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Chimera states in networks under external periodic perturbations
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Abstract. Spatially extended system can display spatiotemporal pattern with coexisting coherent and incoherent
domains, known as chimera state. Chimera states have been observed in experiments and mathematical models of
networks. We build a network of coupled logistic maps and other composed of Rössler oscillators. In the literature,
there are research studies demonstrating the existence of chimeras in both networks. In this work, we study the
effects of an external periodic perturbation on the chimera states. We show that the existence of chimera depends
on the amplitude and frequency of the perturbation. The chimera states can be not only created, but also suppressed
by means of an external periodic perturbation in non-local networks.
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1. Introduction

Chimera state is a spatiotemporal pattern where coher-
ence and incoherence coexist. In 1989, Umberger et al.
[1] observed chimera states in a dispersively coupled
chain of nonlinear oscillators. Kuramoto and Battog-
tokh [2] in 2002 reported the coexistence of coher-
ence and incoherence in non-locally coupled phase
oscillators. In 2004, the word chimera, a mythologi-
cal creature composed of different animal parts, was
used by Abrams and Strogatz [3] when they were
studying arrays of identical oscillators. Wolfrum and
Omel’chenko [4] in 2011 investigated the lifetime and
the dependence of the collapse of chimera states on the
network size and initial conditions.

Patterns of coexisting coherent and incoherent
dynamics have been found in many dynamical sys-
tems [5, 6], for instance in coupled mechanical [7, 8]
and chemical [9, 10] oscillators. Chimera states are
reported in biological systems, such as neuronal [11,
12] and ecological [13] networks. Gambuzza et al. [14]
provide experimental evidence of chimeras in coupled
electronic circuits and Wojewoda et al. [15] in coupled
pendula. Analytical approach and numerical calculation

were performed by Smirnov et al. [16] to develop a
theory of chimera patterns.

We analyse the formation of chimera states in net-
works with non-local coupling. Firstly, we build a
network composed of coupled logistic maps. Coupled
map networks have been considered to model spatially
extended dynamical systems [17]. Batista and Viana
[18] characterised chimera in a network of logistic maps
connected by means of a smoothed finite range cou-
pling. Secondly, we consider a spatially extended sys-
tem where the local dynamics is given by the Rössler
oscillator [19]. The existence of chimera states has
been identified in networks of coupled Rössler systems
[20–22].

In this paper, we examine the effects of external
periodic perturbations on the chimera states. External
periodic perturbations have been used to lead chaos to
periodicity and periodicity to chaos [23]. Hsu et al. [24]
demonstrated conditions to control chaotic behaviour
by means of weak periodic perturbation. In our simu-
lations, we verify that the perturbation has a relevant
impact on the chimera. We show that the existence
and the suppression of chimera states depend on the
amplitude and frequency of the periodic perturbation.
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This paper is organised as follows. In section 2, we
introduce the network model. Section 3 presents our
results about the chimera states in a network under
an external periodic perturbation. Finally, in the last
section, we draw our conclusions.

2. Networks

We build two different types of networks, one is com-
posed of coupled logistic maps and the other of coupled
Rössler oscillators. The network of logistic maps is
given by

x(i)
n+1 = f (x(i)

n ) +
ε

2P

i+P∑
j=i−P

[ f (x(j)
n )− f (x(i)

n )] + d cos(ωn),

(1)

where x(i)
n is the state variable with i = 1, 2, . . ., N and

n is the discrete time. ε and P are the coupling strength
and the number of coupled neighbours, respectively. In
our simulations, we consider the chaotic logistic map
f (x) = 3.8x(1− x) and an external periodic perturbation
with amplitude d.

The network of coupled Rössler oscillators is given
by

ẋi = −yi − zi +
ε

2P

i+P∑
j=i−P

(xj − xi) + d cos(ωt), (2)

ẏi = xi + ayi +
ε

2P

i+P∑
j=i−P

(yj − yi), (3)

żi = b + zi(xi − c) +
ε

2P

i+P∑
j=i−P

(zj − zi). (4)

For a = 0.42, b = 2, and c = 4 the Rössler oscillator
exhibits chaotic behaviour.

In both the networks we use N = 500, periodic
boundary conditions, and the local order parameter R
as diagnostic tool to identify chimera. The local order
parameter is given by

Ri = lim
N→∞

1
2δ

∣∣∣∣∣∣
∑
j∈C

eiψj

∣∣∣∣∣∣, (5)

where ψj is the phase [20],

C :

∣∣∣∣ j
N
− i

N

∣∣∣∣ ≤ δ, (6)

and δ → 0 for N → ∞. The logistic maps or Rössler
oscillators that belong to coherent domains have Ri ≈ 1
and smaller values when they are in incoherent domains
of chimera state.

Figure 1. Snapshots of spatial pattern xi × i for 500 logistic
maps at particular time equal to 103, n = 104, ε = 0.32, and
ω = 0.01. We consider (a) d = 0, (b) d = 0.003, (c) d = 0.007,
(d) d = 0.008, (e) d = 0.01, (f) d = 0.02, (g) d = 0.03, and (h)
d = 0.04.

3. Chimera states in networks under periodic
perturbations

3.1 Coupled logistic maps

Networks of coupled logistic maps are simple models
that have been used to analyse spatiotemporal patterns.
We consider 500 logistic maps which are non-locally
coupled with P = 150 and initial conditions given by a
sine function. Figure 1 displays different spatial patterns
for ε = 0.32 and ω = 0.01. Increasing the perturba-
tion amplitude d, we observe alterations in the patterns.
Without external perturbation (d = 0) and for a small
perturbation amplitude (d = 0.003), we identify regular
behaviour (figure 1a) and chimera (figure 1b), respec-
tively. Therefore, a periodic perturbation can induce
chimera states in a regular spatiotemporal pattern. We
also observe chimera states for d = 0.007 (figure 1c),
d = 0.008 (figure 1e), and d = 0.01 (figure 1f). How-
ever, the network pattern becomes regular when d is
increased to 0.03 (figure 1g) and 0.04 (figure 1h).

In figure 2, the coupling strength ε is varied for
d = 0.1 and ω = 0.01. The snapshot of the spatial pattern
exhibits an irregular behaviour for ε = 0.1, as shown in
figure 2a. For ε = 0.15 (figure 2b) and ε = 0.17 (fig-
ure 2c), we see chimera states with different structures.
The coherent domains vanish for ε = 0.2 (figure 2d) and
the network exhibits incoherent structures.



Indian Academy of Sciences Conference Series (2020) 3:1 67

Figure 2. Snapshots of spatial pattern xi × i for 500 logistic
maps at particular time equal to 103, n = 104, d = 0.1 and
ω = 0.01. We consider (a) ε = 0.1, (b) ε = 0.15, (c) ε = 0.17,
and (d) ε = 0.2.

Our results show that the existence of chimera states
depends on ε, d, and ω. With this in mind, we calculate
the degree of coherence by varying these three param-
eters. The degree of coherence p is obtained by means
of the local order parameter and is given by [18]

p =
Ñ
N

, (7)

where

Ñ =
1

Np

Np∑
l=1

Nl, (8)

such that N l is the length of the lth coherence domain
(Ri ≈ 1) and Np is the total number of domains. For
p = 1, the network has only one coherent domain, while
there is no coherence when p→ 0 (N →∞).

The parameter space ω × d, shown in figure 3a,
displays many regions where it is possible to iden-
tify chimera states. In addition, there are small regions
in which completely incoherent snapshot patterns are
observed. Figure 3b shows the existence of chimera
states in various regions. The incoherent patterns appear
in different regions but mainly for small values of d and
ε, as well as for d greater than 0.08. In the parameter
space ω × ε (figure 3c), chimera states are identified in
the range 0.1 < ε < 0.3. The regions for ε < 0.1 and
ε> 0.3 correspond to incoherent and coherent patterns.
Furthermore, we see mixed regions with coherence,
incoherence, and chimera in the range 0.1 < ε< 0.3.

Figure 3. Parameter space for 500 logistic maps: (a) ω × d
for ε = 0.27, (b) d × ε for ω = 0.315, and (c) ω × ε for
d = 0.05. The colour bar corresponds to the degree of
coherence.

3.2 Coupled Rössler oscillators

The Rössler oscillator is given by a set of ordinary dif-
ferential equations and, depending on the values of the
parameters, can exhibit chaotic behaviour. Networks of
coupled Rössler oscillators have been used to simulate
and study nonlinear high dimensional systems.

We construct a network with 500 Rössler oscillators
coupled through non-local links with P = 150 and ini-
tial conditions given by a sine function. Figure 4 shows
the snapshots of spatial pattern xi × i for ε = 0.23 and
ω= 0.1. In figure 4a, we see chimera for the case without
perturbation (d = 0). For d = 0.1, 0.5, 1, 2, 4, 6, and 9,
we observe alterations in the structures of the domains,
as shown in figures 4b–4h. The coherent structures for
d > 0 are smaller than for d = 0. Considering an exter-
nal periodic perturbation with d = 0.1 and ω = 0.1, we
identify a coherent pattern for ε= 0.25 (figure 5a). Coex-
isting coherent and incoherent domains are found for ε
= 0.271 (figure 5b) and ε = 0.3 (figure 5c). Figure 5d
displays that the coexistence disappears for ε equal to
0.35 and there is an unique coherent pattern.

We also compute the degree of coherence for the cou-
pled Rössler oscillators. The parameter space ω × d
(figure 6a) exhibits coherence pattern in the red region.
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Figure 4. Snapshots of spatial pattern xi × i for 500 Rössler
oscillators at particular time equal to 23× 103, t = 2.3× 104,
ε = 0.23, and ω = 0.1. We consider (a) d = 0, (b) d = 0.1, (c)
d = 0.5, (d) d = 1, (e) d = 2, (f) d = 4, (g) d = 6, and (h)
d = 9.

Above this region, our simulations show coexistence of
coherent and incoherent domains. We verify, below the
red region, regions with coexistence and incoherent pat-
terns, as well as small regions with coherent patterns.

Figure 5. Snapshots of spatial pattern xi × i for 500 Rössler
oscillators at particular time equal to 23× 103, t = 2.3× 104,
d = 0.1 and ω = 0.1. We consider (a) ε = 0.25, (b) ε = 0.271,
(c) ε = 0.3, and (d) ε = 0.35.

Figure 6. Parameter space for 500 Rössler oscillators: (a)
ω× d for ε= 0.3, (b) d× ε forω= 0.1, and (c)ω× ε for d = 0.1.
The colour bar corresponds to the degree of coherence.

For the parameter spaces d × ε (figure 6b) and ω × ε
(figure 6c), we see large regions (blue) that are related to
incoherent patterns. The coherent patterns (red) appear
for ε about 0.25 and greater than 0.33. The chimera
states occur in small regions and the frontiers between
regions with coherent and incoherent behaviour.

4. Conclusions

Spatiotemporal pattern with coexisting coherent and
incoherent domains, known as chimera state, has been
observed in various types of dynamical systems. The
chimera states were found in networks of logistic maps
and coupled Rössler oscillators. Due to this fact, we
build networks of logistic maps and Rössler oscillators
to study some conditions in which the coexistence can
appear.

Many studies have demonstrated that external pertur-
bation can induce abundant behaviour. In this work, we
consider networks with non-local coupling and under
external periodic perturbation. As a diagnostic tool to
identify coherence, incoherence, and chimera, we com-
pute the degree of coherence by means of the local order
parameter.
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We verify coherent and incoherent patterns, as well
as coexisting coherent and incoherent domains in the
networks composed of logistic maps and Rössler oscil-
lators. For the coupled logistic maps and based on our
time simulation, we find chimera states with long life-
times. Furthermore, the state variables go to infinity for
large perturbation amplitude [25]. With regard to the
coupled Rössler oscillators, the chimeras are transient
because we consider a finite number of oscillators. The
chimera states exhibit symmetrical patterns because we
use periodic initial conditions in our simulations.

In this work, we focus on the effects of external peri-
odic perturbations on spatiotemporal patterns. We show
that the appearance of chimera depends not only on the
coupling strength, but also on the amplitude and fre-
quency of the perturbation. Therefore, an external peri-
odic perturbation plays an important role in inducing or
suppressing chimera states.
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