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a b s t r a c t 

Mathematical modeling is an important tool to analyze impacts and plan to mitigate epidemics in com- 

munities. In order to estimate the impact of control measures in a second wave of infections, we analyze 

the SEIR epidemic model based on stochastic cellular automata. The control measure is based on one of 

the key strategies to control the epidemic, which is the restriction of the mobility of individuals in space. 

For stronger restrictions, we observe a decrease larger than 15% in the total number of infected individu- 

als during the epidemic. On the other hand, the total attenuation of control measures in the system can 

lead to a second wave scenario and even a situation in which the total number of infected individuals 

is close to the uncontrolled case. Additionally, we also include the possibility of reinfection, as the SEIRS 

model, where the recovered individuals can go to the susceptible state based on a fixed immunity time or 

a probabilistic rule. Our results show that an extinction of the epidemic occurs only for a fixed immunity 

time. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

An epidemic can be defined as an outbreak of a disease capable 

o infect a significant portion of the population before it ends [1] . 

he spread of an infectious disease can happen in different ways. 

here are transmissions by direct contact with infected individuals 

r by indirect contact, such as through disease vectors agents, for 

xample. Mathematical models can be considered as methods to 

tudy the consequences and to estimate the future of the disease 

pread [2,3] . They are crucial to understand the epidemic evolution 

nd the impacts of mitigation measures applied to the population, 

or the purpose of lessening the disease severity, i.e. , decreasing 

he number of infected individuals [4–6] . 

The epidemiological models, from the compartmental approach 

as SIR, SEIR, SI and others) to the Richards growth model, are 
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ostly based on ordinary differential equations (ODE) [4,7] . The 

DE models give the infected population time evolution. These 

odels do not consider the individual role in the epidemic evolu- 

ion, such as the movement of these individuals, the contact pro- 

esses and a different individual susceptibility [4,7,8] . 

One way to overcome these limitations imposed by the ODE’s 

odels is to implement Individual-Based-Modeling (IBM), taking 

he individual as a basic unity in the system. By this portrait we 

nclude individuals particularities and their influences on the dis- 

ase spread. One example of IBM is the model based on Cellular 

utomaton (CA). Cellular automata are discrete dynamical systems 

ith discrete time and space, and the associated physical quanti- 

ies also admit discrete values. As mentioned by Wolfram [9] , phys- 

cal systems with discrete elements and local iterations are often 

odeled by CA. In this portrait, we can use CA models to describe 

pidemics by discretizing the space, considering an IBM model in 

hich the discrete unity in the space is represented by the individ- 

al, and the discrete unity in time is a time step (hours or a day,

https://doi.org/10.1016/j.chaos.2021.111784
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.111784&domain=pdf
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or example). Cellular automata based models were already used 

o generic epidemics and specific diseases detailed in the papers 

4,6–8,10–17] and references therein. 

Various studies consider different properties of the individuals 

n the CA model, for example, the heterogeneity of the populations, 

s different susceptibility and infectivity [10] or the sex ratios, age 

nd individual immunity [6] . Some surveys consider the movement 

f the individual in space [4,6,13,14,16] , or the movement of the 

ector agent responsible for the infection [15] . 

In addition to the inclusion of individual particularities, differ- 

nt interaction processes can also be considered by CA based mod- 

ls, as the segregation of infected individuals. In order to attenuate 

he impact of the epidemics of a disease spread by contact in the 

opulation, the implementation of mitigation strategies is crucial. 

ey strategies such as vaccines, isolation, quarantine, travel restric- 

ions, and drug distribution are necessary and very important [18] . 

f the vaccines and drugs are absent, the non-pharmaceutical and 

he preventive measures are the only possibility to reduce the im- 

acts of the epidemic. This topic became a central debate since 

he outbreak of COVID-19 epidemic in December 2019, declared 

s a pandemic in early March 2020. Several studies analyzed the 

mpacts of the quarantine of infected individuals and developed 

athematical models to forecast the future of the COVID-19 spread 

6,19–25] . 

Besides the impact of control measures, it is also important to 

tudy the impact of prematurely easing these measures leading to 

he possibility of subsequent waves of infections [26] . Souza and 

oauthors showed that, for the SEIR model with an ODE portrait, 

 relaxation in the mitigation measures leads to a second wave 

cenario of the infection curve [22] . A second wave scenario was 

lso predicted by Xu, Qi and Hu [26] , as well as by Renardy, Eisen-

erg and Kirschner [27] for a compartmental model with differen- 

ial equations description. 

The second wave scenario has been studied by means of dif- 

erential equations and they do not take into account the behavior 

f the individuals and the possibilities of directed measures in the 

opulation for the control of the epidemics. With this perspective, 

e propose a CA model, based on the compartmental SEIR model, 

o study the control measures and the possibility of a second wave 

f infection by the relaxation of these measures. We show that 

tronger restriction can decrease the total number of infected indi- 

iduals. In order to also study the possibility of the perpetuation of 

he disease in the population and subsequent waves of infections, 

e also consider the loss of immunity of the recovered individu- 

ls, as the SEIRS model. A loss of immunity can be, for example, a 

pecificity of the disease or can be a consequence of a new strain 

f the disease-causing agent. Our results show that, for a fixed im- 

unity time, the end of the epidemic is possible. 

This study is organized as follows: In Section 2 we present our 

odel based on cellular automata to describe a disease with a la- 

ent period (exposed and not infectious individual) and permanent 

mmunity. In this section, we also expose how the control mea- 

ures are implemented and eased in the system. The results about 

he infection control and the probability of a second wave scenario 

re shown in Section 3 . Section 4 is centered in the model with

he inclusion of reinfection and we study the impact of a single 

mplementation and relaxation of control measures in the system. 

ur conclusions are stated in Section 5 . 

. SEIR Model and the cellular automata 

.1. Mobility and transition rules 

The SEIR model is a well established mathematical set com- 

osed of four equations which describe the time evolution of four 

opulations embraced by the model. The susceptible (S) popula- 
2 
ion is composed of healthy individuals and they can become sick. 

he first stage of the disease is the exposed state (E), where the 

ndividuals are sick but they are not infectious or the individuals 

re sick and they can infect other healthy ones, but with low fre- 

uency [8,12] . This model has been considered to study diseases 

ith a latency period. After the latency time, the individual is in- 

ected (I) and it can infect other people with a high probability. 

astly, we have the recovered population (R), individuals who can 

ot be infected again. 

According to the differential equation formulation, the time 

volution for each population of the SEIR model is described by 

1] : 

˙ S = −βSI , 

˙ 
 = βSI − κE, 

˙ I = κE − αI, 

˙ 
 = αI, (1) 

here the parameters β , κ , and α denote the transition rates of in- 

ividuals from one population to another. According to the review 

erformed by Brauer and Castillo-Chavez, the equations in (1) rep- 

esent the case where the exposed individuals are not infectious 

1] . 

The SEIR model presented above considers a fixed number of 

ndividuals, i.e. , the birth and death rates are not considered in the 

odel. In this study, we follow the same method and the total 

opulation N T = S + I + E + R does not change. Some results from

he SEIR model with variable N T can be found in [5,28–33] . 

Ordinary differential equations (ODE), similar to the ones in (1) , 

orm the basis for most mathematical models of disease spread 

nd epidemic simulation [4] . These models are well consolidated 

nd they were extensively studied. However, they present some 

imitations related to a high computation time to solve the equa- 

ions [11] and they do not consider microscopic aspects or individ- 

als properties, as the contact process, the effects of mixing pat- 

erns of the individuals, the spatial aspects of the epidemic, a pos- 

ible heterogeneous interaction between individuals, the motion of 

he individual in the available space and others individual particu- 

arities [4,7,10,11,34] . 

One way to solve these limitations is the utilization of CA to 

imulate the spreading of the disease [4,7] . As mentioned in the 

revious section, a CA is a mathematical model where time and 

pace are discrete [9] . In a practical way, the CA is composed of 

 regular uniform lattice, where each site (cell) is in a state de- 

cribed by a discrete variable and the cell state evolves at each 

ime step following a set of rules based on the states of their 

eighbors [9,35] . In this way, we can identify and modify the local 

nteractions by specifying the rules followed in the time evolution. 

The studies of the SEIR model in a CA context consider, in gen- 

ral, that each site is occupied by a single individual, which can 

e in the susceptible (S), exposed (E), infected (I) or recovery (R) 

tate. One individual interacts with its neighborhood that can be 

our (von Neumann) or eight (Moore) closest sites. The neighbor- 

ood can even be more complex, as studied by Gang and coau- 

hors [12] , and one site can be filled with more than one individual 

4,15] . In our simulations, we consider just one individual per site 

nd the von Neumann neighborhood. The infectious process occurs 

y the contact between susceptible and infected individuals. In the 

A, this happens when an individual in a S state has neighbors in 

 state. 

The model that we analyze in this study was proposed by 

uan-Xing and Zhen [8] as a SEIRS epidemic spread model by 

he probabilistic cellular automata perspective. The model consid- 

rs five populations: susceptible, exposed, infected, recovery and 

ead, where every individual belongs to one of these five states. 

he disease progresses in the following order: the susceptible in- 
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Fig. 1. Illustrations for the (a) transition S → E, (b) mobility in the grid and (c) the neighborhood for the transition S → E when an empty site is present. In (c), the 

neighborhood is expanded, where the closest direct neighbor to the empty site, in this schematic figure the red site on the right, is considered for calculating the probability 

P. In all figures, squares in blue, yellow, red, black and gray represent susceptible, exposed, infected, recovered and empty sites, respectively. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ividual becomes exposed after contact with infected individuals, 

fter the latency time the individual becomes infected and then it 

ecovers after the infection period, or dies, and the recovered indi- 

iduals become susceptible again [8] . 

In the present study, we are interested in the SEIR portrait, in 

hich the recovered individuals stay in this state, i.e , the immu- 

ity is persistent. The CA is based on a regular lattice N × N, where

ach site contains only one individual, and the lattice obeys a pe- 

iodic boundary condition. The state of one site i , at a given time 

, is denoted by Z i (t) , where Z i (t) ∈ S, E, I, R if the individual in the

ite is susceptible, exposed, infected or recovered, respectively. The 

tate sets are defined by the following sets: 

S = { 0 } , 
 = { 1 , . . . , t e } , 

I = { t e + 1 , . . . , t e + t i } , 
 = { −1 } , (2) 

here t e and t i are the latency and the infection time of the dis-

ase, respectively. 

Each site can interact with the closest four neighbors. As we 

tated before, the state of an individual changes in a sequencing 

ay ( S → E → I → R ) . In this way, the site state also changes in

he same way, according to a set of transition rules defined below. 

.1.1. Transition S → E

One susceptible individual becomes exposed with a probability 

 defined by [8] , 

 = 

n e P e + n i P i 
4 

, (3) 

here n e and n i indicate the number of exposed and infected in- 

ividuals in the neighborhood of the site i ( Z i = 0 ). P e and P i are

robabilities related to the disease, where P e is the probability in 

hich one exposed individual transmits the infection and P i is the 

robability of an infected individual to infect a susceptible one. 

n this study, we follow the model in equation (1) , hence, we set

 e = 0 . 0 and as a result the exposed individuals do not contribute

o the infection of susceptible ones. Therefore, a susceptible indi- 

idual becomes exposed with a probability P = 

n i P i 
4 . 

Once the simulations are probabilistic, we select a random 

umber rnd, with rnd ∈ [0 , 1] . If rnd < P , the transition S → E oc-

urs to the susceptible site: in a generation g = t the individual 

s susceptible and in the next generation ( g = t + 1 ) the individ-

al becomes exposed. A generation is our time step where all the 
3 
ites in the lattice are evolved. This process is illustrated in Fig. 1 

a). 

.1.2. Transition E → I

One exposed individual remains in the exposed state until the 

atent time ( t e ) occurs. Consider that in time t the individual be- 

ame exposed, we have the following 

 i ( t ) ∈ E → Z i ( t + 1 ) = Z i ( t ) + 1 , Z i ( t + t e ) ∈ I, (4)

here E and I are the sets of states defined by Equation (2) . 

.1.3. Transition I → R 

One infected individual recovers from the disease with a prob- 

bility P IR , defined by P IR = 1 /t i , where t i is the infection period.

herefore, the transition I → R is represented by 

 i ( t ) ∈ I 
P IR → Z i ( t + 1 ) = −1 , Z i ( t + 1 ) ∈ R. (5) 

.1.4. Mobility and the inclusion of empty sites 

One of the main objectives is to study the impact of individual 

ctions on the spread of the disease. In this way, we include the 

obility on the grid on our CA model, once one of the impacts of 

uman mobility is a faster disease spread [14] . The movement of 

ndividuals is included in a CA model to study different aspects, 

s the patterns assumed by the individuals in the grid [36,37] , the 

ossibility of biodiversity in a cyclic competition model [38,39] , the 

mpact of mobility in the spread of infectious disease by vectors 

14] and by contact with infected individuals [6,13,16,34] . 

To include the movement of individuals in our model, we follow 

he mobility strategy used by Boccara and Cheong in their work 

bout automata network for the SIR model [34] . In this way, we 

mpose the movement to the exchange of places between an indi- 

idual and an empty site. The mobility occurs randomly: a site is 

andomly chosen as well as a neighbor; if the site is active (occu- 

ied by an individual in any state) and the neighbor is an empty 

ite, the mobility occurs, otherwise, the sites remain unchanged. 

ith the inclusion of the mobility rule, we have two rules: the 

ovement and the state transition of every site. These two rules 

re applied sequentially, first we consider the mobility and after 

he mobility rule is applied to every individual, we applied the 

ransition state rule. The mobility process is shown in Fig. 1 (b). 

With the inclusion of empty sites, we add a new set of states in 

quations (2) : Emp = {−2 } . Following the inclusion of empty sites, 

e alter the studied neighborhood of a susceptible individual in 
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Fig. 2. Time evolution for each population in the SEIR model. In each generation, 

all the sites are chosen randomly and according to their state, the individual in the 

site follow the transition rules ( S → E, E → R and I → R ). The blue, yellow, red and 

black colors indicate the susceptible, exposed, infected and recovered individuals 

in the grid. The result is an average of 30 simulations. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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Fig. 3. Lattice (a) before and (b) after the implementation of control in the lattice. 

The schematic lattice is of size 20 × 20 . The blue, yellow, red and black sites rep- 

resent susceptible, exposed, infected and recovered individual. The gray sites are 

empty sites and the white sites, only present in the lattice in (b), are the “blocked 

sites”. In this figure, N = 20 , f emp = 0 . 5 and q = 0 . 5 . (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 

s

t

f

a  

w

u

a

s

p

i

d

o

b

i

t

i

p

o

t

s  

F

t

i

p

a

3

p

a  

a

s  

t  

0  

g  

0

v

p

n

s

i

he transition S → E: when an empty site is in the neighborhood 

e consider the next site to enter in the computation of the prob- 

bility of the infection P . A schematic illustration of the situation 

s present in Fig. 1 (c). 

.1.5. Initial condition 

Now that the transitions rules are defined, we need to specify 

he initial condition for the CA. We establish that a number N E and 

 I of the sites will contain exposed and infected individuals, on the 

nitial grid. To construct this grid, we randomly chose N E ( N I ) sites

nd select, also randomly, one value that belongs to E ( I). After this 

tep, we randomly choose a fraction f emp of the sites to be empty 

 i (t = 0) = −2 , to enable mobility. The rest of the sites are set to

he susceptible state Z i (t = 0) = 0 . 

Evaluating the model described by the last sections ( 2.1.1 to 

.1.4), we obtain the following time evolution for each popula- 

ion of the SEIR model ( Fig. 2 ) for P i = 0 . 7 , N E = 75 , N I = 0 , t e = 6 ,

 i = 10 , N = 100 and f emp = 0 . 3 . The values of these parameters are

ll fixed, except f emp , for all paper. The magnitude of each popula- 

ion is the density related to the total number of sites in the grid. 

n every generation g, all sites are evolved. 

Analyzing the time evolution presented in Fig. 2 , we observe 

he similar form obtained by the differential equation models [22] . 

he susceptible population decreases as the recovery population 

ncreases over time until a stationary value achieved when the dis- 

ase spread ends. The exposed and the infected populations in- 

rease until a maximum value and then they decrease and assume 

 null value in the end of the epidemics. In this way, our model 

an be considered to reproduce the behavior of the SEIR model. 

e perform some tests for greater values of N and observe that if 

he proportion N e /N 

2 is the same for all values of N, the results are

imilar. Keeping this proportion, the peak value of the curve I and 

he generation g when the peak occurs are practically the same. 

o be more precise, the difference is less than 0.0 0 06 for the peak

f I and less than 2 generations of difference for when the peak 

ccurs. 

.2. Infection control and relaxation of control measures 

We propose the infection control by individual mobility restric- 

ion on the grid and by the decrease of the infection probability P . 

y this framework, we consider the transformation of some empty 
4 
ites in “blocked sites”, which are sites that do not participate in 

he mobility and protect the susceptible neighbors. 

The proposed control method for our CA model is the trans- 

ormation of a fraction q of empty sites in blocked sites, when the 

mplitude of the infected population reaches a value I max . In Fig. 3 ,

e show the implementation of the control in a schematic lattice. 

The inclusion of blocked sites decreases the number of individ- 

als moving on the lattice and, consequently, decreases the prob- 

bility of an infected individual reaching a susceptible one and 

preading the disease. The blocked sites also decrease the infection 

robability P : when they are in the neighborhood of a susceptible 

ndividual they act as a shield, once the action of the infected in- 

ividual right next to the blocked site is neutralized. 

After the implementation of the control, we simulate the easing 

f control measures and modify the scenario to a case with fewer 

locked sites. In this study, we consider the relaxation of control 

n order to analyze the possibility of a second wave of infection in 

he model. We propose the relaxation when the amplitude of the 

nfected population reaches a minimum value I min , after the first 

eak of the disease spread, and the relaxation occurs by the return 

f all the blocked sites to the empty site state. With this relaxation, 

he mobility and the infection probability recover their pre-control 

tate, as shown in Fig. 3 , the panel (b) returns to the scenario in

ig. 3 (a). 

In the next section, we present our numerical simulations about 

he control and the relaxation on the model. First, we analyze the 

mpact of different control parameter q in the peak of the infected 

opulation. In a second moment, we investigate the possibility of 

 second wave due to the relaxation of control measures. 

. Numerical results 

In this section, we present the results related to the control im- 

lementation and to the relaxation of control measures. We set 

s the limit value for the implementation of control I max = 0 . 008

nd use the same value for the I min , the relaxation of control mea- 

ures. From our simulations for q = 1 . 0 and f emp = 0 . 3 , we observe

hat the peak of infections (maximum value of I) for 0 . 001 < I max <

 . 004 are smaller. The peaks for I max = 0 . 005 and I max = 0 . 006 are

reater comparing to the peaks of the curves for 0 . 007 < I max <

 . 01 , which indicates an intermediate behavior. From these obser- 

ations, we choose an intermediate scenario, I max = 0 . 008 and em- 

hasize that the choose of I max can impact in the epidemic sce- 

ario, such as the maximum of the infection and, probably, in the 

econd wave scenario. However, in this paper, we do not study the 

nfluence of I max . For the next results, we choose two values for 
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Fig. 4. Control effect on the normalized infected population for different values of 

control parameter q . All the infected curves are an average of 30 simulations. 
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Table 1 

Total number of infections and relative percentage difference, related to the 

case with no control, for different values of control parameter q . 

Control parameter q 

Total number of 

infected individuals 

Relative percentage 

difference 

0.0 68,577 - 

0.3 66,256 3.4 % 

0.5 63,470 7.4 % 

0.7 56,793 17.2 % 

1.0 32,006 53.3 % 

n
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f emp = 0 . 3 and f emp = 0 . 5 , corresponding to different quantities of

mpty sites and, consequently, to different mobility scenarios. 

.1. Infection control 

For the implementation of control measures, we select a frac- 

ion q of empty sites to become barriers, blocked sites. In order to 

emonstrate the impact of different control magnitudes, we sim- 

late the epidemic for five different values of q : q = 0 . 0 (no con-

rol), q = 0 . 3 (low control), q = 0 . 5 (medium control), q = 0 . 7 (high

ontrol) and q = 1 . 0 (maximum control). The time evolution of the 

ensity of infected individual for all these different control magni- 

udes are shown in Fig. 4 . 

For the curves in Fig. 4 , we can conclude that an increase of the

ontrol parameter q decreases the peak amplitude of the infected 

urve and extends the duration of the disease spread. The control 

ethod that we propose in this model presents the expected re- 

ult for control measures in an epidemic spread model, namely the 

eak amplitude decreases more for higher control and the duration 

f the spread is longer. As the peak amplitude decreases, the total 

umber of infected at the same time is lower, which is beneficial 

or the health system to avoid its saturation. 

A similar result was showed by Lima and Atman (Ref [13] .) with 

heir model based on a combination of an agent-based model with 

robabilistic cellular automata. The paper proposed the inclusion 

f two methods to control the disease spread, first with the restric- 

ion to mobility and, secondly, with the consideration of mask used 

y individuals. The model proposed by Lima and Atman is more 

omplex and considered more elements, like the heterogeneity of 

he population and the use of personal protective equipment. Com- 

aring our results on the impact of mobility restriction with those 

resented in Ref [13] ., in both surveys, we observe that stronger 

estrictions lead to a decrease in the peak of the infected curve 

nd the impact is more effective for restrictions near to lockdown, 

n which the mobility is almost null ( q > 0 . 7 in our case and re-

triction greater than 70% in their results). However, the decreased 

eak of the infect curve happens in a different way for both re- 

earches. In our model, the peak, for the restricted case, happens 

lmost in the same generation as the peak for the non-controlled 

ase, as we observe in Fig. 4 for q = 0 . 3 , q = 0 . 5 and q = 0 . 7 . For

he Lima and Atman model, the occurrence of the decreased peak 

s delayed and occurs some time later, when compared to the un- 

estricted case. These differences must be a consequence of differ- 

nt control methods in the models. For our case, the restriction 

ccurs after the infected curve reaches a certain value, while for 

he Lima and Atman model the restriction is present all the time. 

In Table 1 , we present the total number of sick individuals for 

ach curve shown in Fig. 4 . From the results in Table 1 , we ob-

erve that for higher values of the control parameter q the total 
5 
umber of infected individuals is lower, but by the observation of 

ig. 4 , the duration of the spread is longer. In this way, we can con-

lude that the implementation of the control is important due to a 

ower number of infected individuals and the decrease in the num- 

er of possible deaths from the disease. In order to enlighten the 

ecrease, we also present in Table 1 the percentage difference re- 

ated to the total number of infected individuals for the case with- 

ut control ( q = 0 . 0 ). 

In Table 1 , we verify a decrease of the total number of in-

ected individuals with the implementation of control measures. 

or lower values of q , the decrease is lower than 10% while for 

 = 0 . 7 , the decrease is 17% . For the total control case, the decrease

s higher than 50% . With this result, we can conclude that it is nec-

ssary to implement a control with q > 0 . 7 to obtain a reduction

reater than 15% in the number of cases. 

In the next section, we will study the consequences of easing 

ontrol. With the analysis of a possible second wave, we observe 

he impacts of the disease spread in the grid in a more “realistic”

cenario, once it is impossible to maintain the control measures 

uring a long time due to economic reasons. 

.2. Relaxation of control measures 

For the relaxation of control measures in our model, we follow 

he steps defined in Section 2.2 . The time evolution of the lattice 

ccurs without control until the value of I reaches I = I max = 0 . 008

nd a fraction q of the empty sites becomes “blocked” sites. After 

he peak of the disease spread (maximum value of I), the curve I

ecreases and, when the value of I reaches I = I min , the relaxation 

ccurs and all the blocked sites turn into empty sites again (equiv- 

lent to q = 0 . 0 situation). In this study, we choose I min = 0 . 008 ,

.e. , when the epidemic state returns to the situation in which con- 

rol was implemented. 

In order to study different scenarios of control and its subse- 

uent relaxation, we simulate the evolution of the epidemic, for 

he CA model with control and relaxation, for different values of 

 and we choose g = 500 generations as the length of time series. 

he result is shown in Fig. 5 . 

In Fig. 5 , we show several time series for the infected popula- 

ion for different values of q . The magnitude of the I curve is rep- 

esented by the color scale. For both cases, f emp = 0 . 3 ( Fig. 5 (a))

nd f emp = 0 . 5 ( Fig. 5 (b)), the higher values of I are concentrated

n the beginning of the evolution ( g � 100 ) and for lower values

f q . From this observation, we can conclude that for less control 

 q < 0 . 4 ) the infected curve presents a higher peak and, after it, the

pread ends for g ≈ 200 , namely the density of infected individuals 

s higher but the infection ends sooner, even with the relaxation of 

ontrol measures. 

When a higher control is applied in the system ( q > 0 . 4 ), we

ee an extension of the blue region, in Fig. 5 (a) and (b), with light

lue regions separated by a dark blue section. Following the color 

cale, this scenario represents two peaks separated by a section of 

owers values of I, which characterizes a scenario of a second wave 

f infections [22] . To elucidate this scenario, we plot some curves 
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Fig. 5. Time evolution for the density of the infected population for different values of the control parameter q . The relaxation occurs when I = 0 . 008 after the peak of the 

infected curve I. (a) f emp = 0 . 3 and (b) f emp = 0 . 5 . All time evolutions are an average of 30 simulations. 
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f I for four values of q : q = 0 . 0 (no control), q = 0 . 4 (apparently

o second wave), q = 0 . 8 and q = 1 . 0 for high and total control,

espectively. The time evolutions for I are shown in Fig. 6 (a) and 

c). We also present, in Fig. 6 , the total value of infected individu-

ls, I T , for the same control parameter q and for f emp = 0 . 3 ( Fig. 6

b)) and f emp = 0 . 5 ( Fig. 6 (d)). 

From the curves shown in Fig. 6 (a) and (c), we observe a sec-

nd peak in the curve, for q = 0 . 8 and q = 1 . 0 , indicating a second

ave scenario in the model. For a lower value of q , q = 0 . 4 , a sec-

nd peak is not present but we see a change in the decay in the

nd of the disease spread. When the relaxation occurs in q = 0 . 4 ,

he decay slope increases, leading to a slower decay, but the mit- 

gation of the control measure is not enough to initiate a second 

ave of infections. This outcome is explained by the shortage of 

usceptible individuals after the first wave of infection. The sce- 

ario is different for q = 0 . 8 and q = 1 . 0 , in which the amplitude of

he first peak is comparatively smaller and the decay of the infec- 

ion curve occurs long before the curves for q = 0 . 0 and q = 0 . 4 . In

his way, there is a larger number of susceptible individuals avail- 

ble to the infection what causes the second peak when the con- 

rol measures disappear. 

It is important to state that the lower values of I and I T for the

ig. 6 (c) and (d), in comparison to the curves in Fig. 6 (a) and (b),

re a consequence of the different values of empty sites. Once the 

ensity I is related to the total number of sites, the highest value 

f I for the case f emp = 0 . 5 is lower than for f emp = 0 . 3 , due to the

ower number of active sites. 

Observing the total number of cases in Fig. 6 (b) and (d), the 

ases with relaxation present a cumulative number lower than for 

he case with no control during all the simulations. For f emp = 0 . 3 ,

he cases for q = 0 . 4 and q = 0 . 8 follow the rule that intense con-

rol measures decrease the total number of infections. The excep- 

ion occurs for q = 1 . 0 , where the total number of infection sur-

asses the number for q = 0 . 8 . Now, for f emp = 0 . 5 , we verify a dif-

erent scenario. For higher values of q , q = 0 . 8 and q = 1 . 0 , the to-

al number of infections is higher than for the case of lower value 

f q , q = 0 . 4 . However, for all the cases with control, the cumula-

ive number of infections is still smaller than for the case without 

ontrol. 

We conclude that the relaxation can generate a second wave of 

nfections and the total number of cases may be close to the case 

ith no control. Thus, the implementation of control measures and 

he choice to relaxing these measures have a great impact in the 

isease spread and in the total effect of the disease in the lattice. 

In order to demonstrate how the waves of infection occur in the 

attice, we plot the grid for the local maximums and minimums of 

he infected curve for the case in orange in Fig. 6 (a), i.e., q = 1 . 0

nd f emp = 0 . 3 . The grids are shown in Fig. 7 . 
t

6 
As we observe in Fig. 7 , the infection occurs at some different 

laces distributed in the lattice, as we observe several red sites 

n the grid. This occurs due to the fact that we consider N E = 75

xposed individuals at the initial generation. The peaks occurs at 

 = 29 ( Fig. 7 (a)) and at g = 204 ( Fig. 7 (c)). They are represented

y a higher concentration of red sites in the lattice. The waves 

f infections happen in a distributed way in the lattice, in which 

he emergence of infected individuals occurs in different parts of 

he space. We point out that the first wave occurs during the con- 

rol moment, all the empty sites are blocked (white sites) and no 

obility is possible. The minimum of the infected curve is rep- 

esented in Fig. 7 (b), a snapshot at g = 130 . As we observe, the

umber of red sites is lower and the majority of the grid is com- 

osed of blue and gray sites. In Fig. 7 (d), we see the lattice at the

nd of the spread, in which there are no red or yellow sites, only 

usceptible and recovered individuals and empty sites. With this 

esult, we can understand how the waves of infection occur in the 

attice, they occur in different places in the grid due to mobility 

nd the to various exposed individuals in the initial condition. 

. SEIRS Model - inclusion of reinfection 

In this section, we consider a temporary immunity of the in- 

ividuals, i.e. , the recovered individuals can become susceptible 

gain. When the reinfection is considered, as the SEIRS model, we 

eed a new transition rule, give by R → S. For our model, we pro-

ose and study two different transition rules: fixed immunity time 

nd probabilistic. 

.1. Transition rule R → S: Fixed immunity time 

Similarly to the transition E → I described in equation (4) from 

ection 2.1.2 , we propose the transition R → S as, 

 i ( t ) ∈ R → Z i ( t + 1 ) = Z i ( t ) , Z i ( t + t imm 

) ∈ S. (6) 

rom this rule, a individual stays in the recovered state for a time 

 imm 

, and then becomes susceptible. 

In order to study the impact of the immunity loss of the in- 

ividuals in the lattice, we include the rule from equation (6) in 

ur model with the implementation and relaxation of control mea- 

ures. For a case with control and immunity loss, we study dif- 

erent combinations of the control parameter q and the immunity 

ime t imm 

. 

We analyze the possibility of the extinction of the epidemic 

ith the chance of reinfection, by the implementation and relax- 

tion of control measures. Thus, we study the averages of the in- 

ection peaks for different values of q and t imm 

. For this computa- 

ion, we evolve the lattice, for the same parameters values used in 
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Fig. 6. Time evolution for the density of the infected population for some values of the control parameter q for (a) f emp = 0 . 3 and (c) f emp = 0 . 5 . The accumulated value of 

infected individuals are present in the right column: (b) f emp = 0 . 3 and (d) f emp = 0 . 5 . 

Fig. 7. Grids for different scenarios of infection for q = 1 . 0 and f emp = 0 . 3 , the orange curve in Fig. 6 (a). The grids in (a) and (c) are respective to the peaks of the curve, at 

generations g = 29 and g = 204 , respectively. In (b), we have the snapshot of the lattice for g = 130 , relative to the valley between the two peaks. At last, (d) represent the 

system at g = 500 , the end of the disease spread. 
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ig. 5 , for 10 0 0 generations and then, for the last 500 generations,

e compute the average of the local maximums of the curve I. We 

alculate this average I a v for different values of q and t imm 

. The re-

ults are presented in Fig. 8 for f emp = 0 . 3 and f emp = 0 . 5 . The im-

lementation and relaxation of control measures are applied in the 

ame according to Figs. 5 and 6 . As we established for the other

esults, we calculate for an average of 30 simulations. 

In Fig. 8 , the color scale indicates the magnitude of I a v . The col-

red regions display combinations of q and t imm 

for which the epi- 

emic does not end in 10 0 0 generations. Meanwhile, for the black 

egion, we observe situations related to the extinction of the epi- 

emic, even with the relaxation of control measures and the re- 

nfection. The higher values of I a v are more present for lower val- 

es of t imm 

. As we see, even for a total control measure q = 1 . 0 ,

he average is high: I a v ≈ 0 . 05 for f emp = 0 . 3 and I a v ≈ 0 . 03 for

f emp = 0 . 5 . As the value of t imm 

increases, the average I a v decreases

or all values of q and for both values of f emp . 

From the perspective of the epidemic annihilation, the end of 

he spread occurs to high values of t imm 

, t imm 

> 210 , and low val-

es of q for both values of f emp . For f emp = 0 . 5 , we can also ob-

erve annihilation cases for higher values of q and t imm 

, indicated 
Z

7 
y the black region in the upper right corner in Fig. 8 (b). The first

lack region, for higher values of t imm 

and lower values of q can 

e explained by the fact that, with low control measures (lower 

alues of q ), a higher number of individuals are infected in the be- 

inning of the spread, then, when the individuals become suscepti- 

le again, there are not more infected individuals to perpetuate the 

isease spread in the lattice. The second black region for f emp = 0 . 5

s a consequence of a higher control. There are more empty sites 

nd less active individuals so, with q ≈ 1 . 0 and t imm 

> 360 , the dis-

ase can be extinct. 

.2. Transition rule R → S: Probability P RS 

For the second type of the transition rule R → S, we consider 

 probabilistic rule, in which the recovered individual returns to 

he susceptible state with probability P RS . This rule is similar to 

he recovery rule, related to the transition I → R , in Equation (5) .

herefore, the probabilistic transition rule R → S is defined by 

quation (7) , 

 i (t) ∈ R 

P RS −→ Z i (t + 1) ∈ S : Z i (t + 1) = 0 . (7) 
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Fig. 8. Parameter space for the SEIRS model, with immunity time fixed, for different values of immunity time t imm and control parameter ( q ). The color scale indicates the 

average of the amplitude of I for the last 500 iterations from a time series of length 10 0 0 iterations. The fraction of empty sites in the lattice is (a) f emp = 0 . 3 and (b) 

f emp = 0 . 5 . 

Fig. 9. Parameter space for the average of the amplitude of I (color scale) for the last 500 iterations from a 10 0 0-iterations time series for different values of immunity time 

( t imm ) and magnitude control ( q ). The fraction of empty sites is (a) f emp = 0 . 3 and (b) f emp = 0 . 5 . 
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he probability P RS is defined according to the immunity time t imm 

, 

hich is the time that an individual can remain recovered. Fol- 

owing the same logic used for P IR ( equation (5) ), we define P RS as

 RS = 1 /t imm 

. 

In order to understand how a probabilistic loss of immunity 

ill impact in the epidemic spread, we repeat Fig. 8 , considering 

he transition rule stated in Equation (7) for an average of 30 sim- 

lations, as shown in Fig. 9 . 

Comparing Fig. 8 and Fig. 9 , we observe significant different re- 

ults. As mentioned in the previous section, the case with a fixed 

mmunity time ( Fig. 8 ) presents pairs of q and t imm 

where the epi-

emic can be extinct, represented by the black regions. For the 

robabilistic scenario, the epidemic is rarely over and the average 

f the infection curve peaks, for the last 500 generations, is non- 

ull for all the pairs (q, t imm 

) for both f emp = 0 . 3 and f emp = 0 . 5 . In

igs. 9 (a) and (b), we see some dark points in the upper region of

he parameter space, which indicate values of I a v about zero. 

Even with a non-null case for I a v in Fig. 9 , we verify that for

igher values of t imm 

, the average I a v is lower, indicating a smaller 

umber of infected individuals for the last 500 generations. For 

ower values of t imm 

, the average is higher and decreases for higher 

alues of the immunity time. 

If we compare the results for the two transitions rules for R → S

n Figs. 8 and 9 , we also observe that the maximum value of I a v for

oth cases are similar. We conclude that, for the proposed control 

ethod, the extinction of the epidemic is only possible for high 

alues of t imm 

and for the case with a fixed immunity time. If the 

ransition R → S follows the probability P RS = 1 /t imm 

, the extinction 

s not possible and the control only decreases the average I a v for 

igher values of t imm 

. 
8 
. Conclusions 

In this paper, we studied the SEIR epidemic model by a cellular 

utomata portrait. With the proposed model, we could understand 

he impact of mobility of individuals on the disease spread. As a 

ovelty, we proposed a method to include mitigation measures, as 

solation and quarantine in the population. From our mathemat- 

cal simulations, we conclude that the implementation of control 

easures decreases the amplitude of the curve of infected individ- 

als and increases the duration of the pandemic, as expected. We 

lso observe that, for a control with more than 70% of the possible 

aths blocked (blocked sites), the decrease in the total number of 

nfected individuals is greater than 15% , throughout the epidemic. 

 similar result was obtained by Lima and Atman for a SIR model 

ased on probabilistic cellular automata [13] . The model proposed 

y Lima and Atman includes 8 different states for the individuals 

nd the heterogeneity of the population is represented by infec- 

ions of different severities, such as asymptomatic, symptomatic, 

eed for hospital ward or ICU. Through our model, which is sim- 

ler, we observe a similar result for the decrease of the infected 

urve but the shape is different, once it is not flatted for stronger 

estrictions, and the peak does not suffer a delay for most values 

f q . Therefore, we affirm that our model can reproduce the impact 

f restriction of mobility in the disease spread. Our model does 

ot include data from literature, however, we believe that it can 

e used to model a specific disease. 

We also investigate the possibility of a second wave of infec- 

ions in our CA based model. Our numerical results showed that a 

econd wave scenario is possible and it happens for greater values 

f the control parameter q . This happens because, with larger con- 
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rol, there are more susceptible individuals available to become in- 

ected when the control measures are relaxed. With this result, we 

how that the mitigation of restriction measures when the state of 

he epidemics is the same in which the control was implemented 

eads to a second wave scenario. Moreover, the total number of in- 

ected individuals can be close to the situation with no control. 

Lastly, we study the possibility of epidemic extinction for the 

EIRS model with only one implementation and attenuation of 

ontrol measures. We proposed two transition rules for the re- 

urn of recovered individuals to the susceptible state: fixed immu- 

ity time and probabilistic transition. From the parameter spaces 

or the average of the amplitudes of the curve I, we were able 

o identify the end of epidemics ( I a v = 0 ) only for the transition

ased on fixed immunity time, for higher values of immunity time 

 imm 

> 180 . We can imply that with a longer immunity time, when

he recovered individual becomes susceptible, there are no infected 

ndividuals to perpetuate the epidemic. For the probabilistic transi- 

ion, the epidemic persists for all pairs of control parameter, q , and 

mmunity time, t imm 

combinations. 

This survey presents an epidemic model, based on cellular au- 

omata, that can be used to study the impacts on the disease 

pread of the individuals moving in the space. We showed that 

or some strategies of control and the attenuation of the control 

easures, it is possible to extinct the epidemic even with the pos- 

ibility of reinfection, for a fixed immunity time. We considered a 

omogeneity population, which all individuals respond to the epi- 

emic equally. In future studies, it will be interesting to include 

eterogeneity in the population, as well as the possibility of phar- 

aceutical control measures, such as medicines or vaccines. 
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