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a b s t r a c t

In this work we proposed the characterization of chimeras using a mathematical function
based on coherent and incoherent states of a chain of spatially distributed oscillators. In
particular, the function analyzes the spatial distance between the nearest neighbors in a
chain of coupled oscillators. If one site i is further away from another site j, the function
is set to result in an incoherent state and if two sites are close together, a coherent
state. The spatial separation is based on a certain threshold. Furthermore, we include the
study of spatial correlation in order to observe if there was any correspondence between
correlation decay and chimera state formation. To obtain results similar to the coherence
function, we also compare the complex order parameter with the coherence function. To
develop these studies, we use a Kuramoto-like model in a long-range coupling network.
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1. Introduction

Chimera states are a dynamic behavior characterized by the formation of patterns when oscillator groups exhibit
ncoherent oscillation domains coexisting with coherent dynamics domains. The first studies that characterized this
ehavior were performed in a coupled chain of nonlinear oscillators [1] Kuramoto and Battogtokh [2] reported the
oexistence of coherence and incoherence in nonlocally coupled phase oscillators. Abrams and Strogatz [3] also studied
rrays of identical oscillators. Wolfrum and Omel’chenko [4] showed that chimera states can be considered as chaotic
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Fig. 1. A system of coupled pointlike oscillators.

transients. In [5] the authors show that amplitude-mediated phase chimeras and amplitude chimeras can occur in the
same network of nonlocally coupled identical oscillators

These dynamic features have been found in many dynamical systems [6,7], as well as in coupled mechanical [8,9],
chemical [10,11] oscillators and neuronal [12,13] and ecological [14] networks. An experimental evidence was studied
by Gambuzza et al. [15] in coupled electronic circuits and by Kapitaniak et al. [16] in coupled pendula. An analytical
treatment of transitions from chimeras, where the authors analytically derive the necessary conditions for this transition
by means of the coherent stability function approach, is given in Ref. [17].

The non-local coupling used in this work, which is the fast relaxation limit of a more general model of coupling
mediated by the diffusion of a chemical substance, is a one-dimensional lattice and is constituted in such a way that its
coupling term depends exponentially on a parameter, which can take any real value from zero to infinity and is related
to the inverse of the coupling length [18], using the Kuramoto model [19]. Coupled map networks have been considered
to model spatially extended dynamical systems [20] and there are various articles in the literature that show chimera
states in non-local feature couplings. For example, Omelchenko et all [21], consider a lattice in which exist a specification
of the number of neighbors in each direction coupled with the i-th element in the network. In a previous work [22], we
characterized chimera in a network of logistic maps connected by means of a smoothed finite range coupling, where it
was considered a smoothing of non-local coupling.

The goal of the present paper is to propose a coherence function that identifies numerically when the oscillators are
in coherent and incoherent domains. We defined functions that provided us with a snapshot where it is possible to
obtain characteristic features which make it possible to distinguish the boundaries of the region in which the existence of
chimeras is possible. This function can distinguish in a regime where there is the coexistence of coherent and incoherent
states in an instant of time, based on the spatial separation between the i and j phase oscillators. We also considered in
ur studies the spatial correlation. Such a study inspired us to make an attempt to see if spatial correlation features could
rovide us with any information about coherent, incoherent, and chimera states.
This paper is organized as follows: In Section 2 we made a description of the coupling form, in which the range of

nteraction between oscillators decays exponentially and using the Kuramoto model as local dynamics. In Section 3 we
eveloped the first simulations in order to characterize chimeras using the study of spatial correlation. In Section 4 we
roposed a characterization of chimeras based in coherent and incoherent states. Finally, in the last section, we express
ur Conclusions.

. Kuramoto model with long-range coupling

The mathematical model we deal with in the present work consists of N pointlike phase oscillators, embedded in a d-
imensional Euclidean space, with positions rj, where j = 1, 2, . . . ,N , represented schematically by Fig. 1. Each oscillator
s described by a geometrical phase θj whose evolution is given by θ̇j = ωj, where ωj is a frequency randomly chosen
rom a given probability distribution function g(ω).

We suppose that the phase oscillators both produce and absorb a given chemical, in such a way that the frequency
hanges accordingly. Hence, the coupling among oscillators depends on the local concentration of this substance, which is
scalar field denoted by A(r, t). A general nonlinear coupling is thus represented by the system of differential equations

dθj
dt

= ωj + g(A(rj, t)) (j = 1, 2, . . . ,N), (1)

where g is a coupling function.
2
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The chemical mediating the coupling among phase oscillators [23] is supposed to undergo spatial diffusion according
o the following equation

∂A
∂t

+ η A − D∇
2A =

N∑
k=1

h(θk) δ(r − rk), (2)

here D is the diffusion coefficient, η is a degradation coefficient and there is a source function representing the effect
f pointwise oscillators, each of them with a strength given by a function h() of their phases.
The function h(θ ) indicate that the strength of the source depend on the dynamics. For example, depending on the rate

f change of θ , the oscillator may oscillate a mediating substance with a different intensity. In order to solve this equation,
e specify appropriate boundary conditions at some surface ∂R, as well as an initial condition profile A(r, t = 0).
The Green function for Eq. (2) is denoted G(r, t; r′, t ′) and satisfies

∂G
∂t

+ η G − D∇
2G = δ(r − r′) δ(t − t ′), (3)

for homogeneous Dirichlet boundary conditions: G(r, t; r′, t ′) for r ∈ ∂R, and initial condition G(r, t = 0; r′, t ′) = 0.
The solution of the inhomogeneous diffusion equation (2), for absorbing boundary conditions in ∂R and initial profile
A(r, t = 0) = 0, is given by

A(r, t) =

N∑
k=1

∫ t+

0
dt ′ h(θk(t ′))G(r, t; rk, t ′). (4)

We remark that A(r, t) is the local concentration of the substance causing the coupling, the function g expresses
the influence of the local concentration on the oscillator dynamics. For example, if the concentration is higher, then
the oscillator experiences greater external forcing due to coupling with other oscillators, which in turn are producing
the mediating substance. The coupling results from the exchange existing between the oscillators that at the same time
produce and absorb the substance.

Substituting this solution into Eq. (1) and choosing, for simplicity, a linear and time-independent coupling function
g(), there results a system of integro-differential equations governing the coupling among phase oscillators mediated by
the diffusion of a substance

dθj
dt

= ωj +

N∑
k=1

∫ t

0
dt ′ H(θk(t ′))G(rj, t; rk, t ′) (j = 1, 2, . . . ,N), (5)

where we defined the composite function H() = g(h()). A generalized Kuramoto model is obtained by choosing

H(θj) = (K/N) sin(θk − θj), (6)

where K > 0 is a coupling strength, for which (5) reads

dθj
dt

= ωj +
K
N

N∑
k=1

∫ t

0
dt ′ sin[θk(t ′) − θj(t ′)]G(rj, t; rk, t ′) (j = 1, 2, . . . ,N), (7)

The Dirichlet Green function for a one-dimensional oscillator chain with free boundary conditions is

G(x, t; x′, t ′) =
Θ(t − t ′)

√
4π (t − t ′)

exp

[
−η (t − t ′) −

(x − x′)2

4D(t − t ′)

]
(8)

here Θ(t − t ′) is the Heaviside unit-step function. Other cases, in two and three dimensions, and with finite domains
ith absorbing boundaries, can be found in [24]. Inserting this expression into (7) yields

dθj
dt

= ωj +
K
N

N∑
k=1

∫ t

0
dt ′

sin[θk(t ′) − θj(t ′)]
√
4π (t − t ′)

exp
[
−η (t − t ′) −

(xj − xk)2

4D(t − t ′)

]
. (9)

Let us consider a regular chain of phase oscillators, occupying fixed positions in a one-dimensional lattice with the same
distance ∆ between adjacent sites, such that xj = j∆, with j = 1, 2, . . . ,N and ∆ = 1. In this chain we impose periodic
boundary conditions, i.e. θj = θj±N for any j. We choose an initial condition profile for this lattice, θj(t = 0), e.g. randomly
hosen phases in the interval [0, 2π ). We also suppose that the oscillator frequencies ωj are randomly selected from a
aussian probability distribution with zero mean and unit variance. A full solution of the system (9) requires that, at
ach time t , we include the contribution of all oscillators in all times t ′ < t in order to compute the time integral which
ontains the Green function. After this, we evolve the system of coupled differential equations by a single integration step,
nd repeat all this computation. This is clearly a very time-consuming task, and numerical results have been obtained so
ar for a small number N of oscillators.
3
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If we consider the limit of very fast diffusion, however, the equations simplify considerably because the phase
scillators are instantaneously affected by the concentration of the coupling-mediating chemical. In other words, this
oncentration attains its equilibrium value so rapidly that no time-integration would be required in the coupling term.
ormally, this is equivalent to take the t → ∞ limit in the interaction kernel

σ (xj, xk; t) =

∫ t

0
dt ′ G(xj, t; xk, t ′). (10)

Using the Green’s function given by (8) we obtain

σ (xj, xk; t) =

∫ t

0
dt ′

e−η(t−t ′)

√
4πD(t − t ′)

exp
[
−

(xj − xk)2

4D(t − t ′)

]
. (11)

Performing a change of variables, we have

σ (xj, xk; t) =
xj − xk
4D

√
π

∫
∞

u1

du
u3/2 exp

(
−u −

a1
u

)
, (12)

here

a1 =
η(xj − xk)2

4D
=

{
γ (xj − xk)

2

}2

, u1 =
(xj − xk)2

4Dt
, (13)

nd we have defined a coupling length

γ =

√
η

D
. (14)

The fast diffusion case is equivalent to take the t → ∞ limit for the interaction kernel, for which u1 → 0:

σ (xj, xk) = lim
t→∞

σ (xj, xk; t) =
γ

2η
exp

{
−γ (xj − xk)

}
, (15)

hich coincides with the earlier results of Kuramoto and coworkers [25,26]. Therefore, in the fast diffusion limit, the
quations governing the time evolution of a coupled one-dimensional chain of phase oscillators are

dθj
dt

= ωj + KC(γ )
N∑

k=1

e−γ∆(j−k) sin(θk − θj) (j = 1, 2, . . . ,N), (16)

where C(γ ) is an overall normalization constant introduced for consistency of the coupling term and periodic boundary
conditions θj = θj+N . We can rewrite the summation to consider symmetric pairs of neighbors separated by a lattice
distance ℓ∆, where ℓ = min |j − k|. ωi is the natural frequency of the ith oscillator chosen at random from a Gaussian
probability density.

In this work, we used the Kuramoto model in a network with long-range coupling, which is composed by an
exponential term that mimetizes a diffusing chemical substance

dθj
dt

= ωj + KC
N ′∑
l=1

e−γ∆l
[sin(θj − θj−l) + sin(θj − θj+l)], (17)

where the constant ∆ is a distance between consecutive lattice sites, l = 1, 2, . . . ,N ′, C is normalization constant

C =

⎡⎣2
N ′∑
l=1

e(−γ∆l)

⎤⎦−1

(18)

and N ′
=

N−1
2 .

In particular, if γ goes to zero then

C =
1

2N ′
=

1
N − 1

, (19)

nd we have an all to all (or global) type of coupling. In other hand, if γ is large,

C ≈
1

2e−γ∆
, (20)

nd (17) becomes a nearest neighbors (or local) coupling.
The equations of the coupled model were integrated numerically using a fourth order fixed step size Runge–Kutta

ethod, periodic boundary conditions and sinusoidal initial conditions.
4
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Fig. 2. Snapshots of the spatial pattern for the coupled lattice for γ = 0.002, t = 2000 and N = 301 in (a), (b), (c) and (d), where K = 12, K = 9,
K = 7, K = 5, respectively. Spatial Correlation for (e), (f), (g) and (h), where K = 12, K = 9, K = 7, K = 5, respectively.

3. Chimera states characterized by spatial correlation

As described in the Introduction, chimera states are characterized by the combination of coherent and incoherent
oscillations. So our first step is to use a spatial correlation function [27]

E(j, t) =
(1/N)

∑N
i=1 θ̂

(i)
t θ̂

(i+j)
t

(1/N)
∑N

i=1(θ̂
(i)
t )2

, (21)

here ⟨θ⟩ = (1/N)
∑N

i=1 θ
(i)
t is the spatial average for the lattice, and θ̂

(i)
t = θ

(i)
t −⟨θ⟩t are the deviations from this average.

The correlation function decays with the value of distance j in the network. This definition follows the properties of the
temporal correlation function. The Fig. 2 shows the results of the simulations where in the left column we plotted some
profiles that showed different behaviors, in which we varied the coupling strength K . They change from coherent states
[Fig. 2(a)], chimeras states [Fig. 2(b) and (c)] to completely incoherent states [Fig. 2(d)]. What we see in the column on the
right, where we plot correlation, is it provided considered information. Analyzing at the spatial correlation, in the column
on the right, it showed a strong decay for all cases. The spatially incoherence regions in the lattice are characterizing by
a fluctuating behavior of E(j, t).

In Fig. 3 we repeat show the similar results about the spatial correlation, but the coupling parameter is fixed value and
choiced different values for γ parameter. We observe a behavior analogous to Fig. 2. Starting from a determined value
(γ = 0.002), the behavior of the oscillators presented a coherent state of oscillation as shown in Fig. 3(a). Increasing the
γ -value the chimera states appear as shown in Fig. 3(b) and (c), until the state of total incoherent oscillations Fig. 3(d).
In the right column of Fig. 3, from (e) to (h), where we plotted the corresponding spatial correlations. Our simulations
about the decay of E(j, t) are the same as for Fig. 2(e) to (h).

In our analysis the number of incoherent states increase, as shown in the left panels of Figs. 2 and 3 (from top to
bottom), there is a correspondence in the small fluctuations of the spatial correlation function. Using E(j, t) we could relate
a characterization of coherent and incoherent states, but this characterization is incomplete when there are chimeras.
When calculating the spatial correlation, it is only possible to be sure when the oscillators are completely coherent or
completely incoherent. The coexistence of these states, which characterizes a chimera, cannot be adequately quantified
using a spatial correlation function. We propose this characterization in the next section, a different quantifier through a
coherence function.

4. Characterization of chimeras based in coherent and incoherent function

In this section, we introduce a function to characterize chimeras in a determined condition using a mathematical tool
based on a Heaviside function. A similar technique was used to recurrence plots, studied in [28]. Let θ

(i)
t and θ

(j)
t be the

values of the oscillators phases at sites i and j at a fixed time t . We first compute the quantity

φ (ε, t) = H(ε − ∥θ
(i)

− θ
(j)

∥), (22)
i,j t t

5
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Fig. 3. Snapshots of the spatial pattern for N = 301, K = 12 and n = 2000 in (a), (b), (c) and (d), where γ = 0.002, γ = 0.004, γ = 0.006, γ = 0.01,
espectively. Spatial Correlation for (e), (f), (g) and (h), where, γ = 0.002, γ = 0.004, γ = 0.006, γ = 0.01, respectively.

here H is the Heaviside function and when the spatial difference between a site i and another site j is greater than a
etermined threshold distance ε, we have an incoherent state. If this difference is smaller than ε characterize a coherent
tate in a snapshot. In this way, we defined a coherence function φ(ε) from of Eq. (22):

Φ(ε) =

N ′∑
i,j=1

N − φi,j(ε, t)
N

, (23)

here N is the size of network and N ′
= (N−1)/2. Where we set up a given ε = 0.02, the sum can take values between 0

nd 1. It will be either zero if all states are incoherent, a real number between 0 and 1 given by the ratio between coherent
nd incoherent states, and unity if all states are coherent. In Fig. 4 we presented results of numerical simulations for the
unction Φ(ε) varying the main parameters of the system. In Fig. 4(a) we plotted the spatial coherence function in terms
f coupling strength K parameter. We observed that there is a dependence of Φ(ε) with coupling strength revealing a

transition from a completely incoherent to a fully coherent state, for large K . K increases, the degree of coherence given
by Φ varies from values close to zero, for completely incoherent states and approaches the unit, that characterize nearly
complete coherent states. There is a particular result in this figure, for γ = 0.01, that depending on some parameters
of the system, even increasing the coupling force it is not possible to reach coherent states at least for the range of K
we considered here. In Fig. 4(b) we set some values of K , and vary the parameter γ . We find a dependence that agrees
with the limiting cases of our non-local model. They are: (i) the global coupling case, for γ = 0 [Eq. (19)] and (ii) the
nearest-neighbor coupling (large γ ) case [Eq. (20)]. As we increase the parameter γ the structure of the network changes
rom a global coupling to a local coupling. In global couplings, all oscillators interact with each other. So coherent states
re easier to obtain in global coupling. However, local couplings in coherent states are very difficult to obtain in lattices
here the local coupling is characterized.
In the same way, we defined a chimera function Φc

Φc(ε) =

N ′∑
i,j=1

N − φi,j(ε)
N

, (24)

hich is analogous to the previous definitions, but we limit its calculation to the pairs of oscillators for which range
i < Φi,j(ε) < Ls given the lower and upper limits Li and Ls. It will just be calculated when the inferior limit is Li = Es
here Es is a determined number of coherent states and the superior limited LS is Ls = N − Es. In our simulations, we
sed Es = 15. This assertion was defined due to the function Φ reaching from totally coherent and totally incoherent
tates. It provides the spatial coherence of the entire network at snapshot. Fully coherent states are not characterized by
himeras, there are necessarily coherent and incoherent states in a snapshot. The same goes for totally incoherent states.
ut with the definition of Φc we can get chimera states for some values of the system parameters, as shown in Fig. 5.
n the blue shaded area given for Φc , we have all values for which the system presents chimeras states. In Fig. 5(a) we
an see that chimeras states happens only if ≈ (5 ≤ K ≤ 17.2), when varying the K parameter. What differs from the
lack line, given by Φ , which represents the degree of coherence. In Fig. 5(b) we plotted the dependence of functions in
6
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Fig. 4. Coherence function Φ for N = 301 and t = 2000: (a) versus strength force K . (b) versus exponential parameter γ .

Fig. 5. Coherence Function Φ and Chimera Function Φc , for K = 12 and t = 2000: (a) versus strength force K and γ = 0.003. (b) versus exponential
arameter γ .

erms of γ parameter, and it presents the same behavior, where a region determined of chimeras states, given for Φc is
ess than all the region of Φ studied.

In order, we studied the regions in Fig. 5 for to validate the proposition of chimera function. The results are present
n Fig. 6. In the left column, for (a) to (d), the snapshots are related with the figure Fig. 5(a). So, for K = 2 and K = 18
here are only incoherent and coherent states, respectively. However, for K = 8 and K = 11 the snapshots exhibit the
himera states, according to our definition of Φc . The same was verified for the results of the column to the right. For

= 0.001 and γ = 0.01 there are only coherent states and full incoherent states, respectively. For γ = 0.003 and
γ = 0.05, chimeras states.
7
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Fig. 6. Snapshots of the spatial pattern for N = 301 and t = 2000. In (a) K = 2, (b) K = 8, (c) K = 11 and (d) K = 18. For (e) γ = 0.001, (f)
γ = 0.003, (g) γ = 0.005 and (h) γ = 0.01.

In order to compare the behavior of the coherence function with quantifiers, we also compute the Kuramoto complex
phase order parameter [29]. Let Θ

j
(t) be the phase of the jth oscillator for a time t . Then we define

z(t) = R(t) exp(iΘ(t)) ≡
1
N

N∑
j=1

exp(iθ (j)
t ), (25)

here R and Θ are the amplitude and angle, respectively, of a centroid phase vector for a one-dimensional lattice with
eriodic boundary conditions. In certain cases, it is possible to obtain analytically same aspects of the behavior in the

→ ∞ limit, by using the Ott–Antonsen approach, is more details can be found in [30,31]. A comparison with our
esults showed that there is a similar behavior from a qualitative point of view with respect to the existence of coherent
nd incoherent states. For completely synchronized states, what constitutes a totally coherent state, the value of R is nearly
o the unity (R ≈ 1). On the other limit, if the state are completely non synchronized R ≈ 0, that this can be considered a
full incoherent state chimeras are thus profiled for 0 < R < 1. However, for a more rigorous analysis, in Fig. 7(a) the order
parameter decays faster compared to the coherence function and with some fluctuations. In Fig. 7(b) the transition of the
coherence function is more abrupt than the order parameter. In both cases, the coherence function can identify in more
detail certain dynamics in a network of oscillators. However, we must remember that the order parameter is related to
the phase and the coherence function to the spatial distance of the oscillators.

Finally, we perform a study in parameters space of the coherence function Φ . In Fig. 8(a) the color bar represents the
coherence function Φ and Fig. 8(b) the color palette represents the chimera function Φc . When the parameter γ takes
on high values, the coherence function is very low, showing that there are practically only incoherent states. As far as
synchronization in concerned, networks that characterize local coupling are not good for synchronization [32–34]. But
when γ is low, (global coupling characterize), the values of the coherence function are higher, because globally coupled
lattices are relative easier to synchronize. The regions that present chimeras states are well-defined.

5. Conclusions

The study objective of the study presented in this article was to propose an alternative tool to identify chimera states
in a network of coupled oscillators, using the spatial separation between nearest neighbor oscillators. We use the model
to study chimeras in which the coupling is mediated by a diffusive substance with application in biological systems. For
example, where the interaction between dynamically active cells is mediated by a chemical that diffuses through the
intercellular medium. In our model, however, the diffusive is characterized by a range of parameters γ In this context,
the γ parameter provides a way where we can describe from global (all-to-all) to local (closest neighbors) characteristics
of the network coupling, as limiting forms of non-local coupling.
8
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Fig. 7. Comparative of order parameter (black circles) and coherence function (red squares) for N = 301 and t = 2000. In (a) K = 10 and (b)
= 0.001.

The transition from incoherent to coherent states depends on non-local coupling characteristics for a fixed coupling
orce. That is, if the factor γ is very small (tending to zero) the oscillators showed coherent dynamics. On the other hand,
s γ is increased, incoherent states grew in a given proportion. In the case for a certain fixed value of the γ -parameter,
he increase of the coupling force between the oscillators makes the dynamics of the oscillators to evolve from incoherent
o coherent states.

For a fixed value of γ the variation of the coupling strength resulted in a transition from incoherent states to coherent
tates. Since both the γ factor and the coupling influence the coherence of the oscillators pattern, allowed us to identify
he respective states by our definitions of the coherence functions. Firstly, the coherence function, which gave us all the
scillator states, and secondly, the chimera function Φc , for which the restriction of the coherence function identify the
xistence of chimera states. Such features have not possible to observe in the studies of the spatial correlation function.
The inclusion of the spatial correlation function and the Kuramoto order parameter, well-known quantifiers in the

iterature, helped us to develop our analyses. In particular, the comparison of our results with those with the order
arameter, showed that there was a similarity in the behaviors, but the coherence function managed to identify some
istinct regions of coherent and incoherent states beyond what the order parameter presented.
Furthermore, the coherence function allowed us to use the system parameters in a wide region where we could

haracterize whether the oscillators were in fully coherent/incoherent states and a combination of them where it was
efined as chimera states. Finally, the present study can also be used for other models, of problems of physical and
iological interest. For example, in the interaction mediated by a chemical the brain cells responsible by the circadian
hythm, which is a collective behavior that be compared in this work.
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