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Intrinsically coupled nonlinear systems typically present different oscillating components that exchange 
energy among themselves. A paradigmatic example is the spring pendulum, for which we identify spring, 
pendulum, and coupled oscillations. We propose a new approach that properly accounts for the nonlinear 
coupling, and allows the analysis of energy exchanges among the different types of oscillation. We obtain 
that the rate of energy exchanges is enhanced for chaotic orbits. Moreover, the highest rates for the 
coupling occur in the vicinity of the homoclinic tangle of the primary hyperbolic point embedded in a 
chaotic sea. The results demonstrate a clear relation between internal energy exchanges and the dynamics 
of coupled systems, being an efficient new way to distinguish regular from chaotic orbits.

© 2022 Elsevier B.V. All rights reserved.
A challenging problem of intrinsically coupled nonlinear Hamil-
tonian systems is the internal energy exchange among their com-
ponents [1]. One example is the numerical investigation of en-
ergy exchanges among normal modes in the Fermi-Pasta-Ulam-
Tsingou (FPUT) model of a nonlinear coupled oscillators chain, 
which presents a surprising energy concentration in some modes 
[2,3]. A reason for the observed results is the coexistence of regular 
and chaotic regions in the phase space of the coupled oscillators 
chain.

One of the difficulties related to the analysis of FPUT (and re-
lated) models is their large phase space dimension. In order to 
investigate with more depth the internal energy exchanges due 
to coupling between modes, we consider a paradigmatic low-
dimensional system: the spring pendulum with two degrees of 
freedom [4]. This system exhibits an intrinsic nonlinear coupling, 
and we present numerical evidence that the rate of energy ex-
changes associated with the coupling is directly related to the 
regular or chaotic dynamics of the trajectories.

The spring pendulum, also known as elastic or extensible pen-
dulum, is composed of a spring connected to a pivot on one end 
and to a suspended mass on the other end. The suspended mass 
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can oscillate both harmonically, due to the spring elasticity, and 
pendularly, performing librations and rotations around the pivot 
due to the gravitational force. The combination of these two os-
cillation modes yields a complex and rich dynamics, with chaotic 
and resonant effects such as an order-chaos-order transition [5–8]
and a parametric resonance [4,9–13] according to the total energy 
and the system parameters.

Besides having a complex dynamics, the spring pendulum is 
also investigated due to its similarities to other physical systems 
of great interest. Fermi already pointed out that the spring pendu-
lum dynamics can be a mechanical analogy to the interaction of 
an atom with radiation [14]. Fermi also brought to the attention 
that the parametric resonance in the vibrations of the two de-
grees of freedom CO2 molecule is similar to the spring pendulum 
parametric resonance [14–16]. Among other examples of systems 
described by equations analogous to those of the spring pendulum, 
we mention the orbits of celestial bodies [17–20], coupled waves 
in plasmas [21,22], interaction between light waves in a nonlinear 
dielectric [23], and several mechanical devices [24–27].

In a previous work, we introduced three analytical expressions 
for the energy associated with the spring, pendulum and coupled 
oscillations of a spring pendulum [28]. We applied these analytical 
expressions and verified that they accurately describe the energy 
components for periodic, quasi-periodic and chaotic trajectories. 
We then numerically computed phase space and time averages to 
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Fig. 1. Spring pendulum diagram [Reprinted from M. C. de Sousa, F.A. Marcus, I. L. 
Caldas, R. L. Viana, Energy distribution in intrinsically coupled systems: the spring 
pendulum paradigm, Phys. A, Stat. Mech. Appl. 509 (2018) 1110-1119].

determine how the energy is distributed among the three compo-
nents as a function of the total energy and a control parameter 
representing the ratio of the pendulum and spring frequencies.

In the present paper, we investigate the energy exchange rate 
(i.e. the power) for the previously identified energy components. 
We examine the phase space configuration for different values 
of total energy and control parameter, and we find that regular 
regions exhibit well defined power components, whereas chaotic 
regions display non-uniform values for the power components. 
Furthermore, the power associated with the coupling is generally 
higher for chaotic orbits than for regular ones. We also analyze 
the time dependence of the coupling power and verify that its 
maximum values in the Poincaré section follow the homoclinic 
tangle [29–31], which is composed of homoclinic intersections of 
the stable and unstable manifolds of the primary hyperbolic point 
immersed in a chaotic sea.

Such results show that the regular or chaotic dynamics ob-
served for this nonlinear coupled system is determined by the rate 
of internal energy exchanges among its components, and that the 
coupling is closely related to the manifolds of hyperbolic points. In 
this sense, the approach we introduce may be a new and practical 
way to distinguish chaotic and regular orbits, as well as to access 
the manifolds of hyperbolic points with good precision.

The vertical spring pendulum presents a mass m connected to 
the free end of a spring with negligible mass, stiffness constant k
and relaxed length l0 in the absence of forces, as shown in Fig. 1. 
The other spring end is fixed at the origin of the Cartesian coor-
dinate system (x, y) = (0, 0). The spring pendulum moves in the 
vertical xy-plane and its stable equilibrium position is located at 
x = 0, y = −l, with l = l0 + mg/k and g the acceleration of gravity.

We write the Hamiltonian of this system in the dimension-
less Cartesian coordinates q1 = x/l and q2 = (y + l)/l, which are 
centered in the stable equilibrium position, and their associated 
momenta p1 = q̇1 and p2 = q̇2:

ET = H = p2
1 + p2

2

2
+ f (q2 − 1)

+ 1

2
(

√
q2

1 + (q2 − 1)2 + f − 1)2, (1)

where ET is the dimensionless total energy, and f = mg/(kl) is 
the square of the ratio between the pendulum and spring frequen-
cies in the linear approximation, thus accounting for the physical 
characteristics of the spring pendulum.

As an example, we show in Fig. 2 the Poincaré section of the 
spring pendulum for ET = 0.3 and f = 0.25, which displays a 
mixed dynamics typical of Hamiltonian systems, where islands of 
regular motion are embedded in the chaotic area. In fact, by in-
creasing the total energy and/or control parameter f , the Poincaré 
sections of the spring pendulum reveal a peculiar sequence of 
order-chaos-order [5–8].

Following Ref. [28], we work with the dimensionless polar co-
ordinates
2

Fig. 2. Poincaré section p1 × q1, with q2 = 0 and p2 > 0, for ET = 0.3 and f = 0.25.

ρ = f − 1 +
√

q2
1 + (q2 − 1)2 (2)

and

tan θ = q1

1 − q2
, (3)

where ρ represents the spring extension or compression from its 
relaxed length, and θ is the pendulum displacement from its stable 
equilibrium position.

The Hamiltonian in dimensionless polar coordinates is then 
given by [28]

ET = H = 1

2

[
p2
ρ + p2

θ

(ρ + 1 − f )2

]

+ ρ2

2
− (ρ + 1 − f ) f cos θ. (4)

In [28], we split the spring pendulum Hamiltonian into the 
spring, pendulum, and coupling energy components. The spring 
energy E S characterizes a spring mass moving vertically under the 
action of gravity:

E S = p2
ρ + ρ2

2
− (ρ + 1 − f ) f . (5)

The pendulum energy E P describes the motion of a simple pendu-
lum and is given by:

E P = p2
θ

2
− f cos θ. (6)

The coupling energy EC arises from the nonlinear coupling be-
tween the spring and pendulum oscillations. It is the only energy 
component that depends on both ρ and θ associated with the 
spring and pendulum respectively:

EC = p2
θ

2

[
1

(ρ + 1 − f )2
− 1

]
− (ρ − f ) f cos θ + (ρ + 1 − f ) f . (7)

From expressions (4)-(7), the total energy of the spring pendulum 
is given by

ET = E S + E P + EC . (8)

These energy components are compatible with the spring and 
pendulum oscillations and account for their coupling. In Ref. [28], 
we applied the analytical expressions (5)-(7) to determine how the 
total energy is shared among the three components for individ-
ual trajectories. We verified that the energy components accurately 
describe the behavior of all kinds of trajectory: periodic, quasi-
periodic and chaotic. By calculating phase space and time averages 
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Fig. 3. (Color online.) Color scale showing the maximum power distribution in the 
section p1 × q1 for ET = 0.3 and f = 0.25: (a) spring power P S,max , (b) pendular 
power P P ,max , and (c) coupling power PC,max .

for a great number of trajectories, we also obtained the average 
energy distribution as a function of total energy and control pa-
rameter f . Once again, the average energy distribution is a good 
representation of the global dynamics in phase space for all possi-
ble values of ET and f .

In this paper, we investigate how the energy is transferred 
among the three energy components as the system evolves in time. 
To do so, we consider the rate of energy exchange

Pi =
∣∣∣∣dEi

dt

∣∣∣∣ , (9)

where Pi corresponds to the power associated with each energy 
component (5)-(7), and the index i represents the type of oscilla-
tion: spring S , pendulum P , and coupled C .

Through the power terms (9), we investigate how the total en-
ergy is exchanged among the different types of oscillation that an 
orbit goes through during its time evolution. In Fig. 3, we con-
sider the two-dimensional section p1 vs q1 (with q2 = 0) of phase 
space, and plot in color scale the maximum power Pi,max obtained 
for a long period of time, t f = 103, in a grid of 600 × 600 ini-
tial conditions. By comparing Fig. 3 with the Poincaré section of 
Fig. 2, we notice that regular and chaotic regions are clearly dis-
tinguished from each other by their different values of maximum 
power. Regular trajectories have well defined values of maximum 
power, whereas initial conditions in the chaotic sea present non-
uniform values of Pi,max .

The maximum power values of chaotic orbits are typically 
higher than those of regular orbits for all types of oscillation: 
spring, pendulum and coupled. It means that energy is exchanged 
at higher rates among the three types of oscillation when the or-
bit behaves chaotically. On the other hand, energy exchanges in 
regular trajectories occur at a much lower rate. Furthermore, we 
observe that the maximum pendulum power is almost null in 
the six main islands of regular behavior in Fig. 3. Thus, in these 
regions, energy is exchanged mostly between the spring and cou-
pling energy components.

From now on, we will focus on the coupling power. To better 
understand the evolution of P C,max over time, we show in Fig. 4
the maximum value of coupling power integrated over different 
values of final time t f . As time passes from panels (a) to (d), we 
observe the growth of the red filaments that correspond to the 
highest values of maximum coupling power (2.5 ≤ P C,max ≤ 3.0).

By integrating the equations of motion backwards in time, we 
obtain another set of red filaments representing the highest val-
ues of maximum coupling power, as shown in Fig. 5. We combine 
3

Fig. 4. (Color online.) Time evolution of the maximum coupling power for ti = 0 and 
(a) t f = 10, (b) t f = 20, (c) t f = 30 and (d) t f = 40.

Fig. 5. (Color online.) Backward time evolution of the maximum coupling power for 
ti = 0 and (a) t f = −10, (b) t f = −20, (c) t f = −30 and (d) t f = −40.

both Figs. 4 and 5 to exhibit in Fig. 6(a) the filaments with the 
highest values of maximum coupling power for t f = ±70. In this 
figure, the red filaments were calculated by integrating the equa-
tions of motion forward in time, whereas the black filaments show 
the highest values of P C,max for the backward time evolution.

We also obtain the manifolds of the primary hyperbolic point 
q1 = p1 = 0, located in the chaotic region of Fig. 2, and compare 
them with the filaments of highest values of maximum coupling 
power. To calculate approximations for the invariant manifolds, 
we apply a standard numerical procedure [32]: we consider a 
disk of very small radius (10−6) centered at the hyperbolic point 
(q1, p1) = (0, 0), and containing a large number of initial condi-
tions. Each initial condition belonging to the disk is numerically 
integrated from ti = 0 to t f = 70, generating a continuous flow. In 
Fig. 6(b), we plot in the section p1 × q1 the intersections of this 
continuous flow with the plane q2 = 0 whenever p2 > 0. The plot 
(in red) turns out to be a spaghetti-like region following the unsta-
ble manifold that emanates from the periodic orbit with constant 
(q1, p1) = (0, 0).

We also integrate the equations of motion backwards in time 
for the initial conditions within the tiny disk for ti = 0 and t f =
−70. The plot in section p1 × q1 [shown in black in Fig. 6(b)] is 
another spaghetti-like region now following the stable manifold of 
the primary hyperbolic point at (q1, p1) = (0, 0). In Fig. 6(b), we 
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Fig. 6. (Color online.) (a) Filaments with highest values of maximum coupling power 
for t f = ±70 obtained by integrating the equations of motion forward (red) and 
backwards (black) in time. (b) Unstable (red) and stable (black) manifolds of the 
primary hyperbolic point at p1 = q1 = 0.

display the superposition of the primary unstable (in red) and sta-
ble (in black) manifolds for the Poincaré section of Fig. 2.

Comparing Figs. 6(a) and 6(b), we identify the filaments of 
highest coupling power with the manifolds of the primary hyper-
bolic point (q1, p1) = (0, 0). The filaments obtained for the forward 
time evolution correspond to the unstable manifold (both in red in 
Fig. 6), whereas the filaments for the backward time evolution rep-
resent the stable manifold (both in black).

The homoclinic tangle, which is formed by the intersections of 
the unstable and stable manifolds, is the source of the highest 
values of coupling power, i.e. it is responsible for the maximum 
energy exchange rate among the three different types of energy: 
spring, pendulum and coupling. Indeed, the homoclinic tangle in-
fluences all orbits in the chaotic area, which pass several times in 
its vicinity. In the same way, the homoclinic tangle leads to the 
higher energy exchange rates observed in the chaotic sea than in 
the regular regions of Fig. 3. It means that chaotic trajectories ex-
change energy at much higher rates between spring, pendulum 
and coupled oscillations, resulting in higher values of all power 
components Pi,max as observed in Fig. 3.

In conclusion, we considered the spring pendulum, a paradigm 
of intrinsically coupled nonlinear systems, to investigate internal 
energy exchanges among the different kinds of oscillation it may 
present. We split the total energy among three energy components 
that accurately describe the spring, pendulum and coupled oscilla-
tions [28]. We then obtained analytical expressions for the energy 
exchange rate, i.e. the power, associated with each energy compo-
nent.

We applied these expressions to determine the maximum val-
ues of the power components for a large number of trajectories. 
We observed that regular regions in phase space display well 
defined values of maximum power for all the components. On 
the other hand, chaotic areas can be distinguished by their non-
uniform values of maximum power. Furthermore, chaotic trajecto-
ries generally present higher values of power than regular trajec-
tories.

To determine the reason for the observed features, we ana-
lyzed the time evolution of the maximum coupling power in phase 
space, and identified the trajectories with the highest values of 
coupling power. We also computed the unstable and stable mani-
folds of the primary hyperbolic point of the system, and found that 
they correspond to the trajectories presenting the highest values 
of coupling power. It means that the coupling power is maximum 
along the primary manifolds and especially along the homoclinic 
4

tangle formed by the intersections of the unstable and stable man-
ifolds. Since chaotic trajectories pass frequently in the vicinity of 
the homoclinic tangle, the rate of internal energy exchange is much 
higher for these trajectories.

We confirmed for several values of total energy and control 
parameter that the maximum coupling power occurs along the 
manifolds of the primary hyperbolic point, and that all the power 
components are typically lower for regular trajectories than for 
chaotic ones. In a future work, we will investigate internal energy 
exchanges for other nonlinear coupled Hamiltonian systems in or-
der to generalize the results presented in this paper, which may 
be a useful and efficient way to characterize chaotic orbits and to 
compute manifolds.
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