Awrwþ @G

@f
rf: (96)

Subtracting (96) from (94), we have

A ¼ rGþ Ah �
@G
@h

� �
rhþ Af �

@G
@f

� �
rf: (97)

We define the toroidal and poloidal and magnetic fluxes in terms
of the derivatives of the scalar function introduced in (95),

w ¼ Ah �
@G
@h

; (98)

a ¼ �Af þ
@G
@f

: (99)

Note that this amounts to choosing a determined gauge. Substituting
both expressions in (97), the vector potential reads

A ¼ rGþ wrh� arf: (100)

Taking the rotational of this expression and using standard vec-
tor identities, we obtain the magnetic field in terms of the flux coordi-
nates in the form

B ¼ rw�rh�ra�rf; (101)

also known as Clebsch representation.55 This is the most general rep-
resentation of a magnetic field satisfying simultaneously the conditions
B � rw ¼ 0 andr � B ¼ 0.

Observe that, using flux coordinates, it is possible to express the
safety factor, which is a surface quantity, as the ratio between these
fluxes. From Eq. (93),

qðwÞ ¼ df
dh
¼ @w
@a

; (102)

supposing a one-dimensional equilibrium for which the function
a ¼ aðwÞ does not depend on f and h. In this case,

raðwÞ ¼ @a
@w
rw ¼ 1

qðwÞrw ¼ iðwÞ
2p
rw (103)

and the Clebsch representation (101) reads

B ¼ rw�rh� iðwÞrw�rf; (104)

where the factor 2p is absorbed in the rotational transform i.
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B. Exploitation of the variational principle

Let us exploit the variational principle for field lines

d
ðr2
r1

A � dr ¼
ð2
1
dðA � drÞ ¼ 0 (105)

in order to obtain the Euler–Lagrange equations that correspond to
the magnetic field line equations. Using (100), we have the variation

A � dr ¼ dG
df
þ w

dh
df
� a

	 

df: (106)

Inserting

da ¼ @a
@w

dwþ @a
@h

dh

in (106), it follows that (105) becomes

ð2
1

dh
df
� @a
@w

� �
dw� dw

df
þ @a
@h

� �
dhþ d

df
ðdGþ wdhÞ

( )
df ¼ 0:

(107)

The third term inside the braces vanishes becauseð2
1

d
df
ðdGþ wdhÞdf ¼ ðdGþ wdhÞ2 � ðdGþ wdhÞ1 ¼ 0;

since 1 and 2 are fixed points. Hence,

ð2
1

dh
df
� @a
@w

� �
dw� dw

df
þ @a
@h

� �
dh

( )
df ¼ 0; (108)

which holds for arbitrary variations in w and h if the coefficients van-
ish identically, giving

dh
df
¼ @a
@w

; (109)

dw
df
¼ � @a

@h
; (110)

which are the magnetic field line equations (92) and (93), written in
canonical form. This results independs on the gauge used, since the
term G disappears during the calculation.

C. Tokamap Hamiltonian

Let us first consider, as an example, the integrable equilibrium
tokamak magnetic field, for which the Hamiltonian a depends only on
the canonical momentum w, as also considered in Eq. (102). In this
case, we can rewrite Hamilton’s equations (109) and (110) in the fol-
lowing form:

dh
df
¼ 1

qðwÞ ; (111)

dw
df
¼ 0; (112)

where qðwÞ ¼ @a0ðwÞ=@w is the safety factor of the unperturbed
magnetic surfaces (the subscript in a stands for this fact). In this case,

we identify w as an action variable, h being its conjugate angle. Since w
is a constant of motion, parameterized by the time-like variable f, the
equilibrium consists of nested tori, which can be rational or irrational
according to the corresponding value of qðwÞ.

A magnetostatic non-symmetric perturbation can be represented,
as in the cylindrical case, by a term daðw; h; fÞ in the field line
Hamiltonian, which now reads

a ¼ a0ðwÞ þ K daðw; h; fÞ; (113)

where K> 0 is a parameter that represents the strength of the pertur-
bation, with respect to the equilibrium. The corresponding Hamilton’s
equations

dh
df
¼ 1

qðwÞ þ K
@daðw; h; fÞ

@w
; (114)

dw
df
¼ �K @daðw; h; fÞ

@h
(115)

can, in principle, be integrated with respect to the time-like variable f.
A Poincar�e map is obtained by sampling the values of ðw; hÞ at fixed
intervals of f. If, as it is often assumed, we sample variables after a
complete toroidal turn, then ðwn; hnÞ are the values of the action and
angle variables at the nth piercing of the magnetic field line with a
plane f ¼ const:

Since the coordinates of each piercing are unique functions of the
coordinates of the previous one, we are able to obtain a two-
dimensional map in the general form

wnþ1 ¼ A ðwn; hnÞ; (116)

hnþ1 ¼ Bðwn; hnÞ; (117)

where n ¼ 0; 1; 2;… can be interpreted as a discrete time-like vari-
able, and A and B are functions that can be obtained analytically in
some special cases.

It is known, from Hamiltonian dynamics, that the above map
represents a canonical transformation ðwn; hnÞ ! ðwnþ1; hnþ1Þ, cor-
responding to a generating function of the second kind, written as51

Fðwnþ1; hnÞ ¼ wnþ1hn þF 0ðwnþ1Þ þ KdFðwnþ1; hnÞ; (118)

where the first term generates the identity transformation, and the sec-
ond and third terms are related to the equilibrium and perturbation,
respectively.

The equations for this canonical transformation are

wn ¼
@F

@hn
¼ wnþ1 þ K

@dF
@hn

; (119)

hnþ1 ¼
@F

@wnþ1
¼ hn þ

dF 0

dwnþ1
þ K

@dF
@wnþ1

: (120)

Starting again from the unperturbed case (K¼ 0), we have that

wn ¼ wnþ1; (121)

hnþ1 ¼ hn þ
dF 0

dwnþ1
; (122)

which is just the solution of Eqs. (111) and (112), provided we make
the identification
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1
qðwÞ ¼

dF 0

dw
: (123)

For considering the perturbed case, it is useful to define the fol-
lowing functions:

hðwnþ1; hnÞ ¼ �
@dF
@hn

; (124)

jðwnþ1; hnÞ ¼
@dF
@wnþ1

; (125)

thus satisfying the condition

@h
@wnþ1

þ @j
@hn
¼ 0 (126)

in such a way that the map equations are

wnþ1 ¼ wn þ Khðwnþ1; hnÞ; (127)

hnþ1 ¼ hn þ
1

qðwnþ1Þ
þ Kjðwnþ1; hnÞ: (128)

Another consequence of the above map being a canonical trans-
formation is that it preserves areas in the Poincar�e surface of section:
dwnþ1dhnþ1 ¼ dwndhn. This implies that the Jacobian of the transfor-
mation has an absolute value equal to the unity, i.e., jJ j ¼ 1, where

J ¼
���� @wnþ1=@wn @wnþ1=@hn
@hnþ1=@wn @hnþ1=@hn

����: (129)

In fact, the map Eqs. (127) and (128) is area preserving, provided
(126) is fulfilled.

In order to put these equations into the form (116) and (117), it
is necessary to solve them first for wnþ1. Although this can be done
analytically in some cases, it is always possible to use root-finding
methods to do so numerically. Another important point, emphasized
by Balescu and co-authors, is that the field line map must have two
properties: (i) if w0 > 0, then wn > 0, for all values of n; (ii) if w0 ¼ 0,
then wn � 0 for all n.34 The former property comes from the defini-
tion of the coordinate w, which must be a definite positive number,
whereas the latter is related to the fact that w¼ 0 stands for the mag-
netic axis (which is a degenerate magnetic surface).

Balescu proposed a map (called tokamap) that satisfies both
requirements, namely,34

wnþ1 ¼ wn �
K
2p

wnþ1
1þ wnþ1

sinð2phnÞ; (130)

hnþ1 ¼ hn þ
1

qðwnþ1Þ
� K

ð2pÞ2
cosð2phnÞ
ð1þ wnþ1Þ

2 : (131)

It is actually possible to analytically solve (31) for wnþ1, but there are
two solutions for a given ðwn; hnÞ. We can preserve uniqueness by
choosing the positive root, viz.,

wnþ1 ¼
1
2

Pðwn; hnÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðwn; hnÞ
� 2 þ 4wn

q	 

; (132)

where

Pðw; hÞ ¼ w� 1� K
2p

sinð2phÞ: (133)

Balescu and co-workers34 have studied the properties of the toka-
map for the following choice of safety factor:

qðwÞ ¼ 4q0
ð2� wÞð2� 2wþ w2Þ

; (134)

where q0 is the safety factor at the magnetic axis w¼ 0. For numerical
simulations, it has been the convention that w¼ 1 is the position of
the tokamak wall, such that 0 � w � 1 is the physical range of this
variable. The safety factor increases monotonically to the tokamak
wall, where it is qðw ¼ 1Þ ¼ 4. Since this function is monotonically
increasing, the corresponding tokamap (130)–(131) satisfies the twist
property. As a consequence of the monotonic increase in the safety
factor, the winding number profile presents a monotonic behavior in
w. The winding number for a solution of a system that exhibits a peri-
odicity in the h variable and is defined by the limit

xn ¼ lim
n!1

hn � h0
n

; (135)

which converges for periodic and quasi-periodic solutions, while it is
not defined for chaotic trajectories. For K¼ 1, we have the Poincar�e
section and the winding number profile, calculated in h ¼ 0:5 for a
final iteration time of 106 iterations, showed in Fig. 5.

We observe that the tokamap exhibits mainly periodic and quasi-
periodic solutions for K¼ 1, indicated by the existence of only islands
and rotational circles in the Poincar�e section of Fig. 5(a). Like in Sec.
IVC, if the perturbation strength is too small, the size of a chaotic layer
in the neighborhood of an island is so tiny that it can be revealed only
by magnifications of the Poincar�e section. From the winding number
profile calculated in h ¼ 0:5 [Fig. 5(b)], we observe a defined xn for
almost every value of w, and the profile monotonically decreases. The
possible exceptions consist of tiny intervals for which the orbit is
chaotic.

In Fig. 5(b), we choose three different plateaus and highlight
them with the colored rectangles. The correspondent island of the pla-
teau is shown with the same color in the Poincar�e section of Fig. 5(a).
From the values of xn, we identified a direct relation with the period
of the islands. The winding number is related to the period s of the
island by xn ¼ 1=s. For example, the red island of period 1 presents a
winding number equal to xn ¼ 1=1. The green and pink islands pre-
sent winding numbers equal to xn ¼ 0:5 ¼ 1=2 and xn ¼ 0:33…
¼ 1=3, respectively. These periodic islands are on rational tori, since
we can write their frequencies as a ratio between two integer numbers.

Increasing the perturbation parameter to K¼ 3.5, we have the
Poincar�e section and the winding number profile showed in Fig. 6,
where we observe that some regular solutions are replaced by stochas-
tic layers, represented by the chaotic seas around the green and the
orange lines. The chaotic behavior is restricted, and the chaotic regions
are not connected. If we increase K, these chaotic regions will eventu-
ally enlarge and merge together into a single area-filling chaotic orbit.
Following the same methodology as for Fig. 5, we computed the wind-
ing number profile, at h ¼ 0:5, and highlight the plateaus of constant
xn values. Again, we observed the directed relation between the wind-
ing number value and the period s of the islands. The red, green, and
pink islands of Fig. 5 are also seen here, with xn ¼ 1=1 ¼ 1; xn

¼ 1=2 ¼ 0:5, andxn ¼ 1=3 ¼ 0:33…, respectively. We also highlight
two other chains of islands, orange and blue, with xn ¼ 2=3¼ 0:66…
and xn ¼ 2=5 ¼ 0:4, respectively. For these last two islands, we have
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that the trajectory always “jumps” one island during the time evolu-
tion, i.e., if we choose an initial condition in the blue island close to
h ¼ 0:5 (the third island counting from left to right), the next point
will be in the fifth island, the second iteration will be in the second
island, and so on. The chaotic regions are represented by the “gaps” in
the winding number profile, since the limit (135) does not converge.

The Tokamap has been used to interpret the particle escape to
the wall in Textor Tokamak. In particular, the theoretically obtained
fractal distribution of field lines at the plasma edge is similar to the one
measured in this tokamak.2,23

D. Analysis of the revtokamap

In a subsequent paper, Balescu had used another choice for the
safety factor, namely,57,58

qðwÞ ¼ qm
1� aðw� wmÞ

2 ; (136)

which is a non-monotonic function of w, and the corresponding map
does not satisfy the twist condition (@hnþ1=@wn 6¼ 0).7 As a conse-
quence of the violation of the twist condition, the winding number

profile presents a non-monotonic behavior. It has been called revtoka-
map, since it describes a profile with reversed shear, with an extreme
(shearless point). The minimum wm of the profile (136) is given by

wm ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qm=q1
1� qm=q0

s0
@

1
A
�1

: (137)

The parameters q0, qm, and q1 are chosen to reproduce approximate
experimental data, and a is defined as a ¼ ð1� qm=q0Þ=w2

m.
The violation of the twist property in the Poincar�e section brings

consequences to the solutions of the map. First, the extremum point in
the shear corresponds to the extremum point in the winding number
profile. This extremum point belongs to the shearless curve in the
phase space. Second, since the map is non-twist, two solutions can be
isochronous, i.e., two distinct solutions present the same period and
winding number.

Following the same procedure applied to the tokamap in the last
section, we construct the phase space and compute the winding num-
ber profile for two values of K. In Fig. 7, we have the results for
K¼ 0.5.

FIG. 5. Solutions of the tokamap for
K¼ 1. For the phase space in (a), we
only observe periodic and quasi-periodic
solutions, and their respective winding
numbers are showed in the profile in (b).
The highlighted winding number plateaus
in (b) correspond to the colored islands
with the same color in (a).

FIG. 6. Tokamap for K¼ 3.5. The phase
space in (a) exhibits periodic and quasi-
periodic solutions as a chaotic behavior
represented by the sparse points around
the green and orange islands. The wind-
ing number profile calculated in h ¼ 0:5
is showed in (b).
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For the results shown in Fig. 7, we conclude that the revtokamap
only presents regular solutions, for K¼ 0.5. The phase space exhibits
only islands and rotational curves, and the winding number is defined
for every w 2 ½0; 1�. The winding number profile in Fig. 7(b) presents
a nonmonotonic behavior, and a maximum value, indicated by the red
symbol, around w ¼ 0:5. This point corresponds to the shearless point
mentioned before, and it belongs to the shearless curve, also indicated
in red in Fig. 7(a). The winding number plateaus highlighted by the
orange and blue rectangles correspond to the twin islands (isochro-
nous solutions) of the same color in Fig. 7(a). The twin islands present
the same winding number, same period, and each chain is located at
one side of the shearless curve. We also observe the islands of period 3
(pink islands) with winding number xn ¼ 0:333… As identified in
Figs. 5 and 6, the winding number of each island satisfies the relation
xn ¼ 1=s, where s is the period of the island.

Keeping the values for q0, q1, and qm, in Fig. 8, we have the
Poincar�e section and the winding number profile for K¼ 2.0. From
Fig. 8(a), we observe that when the perturbation parameter K is
increased to K¼ 2.0, some regular solutions at the upper region of
the phase space are replaced by chaotic trajectories, indicated by
the chaotic sea. The isochronous solutions of period 2, the blue and
orange islands, remain and other two chains of islands are

identified, the green and pink islands emerge. The latter islands
correspond to the plateaus in the winding number profile in Fig.
8(b), highlighted by the same color. The isochronous solutions pre-
sent xn ¼ 0:6 ¼ 3=5. The maximum value of xn, highlighted by
the red point in Fig. 8(b), corresponds to the shearless curve, the
red rational circle in Fig. 8(a).

VI. CONCLUSIONS

The Hamiltonian description of magnetic field lines is widely
used for magnetic confined plasmas, allowing the use of the powerful
methods of Hamiltonian theory to interpret the results and character-
ize the dynamic regimes observed in experiments and computational
simulations. The contributions of the Hamiltonian approach in plasma
physics range from the application of area-preserving maps, like the
standard map, for the study of chaos,59 to the Greene residue60 and
the Chirikov resonance overlap criterion,61 the non-twist systems, the
renormalization group approach,62–64 and chaotic transport, just to
name a few.5,11,15 Despite the importance and wide range of applica-
tion, there are a few elementary expositions on the subject. This paper
attempts to fill this gap, presenting a tutorial of how the magnetic field
lines are related to Hamiltonian systems with some representative
application in toroidal plasmas.

FIG. 7. Revtokamap for a lower perturba-
tion parameter (K¼ 0.5). The phase
space (a) is composed of regular solu-
tions, as islands and rotational circles,
which is also indicated by winding number
profile at (b), since x is defined for all val-
ues of w. The red curve at (a) corre-
sponds to the extreme value of x
highlighted by the red point in the profile
at (b). The winding number profile is com-
puted in the line h ¼ 0:45. We set
q0 ¼ 3; q1 ¼ 6:0, and qm ¼ 1:5.

FIG. 8. Revtokamap for K¼ 2.0, q0 ¼ 3;
q1 ¼ 6:0, and qm ¼ 1:5. In (a), we have
the Poincar�e section, and in (b), the wind-
ing number is computed in h ¼ 0:5.
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Magnetic field lines are a non-mechanical example of a system
that can be described by the Hamiltonian formalism. From the varia-
tional principle, we were able to present the description of field lines in
confined plasmas for different coordinates and with the inclusion of
an external perturbation. We also present applications of the descrip-
tion with the tokamap and revtokamap analysis. The examples pre-
sented here are simple, but they are paradigmatic for the study of
confined plasmas and are adequate to demonstrate the Hamiltonian
approach in a pedagogical form.
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