
PHYSICAL REVIEW E 106, 034203 (2022)

Dynamics, multistability, and crisis analysis of a sine-circle nontwist map

Michele Mugnaine *

Department of Physics, Federal University of Paraná, 80060-000 Curitiba, PR, Brazil

Matheus Rolim Sales
Graduate Program in Science – Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil

José Danilo Szezech, Jr.
Graduate Program in Science – Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil

and Department of Mathematics and Statistics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil

Ricardo Luiz Viana
Department of Physics, Federal University of Paraná, 80060-000 Curitiba, PR, Brazil

and Institute of Physics, University of São Paulo, 05508-900 São Paulo, SP, Brazil

(Received 6 May 2022; accepted 3 August 2022; published 6 September 2022)

We propose a one-dimensional dynamical system, the sine-circle nontwist map, that can be considered a local
approximation of the standard nontwist map and an extension of the paradigmatic sine-circle map. The map
depends on three parameters, exhibiting a simple mathematical form but with a rich dynamical behavior. We
identify periodic, quasiperiodic, and chaotic solutions for different parameter sets with the Lyapunov exponent
and Slater’s theorem. From the bifurcation analysis, we determine two bifurcation lines, those that depend on
just two of the control parameters, for which the bifurcation that occurs is of the saddle-node type. In order
to investigate multistability, we analyze the bifurcation diagrams in the two directions of parameter variation
and we observe some regions of hysteresis, representing the coexistence of different attractors. We also analyze
different multistable scenarios, as single attractor, coexistence of periodic attractors, coexistence of chaotic and
periodic attractors, chaotic behavior, and coexistence of different chaotic bands, by the Lyapunov exponent and
the analysis of the domain occupied by the solutions. From the parameter spaces constructed, we observe the
prevalence of single attractor and only chaotic behavior scenarios. The multistable scenario is, mostly, formed
by different periodic attractors. Lastly, we analyze the crisis in chaotic attractors and we identify the interior and
the boundary crisis. From our results, the boundary crisis plays a key role for the extinction of multistability.

DOI: 10.1103/PhysRevE.106.034203

I. INTRODUCTION

One-dimensional noninvertible maps are the simplest dy-
namical systems which present different dynamical behaviors,
such as periodic, quasiperiodic, and even chaotic motion. The
realm of one-dimensional maps is vast, from the modeling of
the dynamics of biological populations by the logistic map
[1] to the analysis of the behavior of coupled oscillators by
the sine-circle map [2,3]. The convenience of studying one-
dimensional maps is the simplicity of the system. We have
a simpler mathematical model, not computationally costly, in
which phenomena presented by it can be also encountered in
higher-dimensional systems [2]. It is also easier and simpler
to identify and distinguish the periodic, quasiperiodic and
chaotic solutions in one-dimensional maps, compared with
the effort required to do the same analysis with differen-
tial equations [4]. Higher-dimensional systems can have their
dynamics reduced to approximately one-dimensional map
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dynamics, in the limit of strong dissipation [5], and can also
represent the dynamics of two-dimensional systems in the
Poincaré section. Briefly, one-dimensional maps are an im-
portant tool with regard to the dynamics analysis of complex
systems, once we can observe and study their dynamical fea-
tures and expand, in some form, for more complex systems.

The sine-circle map, introduced by Arnold in 1961, is an
answer to the problem of two voltages oscillators coupled
nonlinearly [6]. The analysis of the sine-circle map allows us
to understand the transition to chaos that occurs by the overlap
of model locked resonances at the critical scenario, where
the map becomes noninvertible [4,7], or by the quasiperi-
odic route to chaos [8]. A review of the properties of the
sine-circle map can be found in Refs. [4,7,9] and references
therein. In addition, the sine circle and other circle maps
are also seen as a paradigm solution to the angular posi-
tion of a torus from a two-independent-frequency system in
the Poincaré section [9,10]. Two-dimensional maps can be
reduced to the sine-circle map, for example, the standard
map, also known as the Chirikov-Taylor map [11,12], by the
substitution of the action variable in the angle equation [13]
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and also its dissipative version, the dissipative standard map
(DSM).

Our question now is which map will be obtained if we
take a different two-dimensional system as a starting point to
construct a one-dimensional map. To answer this question, we
follow the construction of the sine-circle map by the manip-
ulation of the standard map as in Ref. [13], with the standard
nontwist map, the simplest nontwist two-dimensional system
proposed by del Castillo-Negrete and Morrison [14]. With
this construction we obtain a one-dimensional map with three
control parameters. The one-dimensional map can also be
obtained by the manipulation of a twist map perturbed by two
harmonics with different frequencies. With this we have two
completely different two-dimensional systems, a twist and a
nontwist map, that lead to the same circle map.

In this paper we present a circle map and analyze the
dynamics of the system, observing the time series and their re-
spective Lyapunov exponents, and the bifurcations that occur
when one of the three parameters varies. We investigate the
multistability scenario and the crisis that can occur in the map,
and we also perform dynamical analysis based on Slater’s
theorem, a method to identify and distinguish chaotic, peri-
odic, and quasiperiodic orbits based on the recurrence times
[15–18]. We also construct the parameter space of the map,
where it is possible to identify the types of solution and how
all possible solutions are organized by continuously varying
two parameters. MacKay and Tresser, and posteriorly Gallas,
analyzed and reported the existence of shrimp-shaped do-
mains in such spaces [19–21]. In these structures the dynamics
is periodic, and they frequently appear in the parameter space
of dissipative systems, such as a four-dimensional Chua model
[22], a two-gene model for chemical reactions [23], an impact
oscillator [24], and a system of coupled Hénon maps [25], to
cite a few.

The paper is organized as follows: In Sec. II we introduce
the one-dimensional map and some of its dynamical proper-
ties. In Sec. III we present a dynamical analysis, based on the
Slater’s condition and on bifurcation diagrams, Lyapunov ex-
ponents, and an analytical evaluation of the bifurcation points.
The multistability scenario and the crisis of chaotic attractors
are investigated in Sec. IV. We present our conclusions in the
last section.

II. ONE-DIMENSIONAL MAP

The standard map, also known as the Chirikov-Taylor map
or the kicked rotator map [26], is defined by

In+1 = In + K

2π
sin(2πθn),

θn+1 = θn + In+1,

(1)

where the conjugate coordinates θ and I are computed modulo
1, and K is the nonlinearity parameter, which can represent
the strength of the perturbation [27]. The standard map is a
paradigmatic model widely used to describe the dynamical
behavior and the fundamental properties of Hamiltonian sys-
tems, such as the transition from regular to chaotic behavior as
well as the chaotic behavior itself [2,27,28]. From an applied
point of view, the standard map is the mathematical model
obtained by the analysis of a kicked rotor, where the variable

I is the angular momentum and θ is the angular position of the
rotor [2]. Furthermore, the standard map can also be applied
to the analysis of tokamak magnetic fields in highly idealized
situations [27], or used as an local approximation to general
nonlinear maps [28].

The sine-circle map can be obtained from Eq. (1) by a
simple mathematical manipulation: by substituting In+1 into
θn+1, considering In = � a constant, and replacing K for −K
[equivalent to a trivial change of variable θ → −θ in Eq. (1)],
we obtain

θn+1 = θn + � − K

2π
sin(2πθn), mod 1, (2)

the sine-circle map, also called standard circle map [29,30].
The sine-circle map can also be obtained from the dissipative
standard map, as stated by Lichtenberg and Lieberman [28]
and Bohr et al. [10]. The map is also obtained by the analy-
sis of the phase oscillator with a nonweak periodic external
forcing [3].

The sine-circle map is a paradigmatic one-dimensional
map, widely used to describe the dynamics of a single os-
cillator of natural frequency � coupled to another oscillator
of frequency 1, with a coupling of strength K [8,31]. The
map has a simple mathematical form, but the dynamics in-
trinsic to it is far from being simple. The nature of the
possible solutions of Eq. (2) depends heavily on the value of
K . For K < 1, the map is subcritical, monotonic, invertible
and, consequently, only quasiperiodic, and periodic solutions
are possible [2,7,8,28]. For K > 1, the map loses its in-
vertibility and monotonicity, being called supercritical, and
exhibits chaotic trajectories [8,28,31]. The criticality, for the
sine-circle map, occurs at K = 1, at which the map loses in-
vertibility once it presents an inflection point of slope zero, by
a cubic inflection at x = 0 [28,32,33]. With this criticality well
established, we know exactly where the chaotic behavior is
possible (K > 1) and for which values of K the only solutions
allowed are quasiperiodic and periodic solutions (K � 1). In
addition to the information provided by the critical line K = 1,
the sine-circle map also allows us to understand the transition
from a periodic regime to a quasiperiodic behavior by the
tangent bifurcation. as the parameter � changes [34], the
transition to chaos [7,31,33], the universality of scaling laws
for maps with cubic inflection [33], and the construction of
the devil’s staircase by the phase-locking structure [3,7].

Inspired by the construction of the map in Eq. (2), we
propose a one-dimensional map, constructed from the stan-
dard nontwist map (SNM) [14], a two-dimensional map which
locally violates the twist condition [35,36]. For the standard
nontwist map defined by [14],

yn+1 = yn − b sin(2πxn),

xn+1 = xn + a(1 − y2
n+1), mod 1,

(3)

where x ∈ [0, 1), y ∈ R, and a and b are independent parame-
ters in the range a ∈ [0, 1] and b ∈ R [14].

Repeating the construction for the sine-circle map, but this
time using Eqs. (3), we obtain

xn+1 = xn + a{1 − [� − b sin(2πxn)]2}, (4)

where � = yn and x ∈ [0, 1]. Once the construction is similar
to that for the sine-circle map from the standard twist map,
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but with the nontwist map, the map in Eq. (4) is called a sine-
circle nontwist map.

Expanding the quadratic term in (4), the sine-circle non-
twist map can be written as

xn+1 = xn + α − β sin(2πxn) + γ cos(4πxn), (5)

with α = a(1 − �2 − b2/2), β = −2a�b, and γ = ab2/2.
Once circle maps are defined as xn+1 = xn + � + g(xn), with
g(x + 1) = g(x) [10,28], the map in (5) is a circle map. In fact,
the map is the standard sine-circle map with a harmonic with
twice the frequency perturbation. The map with the form pre-
sented in (5) can also be obtained from a twist map perturbed
by two harmonics of different frequencies, such as

In+1 = In + K

2π
sin(2πxn) + 	

2π
cos(4πxn),

xn+1 = xn + In+1,

(6)

with the same mathematical manipulation applied to obtain
(2) and (4). It is important to point out that the sine-circle
nontwist map is not uniquely connected to the standard non-
twist map (3). In fact, twist and nontwist bidimensional maps
that present different properties in the two-dimensional space
lead to the same one-dimensional circle map. We chose the
nomenclature “sine-circle nontwist map” once the SNM was
our starting point for this research. Also because of that, we
study the map in (4), with the parameters a, b, and �, in order
to establish a direct relation with the parameters of the SNM.

Following the ranges of a, b, and � defined for the SNM,
we have a ∈ [0, 1], b ∈ R, and � ∈ R. Once the standard
nontwist map is an approximation around y ≈ 0 [14], we
restrict � in the range � ∈ [−1, 1], to be in consonant with
Refs. [37–42], which study the map in the range y ∈ [−1, 1].

Since the first derivative of the map (4) is

dxn+1

dxn
= 1 + 4πab[� cos(2πxn)

− b sin(2πxn) cos(2πxn)], (7)

there follows that for a, b �= 0, the map is nonconservative
and does not preserve the length ( dxn+1

dxn
�= 1) for most parame-

ter values. The map in Eq. (4) is a dissipative one-dimensional
map with three control parameters, a, b, and �. Because of
this, it is not straightforward to find a simple curve in the
parameter space where the criticality happens and where the
chaotic behavior becomes a possible solution. Therefore it is
necessary to apply the known methods to detect the nature
of the solutions, such as the Lyapunov exponent and winding
number.

The Lyapunov exponent of an orbit (solution) informs us
about the mean exponential rate of divergence or convergence
of the orbits nearby [28,43,44]. From the sign of the Lyapunov
exponent, we have a qualitative view of the dynamics present
in the system [43]. For one-dimensional maps, there is only
one Lyapunov exponent, and its sign can be positive indicating
chaos, negative for periodic orbits, or it can also assume a
null value, if the orbit is marginally stable or quasiperiodic
[7,43]. For higher-order systems, the number of exponents
is equal to the number of degrees of freedom and the dy-
namics is identified by the analysis of the multiple Lyapunov
exponents [43].

FIG. 1. Time series for the sine-circle nontwist map for (a) b =
0.15, (b) b = 0.56, and (c) b = 0.79. For all series, x0 = 0.5, a = 0.6,
and � = 0.5.

Once our map is one-dimensional, we apply the method for
computing the Lyapunov exponent for discrete systems of one
dimension. The Lyapunov exponent λ for a one-dimensional
map can be determined directly by

λ = lim
T →∞

1

T

T −1∑
n=0

ln |M ′(xn)|, (8)

where M ′ is the derivative of the map M, i.e., M ′ ≡
dM(x)/dx [2].

In a first moment, we choose the Lyapunov exponent,
calculated by (8), to identify the type of solution the map
presents. In order to illustrate the different solutions we can
obtain from the map (4), we show three different time series,
generated for different values of b, in Fig. 1. We also compute
the corresponding Lyapunov exponents for each solution, and
their values can be found in Table I.

The three different time series, in Fig. 1, are shown in the
range n ∈ [100, 300] in order to omit the initial transient and
to highlight their stationary behavior. For the first series in
Fig. 1(a), we observe points distributed in the range x ∈ [0, 1]
that apparently fill the domain and present an organized be-
havior. For this case we can say we observe a quasiperiodic
solution. In the second panel, Fig. 1(b), we observe a periodic
solution of period 1. For last series, in Fig. 1(c), we noticed an

TABLE I. Lyapunov exponents (λ) and number of unique recur-
rence times Nτ for ε = 0.02, computed for the time series shown in
Fig. 1 for n = 105 iterations.

λ Nτ Type of solution

(a) 6.343 × 10−6 3 Quasiperiodic
(b) –0.104 1 Periodic
(c) 0.625 164 Chaotic
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irregular behavior, with points disorganized in the whole do-
main, suggesting a chaotic solution. We confirm this result by
the Lyapunov exponents in Table I. The Lyapunov exponents
were calculated by Eq. (8) for a time-series length of n = 105

iterations. For the quasiperiodic solution, the numerical value
for the Lyapunov exponent is λ = 6.343 × 10−6, a small nu-
merical value that represents the null value for the exponent.
The periodic and chaotic solutions present a negative and
positive Lyapunov exponent, respectively.

The winding number provides us the average rotation per
iteration and is defined as [28]

ω = lim
n→∞

xn − x0

n
, (9)

where xn is the nth iteration of the map for the initial condition
x0. If ω assumes a rational or irrational value, the analyzed
solution is periodic or quasiperiodic, respectively. Otherwise,
if the limit in Eq. (9) does not converge, the orbit is chaotic.
In this study we apply the winding number together with
another method, based on the analysis of the recurrence times
of an orbit, in order to detect the nature of the solutions. This
method is a consequence of Slater’s theorem [15,16], which
states that for any irrational linear rotation over a unity circle,
there are at most three different return times to a connected
interval of size ε < 1. Moreover, the third return time is the
sum of the other two, and two of these three return times are
consecutive denominators in the continued fraction expansion
of the irrational number, in the interval [0,1]. We can relate
Slater’s theorem to the quasiperiodic solutions, which rotate
according to the irrational winding number ω. Any irrational
number γ between 0 and 1 can be expressed uniquely by a
continued fraction expansion [28]:

γ = 1

a1 + 1
a2+ 1

a3+···

≡ [a1, a2, a3, . . .]. (10)

This expansion is infinite, and if we stop at some ele-
ment s of the expansion we obtain a convergent Ps/Qs =
[a1, a2, . . . , as], which is a rational approximation of the ir-
rational number γ .

To illustrate how Slater’s theorem can be applied, we com-
pute the number of unique recurrence times for the parameters
and initial condition given in Fig. 1, as well as the winding
number for the parameters of Fig. 1(a). We define the center of
the recurrence region as the position after the initial transient
in order to guarantee that it is on the attractor. In Table I we
show the number of unique recurrence Nτ times for the set of
parameters of Fig. 1, and we confirm that for the quasiperiodic
solution there are only three recurrence times. Moreover, a
periodic solution presents only one recurrence time, which is
the period itself, and a chaotic solution presents more than
three recurrence times.

Since Slater’s theorem does not say anything about the size
ε of the recurrence region, just that ε < 1, for a quasiperiodic
solution the values of the recurrence times will change with
size ε, but the number of them will remain equal to 3. In
Table II we show the recurrence times for the quasiperiodic
solution with winding number ω = 0.442 441 495 099 428 43
for n = 105 iterations, whose continued fraction expansion is
ω = [2, 3, 1, 5, 2, 1, 1, 2, 3, 1, 41, 2, 1, 2, 3, . . .], and which

TABLE II. Recurrence times for the quasiperiodic solution, de-
picted in Fig. 1(a), for different sizes of the recurrence region.

ε τ

0.020 (9, 43, 52)
0.010 (9,52,61)
0.005 (52,113,165)
0.002 (113,165,278)
0.001 (278,443,721)

has Qs = 2, 7, 9, 52, 113, 165, 278, 721, 2441, . . . as the de-
nominators of the convergents Ps/Qs, for five different sizes
of the recurrence region. We see that as ε gets smaller, the
recurrence times get higher, as expected, and at least two of
the three recurrence times are consecutive denominators of the
convergents of ω.

In the next section we expand the application of the
Lyapunov exponent and the Slater’s theorem for different pa-
rameter values. Along with bifurcation diagrams, we analyze
the nature of the attractors of the map and their evolution with
the variation of the control parameters.

III. DYNAMICAL ANALYSIS

In this section we study the nature of the solutions and
the evolution of the attractors when the value of a param-
eter changes. The analysis is based on the computation of
the Lyapunov exponent, on the bifurcation diagrams and on
the recurrence times using Slater’s theorem. Since the map
presents three control parameters, we choose to fix the values
of � and a and to vary the value of b. Fixing a = 0.1, we
follow the diagrams for � = 0.5,−0.5, and � = 0.0, with
b ∈ (0, 2]. We exclude b = 0 because we are interested in the
dissipative regime of the map. The result for the bifurcation
diagram and the Lyapunov exponent are shown in Fig. 2.

From the bifurcation diagrams shown in Fig. 2, we identify
two different attractors. The first type is an attractor that fills
the x domain that eventually bifurcates in the second type,
the periodic attractor indicated by the distinguishable point(s).
This scenario is seen for the three parameters values of �.
From the Lyapunov exponents values shown in the lower pan-
els of Fig. 2, we observe that a quasiperiodic attractor (λ = 0)
bifurcates and a periodic attractor of period 1 emerges, char-
acterized by a negative Lyapunov exponent. This bifurcation
occurs at around b = 0.5 for � = ±0.5 and around b = 1.0
for � = 0.0. This fixed point attractor eventually suffers a
period-doubling bifurcation, and it is replaced by a periodic
attractor of period 2, for values of b > 1.5 and for the three
values of � analyzed.

Bifurcations, in one-dimensional maps, occur in the points
for which the derivative dxn+1

dxn
has an absolute value equal

to unity [2,45]. If dxn+1

dxn
= 1, the bifurcation can be a saddle

node, pitchfork, or transcritical. On the other hand, a period-
doubling bifurcation occurs if dxn+1

dxn
= −1 [2,45]. In this paper

we focus on the first bifurcation that occurs in the bifurcation
diagram, where the quasiperiodic attractor disappears and a
fixed point emerges. Therefore the bifurcation point x∗ can be
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FIG. 2. Bifurcation diagram (top panels) and Lyapunov exponent
profile (bottom panels) vs parameter b for a = 0.1 and (a) � = 0.5,
(b) � = −0.5, and (c) � = 0.0.

calculated by the equation
∂xn+1

∂xn
|x∗ = 1, which results in

1 + 4πab cos(2πx∗)[� − b sin(2πx∗)] = 1. (11)

Equation (11) provides three possible bifurcation points (see
the Appendix for calculation details):

x∗
1 = 1

4
, x∗

2 = 3

4
, and x∗

3 = 1

2π
arcsin

(
�

b

)
. (12)

Once the bifurcation point corresponds to a fixed point of
period 1, the points in (12) must satisfy the relation x∗

1 = x∗,
where x∗

1 is the first iteration of the initial condition x0 = x∗.
Applying this relation to the fixed points, we obtain the pa-
rameter values for which the bifurcation occurs. For x∗

1 and x∗
2 ,

the relation x∗
1 = x∗ is satisfied for b − � = 1 and b + � = 1,

respectively. While for x∗
3 the relation is not verified for any

value of a, b, and �, x∗
3 should be a bifurcation point of higher

period. We will not consider in this paper the bifurcation that
occurs in x∗

3 .
We find two bifurcation curves in the parameter space,

b ± � = 1, where the bifurcation occurs at x = 0.75 (x =
0.25) for the plus (minus) sign, respectively. In fact, in
Fig. 2, we see that a bifurcation occurs at x = 0.75 for b =
0.5 and � = 0.5 (b + � = 1) and at x = 0.25 for (b,�) =
(0.5,−0.5) and (b,�) = (1.0, 0.0) (b − � = 1).

In order to identify the bifurcation type, we need to com-
pute the derivative with respect to the parameter b, at the
bifurcation point. If dxn+1

db �= 0, we have a saddle-node bifurca-

tion, while for dxn+1

db = 0 the bifurcation can be a transcritical
or pitchfork bifurcation [45]. Since

dxn+1

db
= 2a sin(2πxn)[� − b sin(2πxn)], (13)

the derivative is equal to −2a, for both bifurcation points
x∗

1 and x∗
2 . Thus the bifurcation curves b ± � = 1 indicate

saddle-node bifurcations, for a �= 0. In the bifurcation dia-
gram in Fig. 2, we observe only one bifurcation in the range
b ∈ (0, 2], the bifurcation b + � = 1 for � = 0.5 and the
bifurcation at b − � = 1 for � = −0.5 and � = 0.0.

So far we have analyzed the evolution of the attractors
when only one parameter is changed. By continuously varying
two parameters and for each set using some method to detect
the nature of the solutions, we can construct the parameter
space and identify the types of solution and how they are
organized. To construct the parameter space for our map, we
use the number of recurrence times to identify the solutions.
We vary two parameters and keep one fixed, and for each set
(a, b,�) we iterate the map, with the initial condition x0 =
0.5, for n = 106, with a transient of 5 × 104, and count the
number of unique recurrence times Nτ for a recurrence region
of size ε = 0.02. If Nτ = 1, the solution is periodic and we
plot a black point. The quasiperiodic solution is characterized
by three distinct recurrence times, Nτ = 3, and we represented
it by a white point. On the other hand, for a chaotic solution we
have Nτ > 3 and we plot a red (gray) point. We construct three
parameter spaces: (a) a × b, with � = 0.3, (b) � × a, with
b = 0.4, and (c) � × b, with a = 0.8. The resulting parameter
spaces are shown in Figs. 3(a)–3(c), respectively.

In Fig. 3 we observe a nontrivial structure where the
quasiperiodic, periodic, and chaotic regions are intertwined,
with shrimp-shaped structures. For low values of a and b, all
the solutions are periodic or quasiperiodic. Chaotic solutions
start to emerge as these two parameters are increased.

The parameter spaces in Fig. 3 were constructed by
the analysis of trajectories, with a single initial condition
x0 = 0.5. The results can be significantly different if multi-
stability is present in the system.

IV. MULTISTABILITY

Multistability is the coexistence of different attractors for
one set of parameters [46,47]. In this way, various asymptotic
behaviors can coexist, and the attractor to which the solu-
tion will converge depends strongly on the initial condition
[34,46,47]. A comprehensive study about multistability can
be found in Ref. [47], where the authors present many systems
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FIG. 3. Parameter spaces for the Slater’s condition for (a) � =
0.3, (b) b = 0.4, and (c) a = 0.8. The periodic, quasiperiodic, and
chaotic solutions are represented by the black, white, and red (gray)
points, respectively.

that present multistable behavior as well as different methods
to control it. The multistability in dissipative nontwist systems
was study in Ref. [48], and the coexistence of shearless and
periodic attractors was observed as the existence of chaotic
bands and chaotic attractors on torus. Since the map we are
analyzing is derived from the standard nontwist map and it
is dissipative, we investigate the possibility of multistable
scenarios in this section.

Multistable systems often display hysteresis, i.e., the ex-
istence of different evolutions as a parameter is varied in
opposite directions. This can be observed, for example, on the
bifurcation diagrams. The diagrams in Fig. 2 were constructed
by increasing the value of the parameter b. Now we construct
and plot two bifurcation diagrams, one increasing the value
of b from 0.0 to 2.0 and a second one starting in 2.0 and

FIG. 4. Bifurcation diagrams and respective Lyapunov expo-
nents vs b for a = 0.1, (a) � = 0.5, (b) � = −0.5, and (c) � = 0.0.
The purple (dark gray) and turquoise (light gray) points indicate the
direction of increasing and decreasing of the parameter, respectively.
The direction is also indicated by the colored arrows. The orange
(light gray) and pink (dark gray) diamond-shaped points represent
the bifurcation that occurs at b + � = 1 and b − � = 1.

decreasing to 0.0. When computing the diagram in another
direction of variation, there is a possibility to follow the evo-
lution of an attractor different from the one analyzed in the
first diagram. The results are shown in Fig. 4, along with the
corresponding Lyapunov exponents.

In Fig. 4 we observe a distinction between the two overlap-
ping diagrams for b > 1.5, when � = ±0.5, and for b > 1.0
at the last case � = 0.0. The coexistence of distinguishable
turquoise (light gray) and purple (dark gray) points for the
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same value of b indicate the coexistence of different attractors
in the system. For � = ±0.5 and b > 0.5, the attractor in
turquoise is a fixed point of period 1 that suffers an abrupt
change in its location, while the purple attractor is also a fixed
point but subsequently suffers a period-doubling bifurcation.
For � = 0.0, both attractors behave in the same way: they are
quasiperiodic for b < 1.0, and then two fixed points emerge
that subsequently bifurcate into a period-2 attractor.

The Lyapunov exponents profiles shown in Fig. 4 provide
us the classification of the attractors in the diagram. For the
first two cases (� = ±0.5), it is possible to see the hysteresis
also in the Lyapunov exponent profiles for b > 1.7. For the
case � = 0.0, it is impossible to distinguish the two attractors
by the Lyapunov exponent profile, but the diagram shows two
distinguishable fixed point attractors, representing a scenario
of hysteresis in the evolution of the attractor.

We indicate in Fig. 4 the bifurcation points computed
in the last section. The bifurcation occurs at x = 0.75 for
the parameters that satisfied the relation b + � = 1, or at
x = 0.25, when b − � = 1 is true. These two cases are in-
dicated by diamond-shape points at the diagrams in Fig. 4,
where the orange (pink) point indicates the bifurcation for
the case b + � = 1 (b − � = 1). The bifurcation at b = 0.5,
for � = ±0.5, and the two points at b = 1.0 for � = 0.0,
describe the change of the attractor nature: the attractor is
quasiperiodic before the bifurcation point and then becomes
periodic after it, though the other bifurcation point for � =
±0.5 (b = 1.5) depicts not a change in the behavior but the
emergence of other attractor and, consequently, the multista-
bility scenario.

With the last result we can conclude that the bifurcation
points are related to the multistability scenario and also the
change of the nature of the attractor. In the cases presented
in Fig. 4, the multistability is composed by different periodic
attractors. However, we cannot affirm that this is always the
case for our map. Therefore we now present a method to
analyze the possible multistable scenarios for noninvertible,
one-dimensional maps.

In order to identify different scenarios of coexistence
of attractors for different sets of parameters, we propose a
methodology to identify possible attractors scenarios in the
map. The method is based in the comparison of the time
series resulting from different initial conditions, analysis of
the Lyapunov exponents, and the region occupied by the time
series in the x domain. If all the initial conditions lead to the
same value of the Lyapunov exponent and occupy the same
values of x, after some transient time we have a single attractor
scenario for the system; otherwise, the multistable scenario is
identified. The application of this method is described below.

For a given set of parameters (�, a, b), we randomly
choose an initial condition x0 ∈ [0, 1], evolve it for 5 × 104 it-
erations, and simultaneously compute its Lyapunov exponent
λ. In order to identify if all initial conditions belong to the
same basin of attraction and, consequently, all the solutions
lead to the same attractor, we analyze different initial condi-
tions and observe if they all assume the same behavior. For
this we evolve 100 initial conditions for twice as long, 105

iterations, once we are interested in the asymptotic behavior
of the solution, and we take the last iteration from x0, x0(n =
5 × 104), as a reference to identify periodic solutions. Then

we analyze and compare the xi values these solutions assume
and their Lyapunov exponents λxi with the reference values
x0(n = 5 × 104) and λx0 . With the results of the comparison,
we divide the scenarios of the attractors in the system in five
classes.

If all the initial conditions lead to the same attractor, we
have a scenario of a single attractor in the system. For this
scenario to happen, x0 and all xi, with i = 1, 2, ..., 100, should
present a negative Lyapunov exponent and have the same
asymptotic behavior. Numerically, we consider this scenario
if the reference Lyapunov exponents are smaller than λx0 =
−0.0001 (periodic solution) and all the solutions generated
by the 100 initial conditions return to the reference value
x0(5×104), i.e., |xi(n) − x0(5×104)| � 10−4, for n > 5×104.
With this last condition we ensure the solutions belong to the
same attractor.

The single attractor scenario also happens if we have a
quasiperiodic attractor in the system. Once the quasiperiodic
attractor occupies the entire x domain, in one-dimensional
systems, if λx0 = 0 (numerically |λx0 | < 0.0001), we consider
a single attractor scenario composed of a single quasiperi-
odic attractor. We emphasize that the coexistence of different
quasiperiodic attractors is possible [49–51], as well as the
coexistence of quasiperiodic and periodic attractors [48] for
higher-dimensional maps.

In a multistable scenario composed only by different peri-
odic solutions, we observe that all the Lyapunov exponents
are negative, i.e., λxi < 0 for i = 0, 1, ..., 100. But in this
case, the initial conditions do not belong to the same basin
and, consequently, the solutions do not belong to the same
attractor. Numerically, if λxi < −0.0001 for all solutions and
the condition |xi(n) − x0(5 × 104)| � 10−4 is not valid for,
at least, one solution xi, we have a scenario of multistability
formed by distinct periodic solutions.

We consider a multistable scenario formed by chaotic and
periodic attractors if at least one periodic and one chaotic
solution is identified. For this we analyze all 101 solutions,
the reference initial condition plus the others 100 randomly
chosen, and observe their Lyapunov exponents. If at least one
is negative and one is positive (λxi > 0.0001), the coexistence
between chaotic and periodic attractors is confirmed. In most
cases the chaotic attractor appears in the form of chaotic bands
occupying a defined region in the x domain.

The fourth class we define is related to the chaotic behavior
in the system. In this class all the initial conditions generate
a chaotic solution and belong to the same chaotic attractor.
In order to identify this situation, we compute the Lyapunov
exponent of all the solutions and verify if all are positive. If
this is the case, we then analyze whether all of them belong to
the same attractor, i.e., if there is not a coexistence of chaotic
bands. We consider that all solutions are in the same chaotic
behavior if they occupy the same region in the x domain.
For this we compare the time average of the last 5 × 104

iterates of all solutions. In our simulations, the attractor is
unique if the average is smaller than 0.1, |x̄i − x̄1| < 0.1, for
all i = 2, 3, ..., 100. The time averages are computed as x̄i =

1
n0−n1

∑n1
n=n0

xi(n), where n0 = 5 × 104 and n1 = 105. The ref-
erence solution, x0, must be chaotic as well (λx0 > 0).

The last class is related to the coexistence of chaotic
bands, chaotic behaviors restricted to a certain region of the
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x domain. The procedure is the same as that proposed in the
last case (chaos scenario), but the condition |x̄i − x̄1| < 0.1
should not be valid for at least one initial condition. If this is
the case, we have a multistable scenario composed by multiple
chaotic bands. The value 0.1 used for the condition is chosen
based on our computations of the averages x̄i for cases with
different chaotic bands.

We perform the analysis described above for different sets
of parameters (�, a, b) and we constructed three parameter
spaces: (a) a × b for � = 0.3, (b) � × a for b = 0.4, and (c)
� × b for a = 0.8, the same parameter values in Figs. 3(a)–
3(c). Each scenario is identified by a different color, and
the results are shown in Fig. 5, providing us the multistable
scenario for different parameters sets (a, b,�).

The blue points indicate parameters where the single at-
tractor scenario is present. The only attractor can be periodic
or quasiperiodic. These situations are dominant in the param-
eter space for � = 0.3 [Fig. 5(a)] and b = 0.4 [Fig. 5(b)].
When the system presents only chaotic behavior, in which
all the solutions occupy chaotically the same range of x,
we have the chaotic scenario, depicted by the green points.
The multistable scenarios are represented by the red, yellow,
and black points, which indicate the coexistence of periodic
attractors, periodic and chaotic attractors, and chaotic bands,
respectively. These scenarios occupy a smaller region in the
parameter space when compared to those occupied by the blue
and green points (single attractor and chaotic scenario), and
they can be found mostly after the bifurcation lines (orange
and pink lines), i.e., for slightly greater values, when we
follow the increase of the parameter.

The scenarios of multistability located after the bifurcation
lines are in accordance with the result shown in Fig. 3, where
the coexistence of attractor can emerge at the bifurcation
point. However, this is not a rule once we can observe mul-
tistable scenarios, mostly indicated by red points (coexistence
of different periodic attractors) for parameter values smaller
than those at the bifurcation curves, in all panels of Fig. 5. The
chaotic regime is predominant for larger parameter values, but
since the system depends on three parameters, we are unable
to define exactly when the emergence of chaotic behavior
occurs, so it is necessary to perform the analysis for each set
(�, a, b).

From the parameter spaces depicted in Fig. 5, we conclude
that it is possible to identify scenarios of multistability or
single attractors, but we cannot predict the particular scenario
for a specific set of parameters. The structure of the parameter
space is nontrivial, and there are not smooth or simple bound-
aries between the different scenarios. Instead, the boundaries
are complex and can even be fractal, due to the similarity of
some parts of the blue region with the Arnold tongues [28]
and phase-locking scenarios in parameter spaces, for example,
Fig. 2 in Ref. [52].

For the construction of Fig. 5, we consider the possibil-
ity of the existence of chaotic bands, defined by the chaotic
behavior that occurs in a restricted region of the x domain.
We also observe chaotic attractors in the system that fill the
entire range of x. Knowing that different chaotic structures
exist in the system, we now analyze how they evolve with the
change of the parameters and if a crisis can be observed in the
system.

FIG. 5. Parameter spaces for the multistable scenarios of the
system for (a) � = 0.3, (b) b = 0.4, and (c) a = 0.8. The single
attractor scenario, the multistable scenarios as the coexistence of pe-
riodic attractors, periodic and chaotic attractors and distinct chaotic
bands, and the chaotic behavior are represented by blue (dark gray),
red (gray), yellow (white), and black and green (light gray) points,
respectively. The bifurcation curves b + � = 1 and b − � = 1 are
shown as the orange (light gray) and pink (gray) lines.

A crisis can be defined as an event where the chaotic
attractor changes discontinuously when an unstable periodic
orbit collides with the chaotic attractor [53]. The attractor
after crisis can have its size abruptly increased or it can be
extinct, becoming a chaotic transient. For the first case, the

034203-8



DYNAMICS, MULTISTABILITY, AND CRISIS ANALYSIS … PHYSICAL REVIEW E 106, 034203 (2022)

FIG. 6. Bifurcation diagrams vs the parameter b for a = 0.8,
� = −0.08. The purple (dark gray) and turquoise (light gray) points
indicate the increasing (decreasing) direction of the parameter b,
respectively. The black solid curves represent the unstable periodic
orbits. The dash-dotted red (dark gray) line indicates the interior
crisis at b ≈ 0.9429, while the orange (gray) lines mark the boundary
crisis at b ≈ 0.9609 (dotted line) and b ≈ 0.9673 (dashed line).

unstable periodic orbit collides within the basin of attraction,
the crisis is named as an interior crisis, and the attractor grows
in size [53]. The second case, the attractor and its basin,
disappears by the collision of the unstable periodic orbit with
the boundary of the basin, thus having a boundary crisis [53].

In order to investigate the scenarios of crisis in our one-
dimensional map defined by Eq. (4), we constructed the
bifurcation diagram for a = 0.8 and � = −0.08, varying the
value of b in the range b ∈ [0.9, 1]. As we performed in Fig. 4,
we also compute the diagram for the increase and the decrease
of the parameter b. The diagram is shown in Fig. 6.

We observe hysteresis in the ranges b ∈ [0.92, 0.955] and
b ∈ [0.961, 0.967], in which the purple and the turquoise
points are distinguishable, indicating more than one attractor
for the same set of parameters. The multistability scenario in
these ranges is formed by the coexistence between periodic
and chaotic bands, different periodic attractors, and also be-
tween different chaotic bands (second range).

The chaotic bands undergo abrupt changes as the value
of b varies. First we observe an abrupt expansion in the at-
tractor, around b ≈ 0.943. We also observe, for b ≈ 0.967,
the extinction of the purple chaotic band, and for b ≈ 0.961,
the extinction of the turquoise chaotic bands. These results
suggest that the chaotic attractors passes through an interior
crisis and a boundary crisis, respectively. In order to confirm
the existence of the crises, we plot the unstable periodic orbits
together with the diagram, indicated by the solid black curves.
The unstable orbits are obtained for the following procedure.
After we assume the period T of these orbits, we ran the
domain x ∈ [0, 1] and we compute the difference |xT − x0|,
where x0 is the initial condition we are analyzing. Once the
orbits are unstable, they diverge from the initial condition
quickly, if they are not really close to the fixed point. There-
fore we define that if |xT − x0| < 10−6, the x0 belong to the
periodic orbits. In order to identify if the orbit is unstable or
stable, we compute the derivative at the point. If it is greater

than unity, the orbit is unstable. We also analyze orbits gen-
erated by the initial condition nearby, x0. If they diverge and
are attracted to other fixed points, we assume x0 is unstable.
With this procedure we computed the unstable periodic points
in Fig. 6, where we can observe unstable periodic orbits of
period 1 and period 2.

We can identify the two types of crises in the bifurcation
diagram of Fig. 6. The period-2 unstable periodic orbit col-
lides with the purple chaotic bands, and an abrupt increase
of the attractor emerges after the collision, an interior crisis
(dash-dotted red line). The boundary crisis is observed with
the collision between the unstable periodic orbit of period 1
with the purple chaotic band (dashed orange line), followed
by the extinction of the chaotic attractor. We assume that the
unstable periodic orbit belongs in the basin boundary, for a
boundary crisis, reminding us that the attractor collides with
its own basin boundary. A similar scenario occurs when the
period-2 unstable periodic orbit collides with the turquoise
chaotic bands (dotted orange line), after which the chaotic
attractor is extinct.

The extinction of the attractors by the boundary crisis plays
an important role with regard to the multistability scenario. If
we observe the direction of increasing the parameter b, the
boundary crisis occurs at b = 0.9673, and the purple band
is destroyed along with multistability. If we follow the op-
posite direction, the boundary crisis occurs at b = 0.9609, the
turquoise bands are extinct, and a scenario of a single attractor
emerges, until b ≈ 0.953, where purple chaotic bands arise in
the bifurcation diagram.

V. CONCLUSIONS

We proposed a one-dimensional circle map that exhibits
a three-parameter dependency. The map can be constructed
from the manipulation of two different two-dimensional
maps: the standard nontwist map and a twist map perturbed by
two harmonics with different frequencies. From our simula-
tions of the Lyapunov exponent and the application of Slater’s
theorem, we were able to identify the different solutions of the
systems—the periodic, quasiperiodic, and chaotic behavior.
We present this map as a one-dimensional system that can be
interpreted as a local approximation of the standard nontwist
map when the respective y is constant.

From the analytical and numerical studies on the bifur-
cations displayed by the map, we were able to identify two
bifurcation curves in the parameter space, b ± � = 1, for
which the bifurcation that occurs is of the saddle-node type.
This point is also indicative for the onset of multistability.
These shifts from a single attractor to multistable scenario,
passing through the bifurcation, only occur when different
single attractor tongues intercept each other.

In order to identify the nature of the map solutions, we
applied Slater’s theorem as an alternative to the Lyapunov
exponent. We observed three possible distinct solutions: the
periodic solution, with one return time; the quasiperiodic
solution, with three different return times; and the chaotic
behavior, with more than three return times. With the applica-
tion of the condition asserted by Slater [15,16], the numerical
thresholds for the negative, null, and positive Lyapunov expo-
nents are not necessary conditions.
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Multistability is a possible scenario for our one-
dimensional model. The coexistence of different periodic
attractors was observed by the hysteresis of the bifurcation
diagram. The two bifurcation points, obtained by the lines
b ± � = 1, correspond to two different attractors that coexist
for the same parameters (�, a, b). In order to broaden the
identification of multistable scenarios for different parameters
values, we proposed a method based on the comparison be-
tween the Lyapunov exponent and the region occupied in the
x domain related to the solutions obtained by the iteration of
distinct initial conditions. From our simulations we observed
the prevalence of single attractor and chaotic scenarios, and
we analyze the multistable scenarios for the three parameter
spaces. The multistable scenarios are restricted to smaller
regions of the space, and its majority is composed of the coex-
istence of different periodic attractors, while the points which
indicate the coexistence of chaotic and periodic attractors and
distinct chaotic bands are minority.

Finally, we analyzed the crisis involving the chaotic at-
tractors of the map: the interior crisis, responsible for the
abrupt increase in the size of the chaotic attractor, and the
boundary crisis, accountable for the extinction of the attractors
and which occurs twice in the diagram. While the interior
crisis does not affect the multistability, the boundary crises
are responsible for the extinction of the multistable scenario.
Following the diagram in the direction of increasing parameter
b, we observe that the crisis indicates the extinction of a
chaotic band and also the end of multistability. If we follow
the diagram in the opposite direction, decreasing the value of
b, the boundary crisis also indicated the extinction of chaotic
bands and the end of the multistable scenario.

The study presented in this paper has, as a novelty, the
detailed analysis of bifurcation and multistability for a one-
dimensional map with a three-parameter dependency. We also
applied the Slater’s theorem, an effective method to identify
the nature of the solutions that are not used as much in the
literature. Slater’s theorem is useful once it is not necessary
to establish a numerical threshold for the positive, negative,
and null values of the Lyapunov exponent to identify the
nature of the attractors. We hope that further studies on the
map will shed light on other issues that were not analyzed
in this paper, such as basins of attraction, the fractability of
parameter spaces, and topological chaos, among other ques-
tions. We also expect that other methodologies, such as the
rotation intervals [19,54], will bring interesting results for the
dynamical analysis of the map.
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APPENDIX: BIFURCATION ANALYSIS

The saddle-node bifurcation occurs in one-dimensional
maps when ∂xn+1/∂xn|(x∗,α∗ ) = 1 and ∂xn+1/∂α|(x∗,α∗ ) �= 0,
where α is the control parameter [45]. In order to prove the
bifurcation visualized in Figs. 2 and 4 are saddle-node bifur-
cations, we show the calculation of the derivatives ∂xn+1/∂xn

and ∂xn+1/∂b.
Once we are not considering the period-doubling bifur-

cation (∂xn+1/∂xn = −1), the derivative ∂xn+1/∂xn must be
equal to unity:

∂xn+1

∂xn

∣∣∣∣
x∗

= 1,

1 + 4πab cos(2πx∗)[� − b sin(2πx∗)] = 1,

4πab cos(2πx∗)[� − b sin(2πx∗)] = 0,

cos(2πx∗)[� − b sin(2πx∗)] = 0.

Hence we obtain the following conditions:
⎧⎪⎪⎨
⎪⎪⎩

cos 2πx∗ = 0

{
2πx∗ = π

2 → x∗ = 1
4 ,

2πx∗ = 3π
2 → x∗ = 3

4 ,

� − b sin(2πx∗) = 0 → x∗ = 1
2π

arcsin

(
�

b

)
.

(A1)

Once we analyze the bifurcation in fixed points of period 1,
the next iterate xn+1 must be identical to xn, with xn = x∗.
Therefore xn+1(xn = x∗) = x∗, and

x∗ = x∗ + a[1 − (� − b sin(2πx∗)]2,

b sin(2πx∗) = � ± 1. (A2)

Entering the points from Eq. (12) in (A2), we obtain, for
x∗ = 1

4 ,

b sin

(
2π

1

4

)
= � ± 1,

b − � = ±1,

(A3)

while for x∗ = 3
4 ,

b sin

(
2π

3

4

)
= � ± 1,

b + � = ±1. (A4)

Lastly, for x∗ = 1
2π

arcsin( �
b ), we obtain the relation � =

� ± 1, and there is not a value of � that satisfies the equal-
ity. As b > 0 and −1 � � � 1, the bifurcation at x∗ = 1/4
(x∗ = 3/4) occurs when b − � = 1 (b + � = 1).

Computing the derivative ∂xn+1/∂b, we obtain

∂xn+1

∂b
= 2a sin(2πxn)[� − b sin(2πxn)]. (A5)

At the bifurcation points (x∗ = 1/4,�∗, b∗ − �∗ = 1) and
(x∗ = 3/4,�∗, b∗ + �∗ = 1), for both points the derivative
assumes the value

∂xn+1

∂b

∣∣∣∣
(x∗,�∗,b∗ )

= −2a, (A6)

which is not null for a �= 0.

034203-10



DYNAMICS, MULTISTABILITY, AND CRISIS ANALYSIS … PHYSICAL REVIEW E 106, 034203 (2022)

[1] R. M. May, Simple mathematical models with very complicated
dynamics, Nature (London) 261, 459 (1976).

[2] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, England, 2002).

[3] R. L. Viana and F. F. d. Carvalho, Sincronização entre um
oscilador de fase e um forçamento externo, Revista Brasileira
de Ensino de Física 39, e3306 (2017).

[4] P. Bak, T. Bohr, and M. H. Jensen, Mode-locking and the
transition to chaos in dissipative systems, Phys. Scr. 1985, 50
(1985).

[5] A. Csordas, G. Györgyi, P. Szepfalusy, and T. Tel, Statistical
properties of chaos demonstrated in a class of one-dimensional
maps, Chaos: An Interdisciplinary Journal of Nonlinear Science
3, 31 (1993).

[6] V. I. Arnol’d, Small denominators. I. On the mappings of
the circle on itself, Izvestiya Rossiiskoi Akademii Nauk.
Seriya Matematicheskaya 25, 21 (1961).

[7] U. Feudel, J. Kurths, and A. S. Pikovsky, Strange non-chaotic
attractor in a quasiperiodically forced circle map, Physica D 88,
176 (1995).

[8] O. Afsar and U. Tirnakli, Probability densities for the sums of
iterates of the sine-circle map in the vicinity of the quasiperiodic
edge of chaos, Phys. Rev. E 82, 046210 (2010).

[9] D. J. Olinger, A. B. Chhabra, and K. R. Sreenivasan, The onset
of chaos in the wake of an oscillating cylinder: Experiment and
the dynamics of the circle map, Pramana 48, 693 (1997).

[10] T. Bohr, P. Bak, and M. H. Jensen, Transition to chaos by
interaction of resonances in dissipative systems. II. Josephson
junctions, charge-density waves, and standard maps, Phys. Rev.
A 30, 1970 (1984).

[11] M. J. Feigenbaum, L. P. Kadanoff, and S. J. Shenker,
Quasiperiodicity in dissipative systems: A renormalization
group analysis, Physica D 5, 370 (1982).

[12] S.-Y. Kim and D.-S. Lee, Transition to chaos in a dissipative
standardlike map, Phys. Rev. A 45, 5480 (1992).

[13] E. W. Weisstein, Circle map, From MathWorld–A Wolfram
Web Resource, https://mathworld.wolfram.com/CircleMap.
html.

[14] D. del Castillo-Negrete and P. J. Morrison, Chaotic transport by
Rossby waves in shear flow, Phys. Fluids 5, 948 (1993).

[15] N. B. Slater, The distribution of the integers n for which θn < ϕ,
Math. Proc. Cambridge Philos. Soc. 46, 525 (1950).

[16] N. B. Slater, Gaps and steps for the sequence nθ mod 1, Math.
Proc. Cambridge Philos. Soc. 63, 1115 (1967).

[17] E. G. Altmann, G. Cristadoro, and D. Pazó, Nontwist non-
Hamiltonian systems, Phys. Rev. E 73, 056201 (2006).

[18] Y. Zou, D. Pazó, M. C. Romano, M. Thiel, and J. Kurths, Dis-
tinguishing quasiperiodic dynamics from chaos in short-time
series, Phys. Rev. E 76, 016210 (2007).

[19] R. S. Mackay and C. Tresser, Transition to topological chaos
for circle maps, Physica D 19, 206 (1986).

[20] J. A. C. Gallas, Dissecting shrimps: Results for some one-
dimensional physical models, Physica A 202, 196 (1994).

[21] J. A. C. Gallas, Structure of the Parameter Space of the Hénon
Map, Phys. Rev. Lett. 70, 2714 (1993).

[22] A. Hoff, D. T. da Silva, C. Manchein, and H. A. Albuquerque,
Bifurcation structures and transient chaos in a four-dimensional
Chua model, Phys. Lett. A 378, 171 (2014).

[23] S. L. T. de Souza, A. A. Lima, I. L. Caldas, R. O. Medrano-
T., and Z. O. Guimarães-Filho, Self-similarities of periodic

structures for a discrete model of a two-gene system, Phys. Lett.
A 376, 1290 (2012).

[24] E. S. Medeiros, S. L. T. de Souza, R. O. Medrano-T, and I. L.
Caldas, Periodic window arising in the parameter space of an
impact oscillator, Phys. Lett. A 374, 2628 (2010).

[25] V. dos Santos, J. D. Szezech Jr., M. S. Baptista, A. M. Batista,
and I. L. Caldas, Unstable dimension variability structure in the
parameter space of coupled hénon maps, Appl. Math. Comput.
286, 23 (2016).

[26] G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics
(Oxford University Press on Demand, 2005).

[27] J. S. E. Portela, I. L. Caldas, and R. L. Viana, Tokamak magnetic
field lines described by simple maps, Eur. Phys. J.: Spec. Top.
165, 195 (2008).

[28] A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic
Dynamics (Springer Science & Business Media, 2013), Vol. 38.

[29] Z. Chen and S. W. Pan, Study of phase circle map model and
its symbolic dynamics, in 2015 International Conference on
Electrical, Automation and Mechanical Engineering (Atlantis
Press, Amsterdam, 2015), pp. 729–733.

[30] U. Tırnaklı, C. Tsallis, and M. L. Lyra, Circular-like maps:
Sensitivity to the initial conditions, multifractality and nonex-
tensivity, Eur. Phys. J. B 11, 309 (1999).

[31] J. H. E. Cartwright, Newton maps: Fractals from New-
ton’s method for the circle map, Comput. Graphics 23, 607
(1999).

[32] J. C. B. de Figueiredo and C. P. Malta, Lyapunov graph for
two-parameters map: Application to the circle map, Int. J.
Bifurcation Chaos 08, 281 (1998).

[33] P. Cvitanovic, B. Shraiman, and B. Söderberg, Scaling laws for
mode lockings in circle maps, Phys. Scr. 32, 263 (1985).

[34] U. Feudel and C. Grebogi, Multistability and the control of
complexity, Chaos: An Interdisciplinary Journal of Nonlinear
Science 7, 597 (1997).

[35] D. del Castillo-Negrete, J. M. Greene, and P. J. Morrison,
Area preserving nontwist maps: Periodic orbits and transition
to chaos, Physica D 91, 1 (1996).

[36] K. Fuchss, A. Wurm, A. Apte, and P. J. Morrison, Breakup of
shearless meanders and “outer” tori in the standard nontwist
map, Chaos: An Interdisciplinary Journal of Nonlinear Science
16, 033120 (2006).

[37] M. Mugnaine, A. C. Mathias, M. S. Santos, A. M. Batista, J. D.
Szezech Jr., and R. L. Viana, Dynamical characterization of
transport barriers in nontwist Hamiltonian systems, Phys. Rev.
E 97, 012214 (2018).

[38] J. D. Szezech Jr., I. L. Caldas, S. R. Lopes, P. J. Morrison, and
R. L. Viana, Effective transport barriers in nontwist systems,
Phys. Rev. E 86, 036206 (2012).

[39] I. L. Caldas, R. L. Viana, C. V. Abud, J. C. D. d. Fonseca, Z. d.
O. Guimarães Filho, T. Kroetz, F. A. Marcus, A. B. Schelin, J.
Szezech, D. L. Toufen et al., Shearless transport barriers in mag-
netically confined plasmas, Plasma Phys. Controlled Fusion 54,
124035 (2012).

[40] A. C. Mathias, M. Mugnaine, M. S. Santos, J. D. Szezech Jr.,
I. L. Caldas, and R. L. Viana, Fractal structures in the parameter
space of nontwist area-preserving maps, Phys. Rev. E 100,
052207 (2019).

[41] M. S. Santos, M. Mugnaine, J. D. Szezech Jr., A. M. Batista,
I. L. Caldas, M. S. Baptista, and R. L. Viana, Recurrence-
based analysis of barrier breakup in the standard nontwist map,

034203-11

https://doi.org/10.1038/261459a0
https://doi.org/10.1590/1806-9126-RBEF-2016-0234
https://doi.org/10.1088/0031-8949/1985/T9/007
https://doi.org/10.1063/1.165977
http://mi.mathnet.ru/izv3366
https://doi.org/10.1016/0167-2789(95)00205-I
https://doi.org/10.1103/PhysRevE.82.046210
https://doi.org/10.1007/BF02845669
https://doi.org/10.1103/PhysRevA.30.1970
https://doi.org/10.1016/0167-2789(82)90030-6
https://doi.org/10.1103/PhysRevA.45.5480
https://mathworld.wolfram.com/CircleMap.html
https://doi.org/10.1063/1.858639
https://doi.org/10.1017/S0305004100026086
https://doi.org/10.1017/S0305004100042195
https://doi.org/10.1103/PhysRevE.73.056201
https://doi.org/10.1103/PhysRevE.76.016210
https://doi.org/10.1016/0167-2789(86)90020-5
https://doi.org/10.1016/0378-4371(94)90174-0
https://doi.org/10.1103/PhysRevLett.70.2714
https://doi.org/10.1016/j.physleta.2013.11.003
https://doi.org/10.1016/j.physleta.2012.02.036
https://doi.org/10.1016/j.physleta.2010.04.045
https://doi.org/10.1016/j.amc.2016.04.007
https://doi.org/10.1140/epjst/e2008-00863-y
https://doi.org/10.1007/BF03219171
https://doi.org/10.1016/S0097-8493(99)00078-3
https://doi.org/10.1142/S0218127498000176
https://doi.org/10.1088/0031-8949/32/4/003
https://doi.org/10.1063/1.166259
https://doi.org/10.1016/0167-2789(95)00257-X
https://doi.org/10.1063/1.2338026
https://doi.org/10.1103/PhysRevE.97.012214
https://doi.org/10.1103/PhysRevE.86.036206
https://doi.org/10.1088/0741-3335/54/12/124035
https://doi.org/10.1103/PhysRevE.100.052207


MUGNAINE, SALES, SZEZECH JR., AND VIANA PHYSICAL REVIEW E 106, 034203 (2022)

Chaos: An Interdisciplinary Journal of Nonlinear Science 28,
085717 (2018).

[42] J. D. Szezech Jr., I. L. Caldas, S. R. Lopes, R. L. Viana, and
P. J. Morrison, Transport properties in nontwist area-preserving
maps, Chaos: An Interdisciplinary Journal of Nonlinear Science
19, 043108 (2009).

[43] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Deter-
mining Lyapunov exponents from a time series, Physica D 16,
285 (1985).

[44] G. Benettin, L. Galgani, A. Giorgilli, and J.-M. Strelcyn, Lya-
punov characteristic exponents for smooth dynamical systems
and for Hamiltonian systems; A method for computing all of
them. Part 1: Theory, Meccanica 15, 9 (1980).

[45] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos (Springer,
New York, 1996).

[46] U. Feudel and C. Grebogi, Why Are Chaotic Attractors
Rare in Multistable Systems? Phys. Rev. Lett. 91, 134102
(2003).

[47] A. N. Pisarchik and U. Feudel, Control of multistability, Phys.
Rep. 540, 167 (2014).

[48] M. Mugnaine, A. M. Batista, I. L. Caldas, J. D. Szezech,
R. E. de Carvalho, and R. L. Viana, Curry-Yorke route to

shearless attractors and coexistence of attractors in dissipa-
tive nontwist systems, Chaos: An Interdisciplinary Journal of
Nonlinear Science 31, 023125 (2021).

[49] G. Li, Y. Yue, C. Grebogi, D. Li, and J. Xie, Strange non-
chaotic attractors and multistability in a two-degree-of-freedom
quasiperiodically forced vibro-impact system, Fractals 29,
2150103 (2021).

[50] J. P. Singh, J. Koley, K. Lochan, and B. K. Roy, Presence of
megastability and infinitely many equilibria in a periodically
and quasi-periodically excited single-link manipulator, Int. J.
Bifurcation Chaos 31, 2130005 (2021).

[51] P. Prakash, K. Rajagopal, J. P. Singh, and B. K. Roy,
Megastability in a quasi-periodically forced system exhibiting
multistability, quasi-periodic behaviour, and its analogue circuit
simulation, AEU Int. J. Electron. Commun. 92, 111 (2018).

[52] R. Perez and L. Glass, Bistability, period doubling bifurcations
and chaos in a periodically forced oscillator, Phys. Lett. A 90,
441 (1982).

[53] C. Grebogi, E. Ott, and J. A. Yorke, Chaotic Attractors in Crisis,
Phys. Rev. Lett. 48, 1507 (1982).

[54] R. MacKay, Rotation interval from a time series, J. Phys. A:
Math. Gen. 20, 587 (1987).

034203-12

https://doi.org/10.1063/1.5021544
https://doi.org/10.1063/1.3247349
https://doi.org/10.1016/0167-2789(85)90011-9
https://doi.org/10.1007/BF02128236
https://doi.org/10.1103/PhysRevLett.91.134102
https://doi.org/10.1016/j.physrep.2014.02.007
https://doi.org/10.1063/5.0035303
https://doi.org/10.1142/S0218348X21501036
https://doi.org/10.1142/S0218127421300056
https://doi.org/10.1016/j.aeue.2018.05.021
https://doi.org/10.1016/0375-9601(82)90391-7
https://doi.org/10.1103/PhysRevLett.48.1507
https://doi.org/10.1088/0305-4470/20/3/020

