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Fractal structures appear very often in open Hamiltonian systems, and can be identified in the
deposition of chaotic magnetic field line on the plates of a tokamak divertor. Indeed, tokamaks
with divertors are used to control the magnetic confinement of plasmas, such that the field
lines created by electric currents have escape channels, through which plasma particles can
be diverted out of the tokamak wall and redirected to divertor plates. In this work, we use
a symplectic map to investigate the deposition patterns on the plates of a divertor. We show
that the pattern of magnetic footprints on divertor plates (deposition patterns) underlying the
chaotic orbits involves a number of fractal structures related to the existence of a nonattractive
invariant chaotic set. In order to investigate the fractal characteristic of magnetic footprints, we
analyze quantitatively the degree of stability of the fractal structure by calculating the entropy
of the basin. These numerical analyses indicate that the fractal pattern on the divertor plates
depends sensibly on the magnetic field structure. We show qualitative evidences of the Wada
property.

Keywords : Fractal structure; magnetic footprint; tokamak divertor.

1. Introduction

The achievement of fusion plasma energy is a
long-term goal of a number of large undertak-
ings throughout the world, the foremost example
being the ITER (International Thermonuclear
Experimental Reactor), currently being assembled
[Horton & Benkadda, 2015]. ITER is designed to
produce a deuterium-tritium plasma in which the
fusion reactions are sustained through internal heat-
ing. It is expected that, from a 50 MW of input
heating power, ITER will produce 500 MW of fusion
power: a ten-fold increase [Agency, 2002].

One of the major technical problems of generat-
ing a fusion plasma capable of delivering such power
is the release of high-energy fusion products such
as Helium atoms or impurity atoms created from
plasma-wall interactions [Post & Behrisch, 1986].
The resulting heat and particle transport in ITER
is expected to generate heat loads of 5–10 MW/m2

that can damage the tokamak inner wall [Federici
et al., 2003].

In order to mitigate this undesirable effect, the
concept of a divertor has been developed, which is
a shaped metallic plate placed outside the plasma
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boundary so as to capture or divert particles
escaping from the plasma [Cordey et al., 1992].
Besides ITER, other currently operating toka-
mak devices like JET (Joint European Torus) and
Alcator C-Mod also use divertors with this purpose
[Bertolini et al., 1992; Lipschultz et al., 2007].

The basic idea underlying the operation of a
divertor is that magnetic field lines can be arranged
so as to deviate charged particles from the outer
plasma region and direct them to a metallic plate.
However, if the heat and particle loadings are not
mitigated, the divertor plates could be damaged as
well. In order to do so, a chaotic region of mag-
netic field lines in the outer plasma region is created.
This helps to distribute such loadings over a larger
region of the plates, forming the so-called magnetic
footprints.

It was experimentally observed that magnetic
footprints in divertor plates are not uniform, and
show a degree of self-similar behavior [Kroetz et al.,
2008; Jakubowski et al., 2009]. In other words, the
points comprising the magnetic footprints corre-
spond to chaotic trajectories that spend widely dif-
ferent times before escaping to the divertor plates.
Hence the hot spots (particles with large escape
times) and cold spots (small escape times) in a mag-
netic footprint are mixed together in a complicated
fashion. The particles with a long escape time can
come from inner regions of the chaotic layer and
reach the divertor plate carrying energetic particles
from the inside of the plasma, hence the name hot
spots.

The main point of the present paper is that
magnetic footprints is a kind of fractal structure
which ultimately arises from the nonintegrable
nature of the magnetic field line structure [da Silva
et al., 2002]. The structure of invariant manifolds
act as escape channels through which plasma par-
ticles are directed to the divertor plate, forming
magnetic footprints on it [Abdullaev et al., 1998;
Abdullaev & Finken, 1998; Abdullaev et al., 1999;
Abdullaev et al., 2001; Portela et al., 2008]. One
of the tools recently developed to investigate the
uncertainty inherent to such fractal structures is the
so-called basin entropy [Daza et al., 2016, 2017].
This is a measure of the final-state unpredictabil-
ity of a dynamical system, given the fractal nature
of the corresponding basins. If the system is dis-
sipative, we analyze basins of attraction, but if is
conservative, we analyze basins of escape [Aguirre
et al., 2001]. We investigate the relation between

fractal basins of escape and magnetic footprints in
a divertor tokamak using the basin entropy as the
main tool.

This paper is organized as follows: in Sec. 2, we
outline the basics of the magnetic field line structure
in a divertor tokamak, emphasizing the Hamilto-
nian nature of the equations. In Sec. 3, we consider
an area-preserving two-dimensional map proposed
to investigate a divertor tokamak, exploring some
of its dynamical properties. In Sec. 4, we present
some numerical examples of escape patterns of mag-
netic field lines on the divertors plate. In Sec. 5, we
characterize the fractality of magnetic footprints. In
Sec. 6, we verify the existence of the Wada property,
an extreme form of fractality. Finally, in Sec. 7, we
report our conclusions.

2. Magnetic Field Line Map

The tokamak is a toroidal device for the magnetic
confinement of a high-temperature plasma using
two main magnetic fields: the toroidal field BT cre-
ated by external coils and the poloidal field BP ,
generated by the plasma itself. The equilibrium
field B0 = BT + BP has helical magnetic lines
of force on toroidal surfaces called magnetic sur-
faces. The magnetic surface with zero volume is
called magnetic axis. Figure 1(a) depicts the basic
tokamak geometry used in this paper. We denote
by R0 the distance between the magnetic axis and
the symmetry (vertical) axis, and by φ the toroidal
angle.

If we assume that the Tokamak plasma is in
a MHD equilibrium state with axial symmetry it
is possible to describe magnetic field line struc-
ture by a Hamiltonian description, by consider-
ing the toroidal angle φ as a timelike coordinate
[Whiteman, 1977; Bernardin & Tataronis, 1985].
Let (x1, x2, x3) denote the contravariant coordi-
nates and B = (B1, B2, B3) the contravariant mag-
netic field components. The canonical variables are
q = x1,

p =
∫

dx2√gB3(x1, x2) + γ(x1, x3), (1)

where g = det gij is the determinant of the covari-
ant metric tensor, and we consider the ignorable
coordinate t = x3 as the timelike variable.

The magnetic field line equations, viz. B ×
d� = 0, where d� is the line element along the
field line, can be written as Hamilton’s equations
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Fig. 1. (a) Schematic figure showing the basic geometri-
cal features of a Tokamak and (b) field line coordinates in
a Poincaré surface of section φ = 0.

of motion

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
. (2)

The variables (q, p) are the canonical coordi-
nates of position and moment, respectively, and t
is the canonical time. The field line Hamiltonian is
given by

H =
∫

dx2√gB1(x1, x2) + δ(x1, x2), (3)

and the functions γ and δ are related to the canoni-
cal moment and the field line Hamiltonian through
Eqs. (1) and (3), respectively. These functions must
be chosen so as to satisfy the following identity

√
gB2 +

∂H

∂x1
+

∂p

∂x3
= 0. (4)

Due to the axial symmetry of the overall config-
uration, we can study the magnetic field line struc-
ture using a Poincaré surface of section, which is
a plane (φ = 0). The magnetic field line position
in this plane can be described by polar coordinates
(x, y), where the origin is placed at the magnetic
axis position [Fig. 1(b)].

The polar coordinates of the nth intersection
of a given magnetic field line with the surface sec-
tion at φ = 0 are denoted (xn, yn). A Poincaré map
relates the coordinates of two consecutive intersec-
tions of a field line with this plane, namely

xn+1 = F (xn, yn), (5)

yn+1 = G(xn, yn), (6)

where the functions (F,G) depend on the field line
Hamiltonian (3) and are usually obtained by inte-
grating numerically the field line equation.

The Hamiltonian nature of the magnetic field
line flow implies that the Poincaré map (5) and (6)
is area-preserving in the surface section, that is,

detJ =

∣∣∣∣∣∣∣∣∣∣

∂xn+1

∂xn

∂xn+1

∂yn

∂yn+1

∂xn

∂yn+1

∂yn

∣∣∣∣∣∣∣∣∣∣
= 1. (7)

According to MHD theory, equilibrium mag-
netic field lines lie on toroidal nested magnetic sur-
faces (also called flux surfaces, since the magnetic
flux they enclose is constant), and form concentric
circles in the surface section φ = 0. The plasma
boundary is a magnetic surface of radius a, which
is separated from the vessel inner wall by a region
often called scrape-off layer, where particles coming
from the plasma core diffuse and eventually collide
with the wall.

Using polar coordinates in the surface section
(rn, θn), defined as xn = rn cos θn and yn =
rn sin θn [Fig. 1(b)] we have, in the lowest order
approximation, the Poincaré map corresponding to
equilibrium

rn+1 = rn, (8)

θn+1 = θn + ι(rn+1), (9)

where ι is called rotational transform. After each
iteration of this map, the field line radius does not
change and the poloidal angle increases from ιn.

It is customary to write the latter as ιn =
2π/q(rn), where q is called safety factor, which takes
on a different value for each magnetic surface. If q
is a rational number of the form m/n, where m
and n are coprime integers, any initial condition
(r0, θ0) will recur after m map iterations. For q irra-
tional any initial condition on the corresponding
circle (the intersection of a torus with the surface
φ = 0) will densely fill the circle as n goes to infin-
ity [Lichtenberg & Lieberman, 1992]. The tori asso-
ciated with these situations are accordingly called
rational and irrational, respectively. We denote by
qaxis = q(r = 0) and qedge = q(r = a) the corre-
sponding values of the safety factor at the magnetic
axis and the plasma edge, respectively.

Magnetic field line maps have been obtained
from physical models of the equilibrium and per-
turbing fields. However, in many cases the explicit
forms of the maps are quite complicated to deal
with, specially with respect to the large number
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of parameters they may contain and their possible
values. Hence, sometimes it is better to work with
simpler maps, with a few parameters, that allow an
easier numerical investigation when these param-
eters are varied. Accordingly, we expect that the
results of these numerical investigations can be
extended to those more realistic magnetic field line
maps. In the next section we consider such a field
line map, in order to explore the properties of a
divertor tokamak using a single parameter.

3. Field Line Map for a Divertor
Tokamak

One simple configuration for a divertor tokamak
consists of a horizontal metallic plate placed hor-
izontally with respect to the plane containing the
magnetic axis, and running along a limited range
over the angle φ. Assuming that plasma particles

closely follow magnetic field lines (this is only rig-
orously true if one neglect drifts and finite Larmor
radius effects) we design magnetic field lines such
that we preserve the equilibrium plasma flux sur-
faces, while adding magnetic field lines of the outer
plasma region connected to the plasma boundary
[Kroetz et al., 2010].

Such a configuration is illustrated in Fig. 2(a).
The plasma boundary is a separatrix with a hyper-
bolic point at (x = 0, y = 1). Actually this design
does not configure yet for a divertor tokamak, since
only those field lines strictly on the separatrix could
be diverted to the horizontal plate. A noninte-
grable element is necessary to create a thin region
of chaotic field lines near the separatrix, such that
the field lines in this region (and the associated
particles) are diverted to the horizontal plate. The
chaotic field lines around the separatrix are created
due to the symmetry breaking in the presence of

(a) (b)

(c) (d)

Fig. 2. (a) Phase space of the field line map (10) and (11) for k = 0.4. We indicate in the figure the separatrix and the
divertor plate positions. Enlarged view of the chaotic region near the saddle point for (b) k = 0.4, (c) k = 0.6 and (d) k = 0.8.
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magnetic perturbations created by error fields due
to asymmetries on the external coils [Pomphrey &
Reiman, 1992].

This nonintegrable element has been intro-
duced in a field line map of the form (10) and (11)
by Punjabi et al. [1992]

xn+1 = xn − kyn(1 − yn), (10)

yn+1 = yn + kxn+1, (11)

where k > 0 is a tunable parameter which quantifies
the nonintegrable effect necessary to create chaotic
field lines. (xn, yn) are the rectangular coordinates
of the nth intersection of a given magnetic field line
on the poloidal surface section, Fig. 1(b). Its Jaco-
bian matrix

J =

(
1 k(2yn − 1)

k 1 + k2(2yn − 1)

)
(12)

satisfies the area-preservation condition (7) for all
values of k.

The map (10) and (11) has two fixed points:
A = (0, 0) and B = (0, 1). From (12) A is stable (a
center elliptic point) provided 0 < k < 2, whereas B
is unstable (a hyperbolic saddle point) in the same
interval of k. In physical terms A corresponds to the
magnetic axis, and B is the intersection between the
separatrix and the y-axis.

By linearizing the map (10) and (11) around the
center A, the safety factor qaxis in this neighborhood
is given by

sin
(

2π
qaxis

)
= k

√
1 − k2

4
. (13)

For example, if k = 0.6 the safety factor close
to the magnetic axis will be qaxis ≈ 10, which is
a value too large as compared with experiments.
In order to provide a more realistic value we will
introduce a parameter Nφ, which is the number of
map iterations equivalent to one toroidal turn along
the φ-direction. In other models, it is customary to
have Nφ = 1. This parameter is introduced to have
a realistic profile of the safety factor. Accordingly,
for k = 0.6 we get qaxis ≈ 10 and qedge ≈ 30, so that
Nφ = 10 renders qaxis ≈ 10 and qedge ≈ 30 [Horton,
2018]. This means that each iteration corresponds
to a toroidal advance of Δφ = 2π/Nφ = π/5.

For any nonzero value of k, the system is nonin-
tegrable and chaotic field lines are possible. We use
the word chaos in the Lagrangian sense: two initially

close field lines become exponentially separated
after a number of toroidal turns along the tokamak.
Actually the toroidal angle plays the role of time,
since the magnetic field is considered to be strictly
time-independent.

On the other hand, more sophisticated maps
were proposed by Abdullaev et al. to investigate the
line trajectories near the hyperbolic saddle point in
tokamaks with divertors [Abdullaev & Zaslavsky,
1995, 1996; Abdullaev et al., 1998; Abdullaev &
Finken, 1998]. These maps, while quite accurate,
involve intricate integrals disturbing terms, mak-
ing their applicability too elaborate. This greatly
diminishes the advantage of explicit maps, com-
pared to numerical integrations of the differential
equations of field lines, to study the influence of
real asymmetric magnetic perturbations on the field
lines and the pattern of magnetic footprints on the
divertor plates.

The phase space for the map (10) and (11)
is shown in Fig. 2(a) for k = 0.4, where we can
identify the fixed points A and B and a number
of closed orbits corresponding to magnetic surfaces
responsible for the plasma confinement. We also
show a separatrix connecting the invariant mani-
fold originating from the saddle point B. The homo-
clinic orbit corresponds to the plasma boundary and
the two outward branches of these manifolds inter-
cept the divertor plate, which is placed just after
y = 1.0. The chaotic region near the separatrix is
best observed in the magnification in the vicinity of
B [Fig. 2(b)]. This area-filling region becomes more
pronounced as k increases from 0.6 [Fig. 2(c)] to 0.8
[Fig. 2(d)].

The smaller k is, the closer the last magnetic
surface is to point B. It is also possible to observe
magnetic islands immersed in the chaotic layer,
which are known to produce stickiness of the field
lines around the last chain of islands due to the high
concentration of points in these locations, influenc-
ing field line escape [Kroetz et al., 2008].

The origin of the chaotic magnetic field line
layer is the homoclinic tangle formed by intersec-
tions of the stable and unstable manifolds of the
saddle point B, their internal branches being shown
in Figs. 3(a) and 3(b), respectively, for k = 0.6
[da Silva et al., 2002]. We obtained the unstable
and stable manifolds from evolving forwards and
backwards, respectively, a small disk filled with ini-
tial conditions and centered at an unstable periodic
orbit embedded in the chaotic layer. The external
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(a) (b)

(c)

Fig. 3. (a) Stable and (b) unstable manifolds and (c) chaotic saddle for a chaotic orbit of the maps (10) and (11) for k = 0.6.

branches of these manifolds are similar except that
they eventually reach the divertor plate.

The intersections of the stable and unstable
manifolds form an invariant nonattracting chaotic
set called chaotic saddle [Péntek et al., 1995].
A numerical approximation of it is depicted in
Fig. 3(c). Topologically, the chaotic saddle is similar
to a Cantor dust with zero Lebesgue measure: if we
randomly choose a field line in the chaotic region,
the probability of this line being exactly on the sad-
dle is zero. Notwithstanding, a field line off but very
close to the chaotic saddle will wander through the
chaotic region approximately following the unstable
manifold until being diverted to the plate.

4. Magnetic Footprints

4.1. Continuous description
of magnetic field lines

The magnetic footprints are defined as sets of points
where the field lines strike the divertor plate. We

have seen that the invariant manifolds stemming
from the unstable periodic orbits embedded in the
chaotic saddle act as escape channels for field lines.
Hence we expect that the magnetic footprints are
projections of the invariant manifold structure in
the chaotic field line region.

The description of field lines from a discrete
mapping would give us only a one-dimensional pro-
jection of the magnetic footprints on the divertor
plate, preventing us from obtaining an accurate
determination of the strike points. Moreover the
divertor plate is extended along the toroidal direc-
tion, and thus the mapping procedure has to be
modified in order to provide a proper visualization
of magnetic footprints. Accordingly, we transform
the timelike variable from a discrete n to a contin-
uous parameter ϕ defined as

ϕ =
Nφ

2π
φ, (14)

in such a way that ϕ is proportional to the toroidal
angle φ and acts as a interpolating parameter
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allowing us to determine the strike point at which
a field line intercepts the divertor plate. Thus, the
introduction of a continuous time variable give us
a two-dimensional footprints view, comparable to
those observed in experiments.

We thus modify the map (10) and (11) to
include this continuous parameter:

x(ϕ) = xn − kϕyn(1 − yn), (15)

y(ϕ) = yn + kϕx(ϕ), (16)

where 0 ≤ ϕ ≤ 1 acts as an interpolating parameter
between two iterations of the map, such that

(x(0), y(0)) = (xn, yn), (17)

(x(1), y(1)) = (xn+1, yn+1). (18)

Another advantage of using the continuous vari-
able ϕ is that it can be used as a timelike variable in
a Hamiltonian description of field line dynamics. In
this case (x, y) are respectively the coordinate and
canonically conjugated momentum, with the corre-
sponding Hamilton equations

dx

dϕ
=

∂H

∂y
, (19)

dy

dϕ
= −∂H

∂x
, (20)

where ϕ is the canonical time and H is the field line
Hamiltonian. In this framework, we can regard the
map (10) and (11) has solutions similar to those of
the canonical equations with the Hamiltonian

H(x, y) =
1
2
k(x2 + y2) − 1

3
ky3. (21)

The Hamiltonian (21) has a mechanical analo-
gous which is a particle subjected to a one-dimen-
sional potential function U(y) ∝ y2/2 − y3/3, such
that U(y → ±∞) → ∓∞. The latter corresponds to
a potential well around the center at (x = 0, y = 0)
and a hill at the saddle point (x = 0, y = 1). These
elliptic and hyberpolic points correspond qualita-
tively to those generated by the map given by (10)
and (11).

Since this Hamiltonian does not depend explic-
itly on the timelike variable ϕ the system is inte-
grable and thus cannot describe completely the field
line dynamics exhibited by the map (10) and (11).
In order to make the system nonintegrable, such
that it can present a chaotic orbit, it would be
necessary to add a “time”-dependent perturbation
to (21).

4.2. Numerical determination
of magnetic footprints

Given the continuous description previously intro-
duced, it is straightforward to obtain magnetic foot-
prints from Eqs. (15) and (16). Once we set the
divertor plate position yp, we start from an ini-
tial condition (x0, y0) randomly chosen inside the
chaotic layer existent in phase space for any nonzero
value of the parameter k. We divide the phase space
region in a grid of 103 × 103 initial conditions and
iterate the discrete map (10) and (11) for each of
these initial conditions by a maximum of 104 times
or until we reach the divertor plate, i.e. until the
condition

yn ≤ yp ≤ yn+1 (22)

is fulfilled. We consider the maximum integration
time to be 104, in order to obtain as much infor-
mation as possible from the system. Actually the
location, size and shape of the plate can be accom-
modated in the method. For the results presented
here, we choose yp = 1.0.

Once the condition (22) is fulfilled, we look for
the coordinates (xp, yp) of the strike point, i.e. the
point where the field line collides with the divertor
plate. The value of ϕ corresponding to the strike
point (denoted by ϕs) is given by (16) as the solu-
tion of the following equation

yp = yn + kϕs[xn − kϕsyn(1 − yn)], (23)

and, inserting back the value of ϕs in (15) gives the
other coordinate of the strike point

xp = x(ϕs) = xn − kϕsyn(1 − yn). (24)

The range of ϕ is limited to two consecu-
tive iterations of the map. If we chose Nφ = 10,
from (14) we have that Δϕ = 1 corresponds to an
angular interval of Δφ = π/5.

The magnetic footprints obtained by this pro-
cedure are shown in Fig. 4 (left panels, where the
right panels are magnifications), for yp � 1.0 and
different values of the parameter k. We show the
x-coordinates of the strike points and the corre-
sponding values of ϕs in the interval [0, 1], which
corresponds to an angular extension of Δφ = π/5
of the divertor plate. In a colorscale we also indicate
the connection length for each strike point, which
is the number of map iterations needed for a given
field line to strike the divertor plate.

For k = 0.4 the magnetic footprint consists of
a set of thin stripes [Fig. 4(a)] with an internal
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Magnetic footprints of field lines on the divertor plate (yp � 1.0) for k = (a) 0.4, (c) 0.6, (e) 0.8, (g) 1.0, and (i) k = 1.2.
(b), (d), (f), (h), and (j) are magnifications of the rectangular boxes in (a), (c), (e), (g), and (i), respectively. The colorbar
indicates the connection length of each field line striking the divertor plate.
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(i) (j)

Fig. 4. (Continued)

structure which reminds us of “Saturn rings”
[Fig. 4(b)]. The extension of the magnetic foot-
print is of the order of 10−6, which is compatible
with the width of the stochastic layer we see in
the corresponding phase space [see Fig. 2(b)]. Most
of the strike points have connection lengths higher
than 103. Those strike points with the higher con-
nection lengths have xp coordinates close to zero,
which is explained by Fig. 4 noting that the density
of points therein is higher than for other values of k.

If k is increased to other values [Figs. 4(c)–4(j)]
we see a repetition of this pattern of thin stripes
with a self-similar structure. The size of the mag-
netic footprint is seen to increase with k, that fol-
lows from the increase of the width w of the chaotic
layer near the separatrix [Punjabi et al., 1996]. The
chaotic layer can be approximated by an annulus
of inner radius 1 and outer radius 1 − w, the latter
being the outermost closed orbit, which also marks
the plasma boundary, since it is the intersection of
the last intact magnetic surface with the Poincaré
surface section.

For higher values of k we also observe more
often the presence of field lines with low connection
lengths (∼ 102). This has important consequences in
terms of the distribution of heat loads on the diver-
tor plate. Assuming that plasma particles closely
follow field lines (with a small Larmor radius) it fol-
lows that magnetic field lines with large connection
lengths can come from inner regions of the chaotic
layer (regions closer to the magnetic axis), so close
to the plasma boundary that they can bring ener-
getic particles from the plasma core to the diver-
tor plate. These particles are responsible for a high
degree of heat load, which may result in the liber-
ation of impurities from the metallic plate through
sputtering processes and other plasma-wall interac-
tion phenomena.

Given the chaotic nature of the field lines strik-
ing the divertor plate, one could erroneously assume
that the heat loads could be distributed uniformly.
The self-similar structure of the magnetic foot-
prints, however, shows that this is not so, and hot
spots with large heat loads are possible due to the
dynamics underlying the chaotic orbit. However,
the fractal nature of the dynamics is expected, since
the structure of invariant manifolds cross them-
selves in an infinite number of homoclinic and hete-
roclinic points close to a saddle point [Péntek et al.,
1995].

5. Characterization of Magnetic
Footprints

In this work, we are interested in showing that the
magnetic footprints of divertor map (Fig. 4) are
fractals. Accordingly, we analyze the fractal nature
of the structure in the magnetic footprints by com-
puting the so-called basin entropy to quantify the
degree of uncertainty due to the fractality of the
basin and of the basin boundary [Daza et al., 2016,
2017]. We define the basin as the set formed by the
points of the magnetic footprints.

5.1. Basin entropy

An alternative measure of the unpredictability is to
apply the proposed method for the calculation of
basin entropies. This method quantifies the degree
of uncertainty due to the fractality of basin of the
magnetic footprint. We consider two basins: the
white basin of the magnetic footprints formed by
set of points where the field lines are striking the
divertor plate with low connection lengths (between
1–100 iterations) and the colored basin of the mag-
netic footprints formed by set of points where the
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field lines strike the divertor plate with connection
lengths between 101–10000 iterations. The basic
idea of the technique is to divide the phase space
in N boxes of linear size ε, each of them contain-
ing a number Nc of initial conditions which evolve
through time towards a given basin (white or col-
ored points), so that we will refer to that appli-
cation as a color. Let a positive integer i denote
a box (i = 1, 2, . . . , N) and j a possible basin
(j = 1, 2, . . . , NA). For the ith box, the fraction
of initial conditions resulting in jth basin defines
a probability pi,j, such that the entropy of each box
is:

Si =
NA∑
j=1

pi,j ln
(

1
pi,j

)
. (25)

In our case there are only NA = 2 basins
(white or colored points) inside the ith box. The
total entropy for the phase space is obtained by the
addition of the entropy associated to each one of
the N boxes: S =

∑N
i=1 Si. This entropy can be

computed for any given basin, such that the basin
entropy is the total entropy divided by the number
of boxes: Sb = S/N . The basin entropy quantifies
the degree of uncertainty of the basin, that is, for a
single basin, the basin entropy is zero, meaning zero
uncertainty, whereas for NA equiprobable basins
Sb = ln NA, which means a completely randomised
basin structure.

As we are also interested in the uncertainty of
the boundary, in particular, we want to know if the
critical boundary (Fig. 4) is fractal, we restrict the
calculation of the basin entropy to the boxes in
the vicinity of the boundaries. For this, we com-
pute the entropy only for those boxes Nb which
contain the two cases (white and colored points):
Sbb = S/Nb. Therefore, the quantity Sbb is the so-
called basin boundary entropy that measures the
complexity of the basin boundary. Moreover, there
is a threshold value of Sbb that separates basins

with smooth boundaries from those with fractal
boundaries. For example, suppose that our basins
were separated by a smooth boundary, the number
of boxes in the boundary will be negligible for the
computation of the basin entropy in the boundary
Sbb, since there are many more boxes with just one
basin. Thus, the maximum possible value of Sbb that
a smooth boundary can have is ln 2. Therefore, if
Sbb > ln 2, the basin boundary is said to be fractal.
This is a sufficient but not necessary criterion for
fractality, though, since some fractal basins do not
fulfill this condition [Mathias et al., 2017a, 2017b;
Mugnaine et al., 2018]. For the criterion Sbb > ln 2
to be valid the system must have more than two
basins.

Applying those concepts to magnetic foot-
prints, let us compute the basin entropy and the
basin boundary entropy. We compute the standard
deviation of the basin entropies in the following
way: We vary the grid of phase space consider-
ing 250 × 250, 200 × 200, 125 × 125 and 100 ×
100 boxes, with 16, 25, 64, 100 points per box,
respectively. In each box we calculate the probabili-
ties of obtaining the number of points corresponding
to the white and colored basins of the phase space.

Our results for both basin entropy and basin
boundary entropy are summarised in Table 1 for
the values of parameters k = 0.4, k = 0.6, k = 0.8,
k = 1.0 and k = 1.2. As a trend, the basin entropy
increases as the parameter k reaches the value 1.0
and then decreases at k = 1.2. The same happens
with the basin boundary entropy, Sbb increases as
the parameter k reaches the value 1.0 and then
decreases at k = 1.2. From that, we can say that
the white and colored basin boundaries of Fig. 4 are
more mixed and involved for the value of parame-
ters k = 0.8 and k = 1.0, since both have the same
values with the standard deviation.

The behavior of the entropies can be qualita-
tively understood by comparing them with the frac-
tion occupied by the basin A, which corresponds

Table 1. Basin entropy Sb, basin boundary entropy Sbb and fraction occupied by the colored basin of magnetic footprint A
for the values of parameters k = 0.4, k = 0.6, k = 0.8, k = 1.0 and k = 1.2. n is the average escape time of each magnetic
footprint, respectively.

k 0.4 0.6 0.8 1.0 1.2

Sb 0.562 ± 0.056 0.564 ± 0.055 0.613 ± 0.055 0.627 ± 0.055 0.372 ± 0.005
Sbb 0.594 ± 0.012 0.595 ± 0.011 0.650 ± 0.002 0.647 ± 0.018 0.445 ± 0.072
A 0.70 0.70 0.58 0.43 0.15
n 2166 1575 898 491 166
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to the set of colored points of magnetic footprints.
We computed A for the values of parameters k =
0.4, k = 0.6, k = 0.8, k = 1.0 and k = 1.2, the
results are shown in Table 1. The basin entropy Sb

and the basin boundary entropy Sbb follow the vari-
ation of the fraction occupied by the basin of mag-
netic footprints. Since the basin entropies measure
the degree of mixing of both basins, it follows that
the entropies increase as the colored basin becomes
of comparable size to the white basin. That is, the
maximum entropy value of the basin occurs for
k = 0.8 and k = 1.0 when the fraction of the colored
basin is approximately 58% and 43% of the total
area, respectively. On the other hand, the minimum
value of the basin entropy (for k = 1.2) has the
minimum value of the fraction of the colored basin,
roughly 15%. Hence, the degree of complexity of the
basin structure varies according to the increasing
complexity of the basins, that is, when they become
progressively more mixed and involved.

6. Wada Basin Boundaries

The study of Wada basin boundaries in our sys-
tem has important physical consequences, since the
information obtained on the plate of divertor is
highly complex. The results show that points (field
lines) very close together take longer to reach the
plate of divertor than others, making it impossible
to predict the region of the chaotic layer to which
the field line belongs.

In order to look for Wada property in our
system we analyze the escape time or number of
toroidal turns that each field line makes before
reaching the plate and we classify the results in
three situations: fast escape, medium escape and

slow escape. Let A be the fast escape basin, it has
a boundary point p if each neighbor of p inter-
sects basin A and at least one other basin, like B
(medium escape basin) or C (slow escape basin).
The boundary point p is also a point of Wada if each
neighbor of p intercepts the three different basins.
A basin boundary is said to have the property of
Wada if each boundary point of A is a Wada point,
such that the boundary of a basin is a boundary of
the Wada basin [Nusse & Yorke, 1996].

In Fig. 5, we plot the magnetic footprints con-
sidering three intervals of the escape time, fast
escape basin A (1–100 iterations), medium escape
basin B (101–5000 iterations) and slow escape basin
C (5001–10000 iterations). We choose this interval
of the escape time in order for better visualization
of the Wada property. We associate a color for each
interval, white for the basin A, red for the basin
B and green for the basin C. The fraction occupied
by escape time basins are summarised in Table 2 for
the values of parameters k = 0.4, k = 0.6, k = 0.8,
k = 1.0 and k = 1.2. In order to check for the valid-
ity of Wada property we exhibit a magnification of
a portion of the basins structure, depicted as a rect-
angular box in Figs. 5(a), 5(c), 5(e), 5(g) and 5(i).
The magnifications confirm the presence of strips of
the three basins in finer scales, suggesting that at
least some of the boundary points have the Wada
property, since a small neighborhood of such point
will intersect all basins. The Wada property is not
fully present in the escape time basin, since there
are regions belonging to only a single basin. It is
clearly seen in Fig. 5, where certain regions have
only a single color. Thus, the boundary is fractal
only at the regions that they tend asymptotically
to the edge of the basins.

(a) (b)

Fig. 5. Magnetic footprints of field lines on the divertor plate (yp � 1.0) for k = (a) 0.4, (c) 0.6, (e) 0.8, (g) 1.0, and
(i) k = 1.2. (b), (d), (f), (h), and (j) are magnifications of the rectangular boxes in (a), (c), (e), (g), and (i), respectively. The
colorbar indicates the connection length of each field line striking the divertor plate, white for the fast escape basin A, red for
the medium escape basin B and green for the slow escape basin C.
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(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5. (Continued)
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Table 2. Fraction occupied by the escape time basins, fast
escape A, medium escape B and slow escape C for the values
of parameters k = 0.4, k = 0.6, k = 0.8, k = 1.0 and k = 1.2.

k 0.4 0.6 0.8 1.0 1.2

A 0.30 0.29 0.42 0.57 0.85
B 0.53 0.61 0.54 0.41 0.14
C 0.17 0.10 0.04 0.02 0.01

7. Conclusions

Divertors in tokamaks are devices designed to con-
trol magnetic field lines, creating specific escape
channels for plasma particles. The deposition pat-
terns of escaping particles onto the divertors plate
are called the magnetic footprints. Due to chaotic
field lines, magnetic footprints typically exhibit a
fractal structure, which has a noneven distribution
pattern.

To model such a phenomenon we have used
the simple map by Punjabi et al. [1992]. The phase
space of the simple map is characterized by the exis-
tence of two fixed points, one saddle and another
center. The escaping field lines are separated from
the confined field lines by a separatrix which is
formed by the stable and unstable manifolds of the
saddle point.

For the chosen parameters, a chaotic layer and
magnetic islands emerge near the separatrix. We
have numerically calculated the stable and unstable
manifolds of the chaotic saddle for this scenario and
showed how they delineate the escape channels to
the divertors plate.

To further evaluate the magnetic footprints, we
used the basin entropy to quantify the basin struc-
ture of the magnetic footprints. This is a more
direct measure to compute the loss of information
on the final state of the system. The basin bound-
ary entropy varies between zero (in the case of just
one final state, meaning no uncertainty at all) and
unity (for two possible final state), when the basins
are extremely intertwined and we have maximum
final-state uncertainty.

We found that both the basin and basin bound-
ary entropies depend on the control parameter in
the same way as the fraction of phase space occu-
pied by the basin of magnetic footprints. The basin
entropy increases as the parameter k reaches the
value 1.0 and then decreases at k = 1.2. Since
the basin entropies measure the degree of mixing
of the basins, it follows that the basin entropies
increase as the colored basin becomes of comparable

size to the white basin, i.e. for k = 0.8 and k = 1.0
the fraction of the colored basin is roughly 58%
and 43%, respectively. However, the basin bound-
ary entropy has maximum value at for k = 0.8 and
k = 1.0, since the basins boundaries have a more
interwined structure.

Another fractal signature we found in escape
time basin is the Wada property. We verify in
our system, through magnifications of the magnetic
footprints the presence of strips of the three basins
in finer scales, revealing a part of the third basin
where it seemed to be the boundary between the
two other basins.

In this work we showed the fractal deposition
pattern of magnetic field lines on the divertor plate
caused by magnetic perturbations. For values lower
than the perturbation parameter (k = 0.4 and
k = 0.6), the fractal distribution of the field lines
over the divertor plate resulted in regions with high
particle density and energy. However, when the per-
turbation reaches the value of k = 1.2, the deposi-
tion pattern of the field lines on the plate is more
uniform, that is, the particles are more distributed
over the plate and less energetic.
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D. & Sanjuán, M. A. F. [2017] “Chaotic dynamics and
fractal structures in experiments with cold atoms,”
Phys. Rev. A 95, 013629.

Federici, G. et al. [2003] “Key iter plasma edge and
plasma-material interaction issues,” J. Nucl. Mater.
313, 11–22.

Horton, C. W. & Benkadda, S. [2015] ITER Physics
(World Scientific, Singapore).

Horton, W. [2018] Turbulent Transport in Magnetized
Plasmas, 2nd edition (World Scientific).

Jakubowski, M. W., Evans, T. E., Fenstermacher, M. E.,
Groth, M., Lasnier, C. J., Leonard, A. W. et al. [2009]
“Overview of the results on divertor heat loads in
RMP controlled H-mode plasmas on DIII-D,” Nucl.
Fusion 49, 095013.

Kroetz, T., Roberto, M., da Silva, E. C., Caldas, I. L. &
Viana, R. L. [2008] “Escape patterns of chaotic mag-
netic field lines in a tokamak with reversed magnetic
shear and an ergodic limiter,” Phys. Plasmas 15,
092310.

Kroetz, T., Roberto, M., Caldas, I. L., Viana, R. L.,
Morrison, P. J. & Abbamonte, P. [2010] “Integrable
maps with non-trivial topology: Application to diver-
tor configurations,” Nucl. Fusion 50, 034003.

Lichtenberg, A. & Lieberman, M. [1992] Regular and
Chaotic Dynamics, 2nd edition (Springer).

Lipschultz, B., LaBombard, B., Terry, J. L., Boswell, C.
& Hutchinson, I. H. [2007] “Divertor physics research
on alcator c-mod,” Fusion Sci. Technol. 51, 369–389.

Mathias, A. C., Kroetz, T., Caldas, I. L. & Viana, R. L.
[2017a] “Chaotic magnetic field lines and fractal struc-
tures in a tokamak with magnetic limiter,” Chaos
Solit. Fract. 104, 588–598.

Mathias, A. C., Viana, R. L., Kroetz, T. & Caldas, I. L.
[2017b] “Fractal structures in the chaotic motion of
charged particles in a magnetized plasma under the
influence of drift waves,” Physica A 469, 681–694.

Mugnaine, M., Mathias, A. C., Santos, M. S., Batista,
A. M., Szezech, J. J. D. & Viana, R. L. [2018]
“Dynamical characterization of transport barriers in
nontwist Hamiltonian systems,” Phys. Rev. E 97,
012214.

Nusse, H. E. & Yorke, J. A. [1996] “Wada basin bound-
aries and basin cells,” Physica D 90, 242–261.

Péntek, A., Toroczkai, Z., Tél, T., Grebogi, C. & Yorke,
J. A. [1995] “Fractal boundaries in open hydrodynam-
ical flows: Signatures of chaotic saddles,” Phys. Rev.
E 51, 4076–4088.

Pomphrey, N. & Reiman, A. [1992] “Effect of nonaxisym-
metric perturbations on the structure of a tokamak
poloidal divertor,” Phys. Fluids B 4, 938–948.

Portela, J. S. E., Caldas, I. L. & Viana, R. L. [2008]
“Tokamak magnetic field lines described by simple
maps,” Eur. Phys. J. Special Topics 165, 195–210.

Post, D. E. & Behrisch, R. [1986] Introduction to the
Physics of Plasma-Wall Interactions in Controlled
Fusion (Plenum Press, NY).

Punjabi, A., Verma, A. & Boozer, A. [1992] “Stochastic
broadening of the separatrix of a tokamak divertor,”
Phys. Rev. Lett. 69, 3322–3325.

Punjabi, A., Verma, A. & Boozer, A. [1996] “The simple
map for a single-null divertor tokamak,” J. Plasma
Phys. 56, 569–603.

Whiteman, K. J. [1977] “Invariants and stability in clas-
sical mechanics,” Rep. Prog. Phys. 40, 1033–1069.

2250078-14

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

2.
32

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

D
A

D
E

 D
E

 S
A

O
 P

A
U

L
O

 o
n 

06
/0

2/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	1 Introduction
	2 Magnetic Field Line Map
	3 Field Line Map for a Divertor Tokamak
	4 Magnetic Footprints
	4.1 Continuous descriptionof magnetic field lines
	4.2 Numerical determinationof magnetic footprints

	5 Characterization of Magnetic Footprints
	5.1 Basin entropy

	6 Wada Basin Boundaries
	7 Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Press'] [Based on '[Press Quality]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        30
        30
        30
        30
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 14.177000
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


