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Abstract. The deflection of light by the strong gravitational field produced by a pair of supermassive Schwarzschild
black holes is considered from the point of view of an open conservative nonlinear dynamical system. From an
approximate solution of the geodesic equation we obtained a two-dimensional map describing the impact parameter
and scattering angle just before the light deflection by each black hole. Since the system is typically non-integrable,
there is a parameter range for which chaotic area-filling orbits occur. The dynamics underlying those chaotic orbits
involves a number of fractal structures related to the existence of a non-attractive invariant chaotic set. The outcome
of a typical light ray approaching the system can be either diverged to infinity or falling into one of the black holes.
Non-typical light rays can orbit around the black hole pair as periodic orbits. We identified the corresponding
escape basins and their fractal boundaries, using two approaches: the computation of the uncertainty exponents
and the corresponding basin and basin boundary entropies. We also exhibited the so-called Wada property showing

qualitative pieces of evidence of this property.
Keywords.

PACS Nos 05.45.-a; 05.45.Ac; 04.70.Bw

1. Introduction

In general relativity we represent dynamics as geodesic
motion in a curved space [1]. In this sense, if the curva-
ture is negative there is sensitive dependence on initial
conditions, which is a necessary condition for chaotic
motion, although there are other conditions which must
be verified like mixing of trajectories and compactness
[2]. Fractal structures are quite common in chaotic sys-
tems, like chaotic attractors, basin boundaries, invariant
manifolds, and so on [3]. In particular, open chaotic
systems present a variety of fractal structures caused
by the existence of an invariant non-attracting chaotic
manifold, the so-called strange saddle [4].

One outstanding example is the chaotic scattering of
particles, for which the presence of a strange saddle is
responsible for a fractal distribution of scattered parti-
cles [5]. The presence of fractal structures in open non-
integrable Hamiltonian systems with chaotic motion has
been described in many situations of physical inter-
est, like the motion of a star around a galactic centre
[6, 7], open billiards [8, 9], drift motion of magnetically

Black holes; fractal structures; fractal basins; Wada basins.

confined charged plasma particles [10], magnetic field
lines in tokamaks [11], among others.

Supermassive cosmic objects, like black holes, gener-
ate space-time curvature, which leads to the deviations
of the light rays, as they trace out null geodesics in
the curved geometry [12]. Binary black holes rotate
around their centre of mass and their existence has been
confirmed by the observation of gravitational waves by
LIGO Scientific Collaboration [13]. In such systems it
is usually the case where the relative velocities are much
smaller than ¢, and it is possible to approximate them
as fixed in space.

The null geodesics equations describing the light ray
scattering by a pair of black holes are non-integrable and
constitute an open conservative dynamical system for
which chaotic motion is possible [14]. One such exam-
ple is the Majumdar—Papapetrou binary black hole,
where a system of two charged black holes are in static
equilibrium due to its electrostatic repulsion [15, 16].
The presence of fractal structures in this system, due to
the chaoticity of geodesic motion, has been investigated
by many researchers [17, 18].
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The basic fractal structure to be investigated in a
binary black hole system is the escape basin, which is
the set of initial conditions leading to one of the three
possible outcomes for a light ray when it encounters
such a system: falling into the first or the second black
hole or escaping to infinity. Such escape basins are very
important in astrophysical investigations, since they are
actually the so-called shadows of a black hole. A shadow
is aregion in the observer’s sky which cannot be illumi-
nated by distant light sources due to the blockage of a
black hole [19]. Daza and coworkers have investigated
escape basins in a Majumdar—Papapetrou binary black
hole, showing that the escape basin boundaries are not
only just fractal but also display the stronger Wada prop-
erty: any boundary point belongs to the boundary of at
least two other basins [14].

The investigation of fractal exit basins in the
Majumdar—Papapetrou binary black hole system needs
the numerical integration of the geodesic equations for
a light ray in the form of a Hamiltonian system. An
alternative approach was proposed by de Moura and
Letelier and consists of obtaining a two-dimensional
map describing the scattering of light rays by a system
of two static Schwarzschild black holes [20]. The black
holes are supposed so far apart from each other that
the light ray motion in the neighbourhood of one black
hole is not appreciably affected by the other black hole.
In this way the action of each black hole on light rays
can be studied separately using the exact solution for
Schwarzschild black holes [21]. In Ref. [20] the fractal-
ity of the escape basin boundary was evidenced through
numerical computation of the uncertainty dimension.

In this paper we continue the investigation opened
by the scattering map derived in Ref. [20], through two
lines of further development. Firstly we consider a gen-
eral approach which enables us to describe each black
hole using a spherically symmetrically metric, using an
approximation for the scattering angle by each black
hole and combining it with the second black hole to
obtain a scattering map similar to that derived by de
Moura and Letelier but with a different dependence
of the scattering angle on the impact parameter [22].
The second contribution of our work is to characterise
the fractality of the escape basin using not only the
uncertainty method to compute the escape fractal basin
boundary dimension, but also the recently developed
notion of basin entropy, which is a measure of final-
state uncertainty related to the fractality of the escape
basin boundary [23]. Moreover we also include numer-
ical evidence of the Wada property in the escape basins
generated by the scattering map.

This paper is organised as follows: in the first section
we outline the basic formulas for the scattering of a light
ray by a spherically symmetric black hole. In section 2
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we outline the approximate solution of the geodesics
equation for the light ray deflection under the gravita-
tional field of two Schwarzschild black holes. Section 3
is devoted to a description of the two-dimensional scat-
tering map describing the light ray deflection due to
the binary black hole system, also discussing some of
its dynamical properties. Section 4 contains a descrip-
tion of the corresponding escape basins. Section 5 deals
with the characterisation of escape basin using the
uncertainty dimension, which is a measure of the frac-
tality of such structures, as well as the basin entropy
and basin boundary entropy related to them. The pres-
ence of the Wada property in the escape basins is
examined in section 6. The last section contains our
conclusions.

2. Basic equations

We use a four-dimensional space-time metric g,, with
signature (+, —, —, —), as well as Einstein’s summation
convention for repeated indexes. We use units where
¢ = G = 1. In a curved space-time, light rays follow
geodesics, whose equation is [1, 12]

guvdx"dx” = 0, (1

where we consider a metric for a symmetrically spher-
ical and static space-time with length element

ds* = A(r)dt* —B(r) dr* — C(r)(d6” + sin® 0d¢*), (2)

where A(r), B(r) and C(r) define the metric produced
by the black hole.

Choosing 6 = 7/2 for convenience, and introducing
a parameter A, the following general equation for the
geodesics is obtained:

dr\’ dr\’ d¢\*
A — | —B — ] - — ] =0. 3
(Y a0 () - () w0
Both the energy E and angular momentum J are
constants of motion, given by

dt
E=A(r)—, 4
(r) 7 “)
¢
J=C(r) —, 5
(r) 0 )
such that (3) is rewritten in the form
dr\? )
A(r)B(r) ( =5 ) + Ver(r) = E7, (6)
dA
where we define the effective potential
A(r) B(r)
Verr(r) = ——="J%. (7
[C(r)]
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The photosphere radius r, is an extremum of the
effective potential (i.e., (dVesr/ dr), =0).

If we consider a photon approaching the black hole
from infinity with impact parameter b, the following
equation for the geodesics is obtained:

A(r)B(r) 11
[CP <d¢>> Tlumr T ®

where [U(r)] 72 = A(r)/C(r). After approaching the
black hole with a minimum distance ry the photon is
deflected and emerges out in other direction. This dis-
tance is called the critical impact parameter and, from
(8), it is given by

C(ro) _ |Gy
by =1 ——=4/—.
\/ A(ro) Ao ©

On substituting (9) back into (8) it turns out that the
angle of deflection is

a=1(rg) —m, (10)
where

B(r) [ Ay C(r)] "2
I(ro) = / Al CE’; A((r)) é;) (1h

In the limit of strong gravitational fields we can
expand (11) so as to obtain [22]

a(ry) = —a ln<: ) +c+O0(rg — 1)

alb) = —a ln<bb— 1) +c+ 0 —b,), (12)
m

where a, a, ¢, and ¢ depend on the functions A, B, and
C, evaluated at the photosphere radius r,,. Similar to (9)
we have by, = \/C(ry) /A(rm).

The evaluation of the expansion coefficients must be
done carefully since the integral (11) diverges at r. In
order to do so, we rewrite (11) as [22]

1
100 = [ def o) R (13)
0

where we define auxiliary variables

yEAD. o= 2= (14)
— Yo

and the following functions

2\/By C()
R(z,ro) = W(l — 0)s (15)
—1/2

Co

f(z,ro) = {yo— [(1 — o)z +yO]C} : (16)
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We remark that R(z, o) is regular for all values of z
and ry, whereas f(z, r9) diverges for z — 0. Expanding
the integrand of (16) up to second order terms we have

f(@ro) ~ fole. o) = \/E (17)

where

Y= G 20(Coy0 — CoAo), (18)

- (1(;3 oo (6 -20%)
~CoCloyod”). (19)

and the primes denote differentiation with respect to the
argument.

Proceeding in this way we obtain the desired coeffi-
cients of the expansions in (12), as follows:

_ a R(Oarm)

-2 20
“72 2v/Bn 20
é=—n+c,+c’zln<2y/3m>, 1)

where f,, = f(r,,) and ¢, is the real part of the integral
(13).

In this paper we shall consider Schwarzschild black
holes with mass M, such that these functions are given
by the following expressions [21]:

A(r)=1-— 2TM (22)
oM\ 1

B(r) = (1 - r) =3 (23)

C@r)=r (24)

Schwarzschild black holes have one event horizon,
given by the radius where the metric diverges, corre-
sponding to r = 2M. Without loss of generality we

may set 2M = 1. For the Schwarzschild metric the
coefficients (18) and (19) are given, respectively, by
a=2— i, (25)
o
3
B=——1. (26)
Fo

Using (22)—(24) in (7) and computing the extremum
of the effective potential results that the radius of the
photosphere is r,, = 3/2, in such a way that (19) gives
Bm = 1. From these results, the coefficients (20) and
(21) of the expansion for the deflection angle (12) are
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given by

a=1, (27)

¢=—m+b,+In 6~ —0.4002, (28)
3v/3

b, = \2[ ~ 2.5981, (29)

¢, =2 1n[6(2 — v/3)] ~ 0.9496. (30)

The scattering of a light ray by a single black hole
can now be understood in terms of the possible values
of the corresponding impact parameter b. A light ray
comes from infinity and approaches the black hole with
impact parameter b and whose direction makes a deflec-
tion angle « given by (10). If b < b,,, =~ 2.5981 the light
ray falls into the black hole and disappears. On the other
hand, for this light ray not to escape back to infinity it
is necessary that its impact parameter b be such that the
deflection angle « be at least 7. Hence we additionally
have b < bege, Where a(bes.) = . Using (12), (27), and
(28) this means that

bese = by, [exp<c__”> + 1] ~ 2.67332. 31)
a

As a result, for a light ray deflected by a single black

hole not to escape to infinity or to collide with a black

hole, the impact parameter must belong to the narrow

interval b,, < b < begc.

3. The scattering map

After deriving the equations for the deflection of a light
ray by a single black hole, we now consider a system
of two identical black holes separated by a distance D
with the same mass M = 1/2 (figure 1). Such binary
systems rotate around their centre of mass [24] and
their existence has been confirmed by the observation
of gravitational waves from a binary black hole merging

Figure 1. Schematic figure showing the basic geometrical
elements involved in the scattering map for the light ray
deflection by a pair of black holes.
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by LIGO Scientific Collaboration [13]. In such systems
it is usually the case where the relative velocities are
much smaller than ¢, and it is possible to approximate
them as fixed in space.

Unlike the case of a single black hole treated in the
previous section, such a system has no exact solution of
field equations. In spite of this, if the distance D between
the black holes is much higher than their Schwarzschild
radius (ro = 2M = 1) then the nonlinear interaction
between their gravitational fields can be neglected. In
this case we consider the deflection of light from each
black hole in a separate way using the expressions pre-
viously found for the Schwarzschild metric. In other
words, in the light scattering by a given black hole the
effect of another black hole is neglected. Both approxi-
mations are discussed in detail in Ref. [20]. In particular,
these approximations may not hold if we consider the
scattering of massive test particles.

The line connecting the two black holes will be the
axial symmetry axis. We shall assume that light rays
have zero angular momentum in this direction. As a
result, the light rays are constrained to move in the plane
containing the two black holes [24]. The basic geometry
involved in the light scattering by the binary black hole
isdepictedin figure 1: alight ray comes from infinity and
approaches the first black hole with impact parameter
b and whose direction makes an angle ¢ with the axial
symmetry line.

For this light ray not to escape back to infinity it is
necessary that b < bgs., where by is given by (31).
Conversely, for the light ray not to fall to the first black
hole the impact parameter must satisfy b > b,,. If the
light ray is not deflected to infinity by the first black
hole, then it goes to the other black hole and is deflected
again. If not deflected to infinity it returns to the vicinity
of the first black hole, and so on.

Instead of considering the detailed trajectories of the
null geodesics corresponding to the light rays, it is
often more convenient to define discretized variables
(by, ¢n), corresponding respectively to the values of the
impact parameter and angle with respect to the axial
symmetry line in the neighbourhood of the nth scat-
tering. Even (odd) values of n correspond to the first
(second) black hole. Using such discrete time intervals
the differential equations for light scattering reduce to
a two-dimensional discrete-time map [20]

bn+1 = bn +D¢n,
¢n+l =7+ (pn - “(bn+1)a

where a(b) is given by (12). Some sign conventions
are essential in this description: positive values of b
imply that the light ray goes from black hole 1 to 2
(from ‘left’ to ‘right’ in figure 1), and negative values
otherwise; whereas positive values of ¢ correspond to

(32)

(mod 27) (33)
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counterclockwise rotations. In Ref. [20] this map was
obtained from a different function a(b) resulted from
the exact solution of Schwarzschild metric [21]. Our
choice for a(b), on the other hand, resulted from a differ-
ent procedure, which can be applied to any spherically
symmetric and static black hole [22].

The Jacobian matrix of the scattering map (32) and
(33)is

1
I = <_‘x/(bn+l)

whose determinant is equal to unity, such that the scat-
tering map (32) and (33) is an area-preserving map-
ping, corresponding to the following continuous-time
Hamiltonian:

D cos ¢, ) (34)

1 — D d (bys1) cos ¢,

b
H(b,¢,n) =nb — / db'a(b’) + D 8y(n)cos ¢, (35)

where

Si(n)= Y Sn—m)=1+2) cos(2mgn), (36)
m=—00 g=1

is a periodic delta function (Dirac comb).

The fixed points of the scattering map are ¢7, = 0,7
and by, = besc. The eigenvalues of the Jacobian matrix
(34) at these points are

T T\ 2
ha=2Eif1-(2),
1275 = 2

where

(37)

7=2—Dd (byy1)cos ¢, (38)
is the trace of Jacobian matrix. These fixed points are
stable provided |7| < 2. It turns out that the point
(bese, 0) 1s stable if 0 < D a/(bes.) < 4, whereas the
other fixed point (beg, 77) is stable if —4 < D &/ (besc)
< 0. In either case the light ray trajectory is such that
bpe1 = —by,. Since o (bese) < 0 and D > 0 the fixed
point at ¢ = 0 is always unstable (a hyperbolic saddle).
If, in addition, we have |&(besc)| > (4/D) the other
fixed point at ¢ = m is also unstable.

For D # 0 the Hamiltonian (35) is generally non-
integrable. On the other hand, by physical grounds, if the
light deflection by one black hole must be independent
of the existence of the other black hole, then we must
assume that D is typically a large number. In such case
both fixed points are unstable and we expect a sizeable
area-filling chaotic orbit in the phase space (b, ¢).
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4. Escape basins

The deflection of light by a system of binary black
holes is an example of open dynamical system, i.e.,
a system for which trajectories (light rays) eventually
escape from a given phase space region. If there are
more than one way by which trajectories can escape,
then it is relevant to identify the sets of initial conditions
that generate trajectories escaping through a given exit.
This set is called the escape basin corresponding to that
exit [5]. In the case of two or more exits we may iden-
tify the boundary which separates those escape basins,
called escape basin boundary. It has been long known
that conservative dynamical systems presenting chaotic
dynamics have fractal escape basins and fractal escape
basin boundaries [3].

In order to plot the escape basins corresponding to
the scattering map (32) and (33), we choose a set of
initial conditions (by, ¢p) and iterate them to find out
to which basin they belong. We divide the phase space
region Q = {0 < @9 < 2m,b,, < by < besc} in a
large number of points and iterate the map (32) and
(33) for each of these initial conditions, recording the
final outcome for each point. Depending on its initial
conditions, after a number of map iterations, a light ray
may fall into one black hole (A), into the other black hole
(B), or escapes towards infinity (C). All outcomes can
be considered as exits since we stop iterating the map
once a light ray falls into a black hole. Accordingly, we
denote the corresponding escape basins to be B(A), B(B)
and B(C).

Figure 2 is a representative example of the escape
basins for the scattering map (32) and (33) when D = 15,
which is a value large enough to ensure that each black
hole deflects light rays in an independent fashion. We
used a grid of 10* x 10* initial conditions over the
phase space region Q) and iterate each initial condition

a)

2.66
2.64

2.62

2.6

0 1 2 3 4 5 6

0

Figure 2. Escape basins for the scattering map when D = 15.
Green points represent initial conditions generating orbits that
escape to infinity. Red and blue points are the escape basins
for black holes A and B, respectively.
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by a maximum of 10* times. An orbit falls into a black
hole whenever b, < b,, ~ 2.5981 for a given escape
time n = 7 < 10* If 72 is even (odd) we know that
the light ray falls into black hole A (B) and the corre-
sponding initial condition is painted red (blue). If the
orbit goes to infinity (b, > b =~ 2.67332) for a given
n = it < 10* the corresponding initial condition is
painted green. The red, blue, and green regions are thus
numerical approximation for the exit basins B(A), B(B)
and B(C), respectively. There is a measure zero set of
unstable periodic orbits which never escape and, since
D < 00, we cannot rule out orbits within very tiny peri-
odic islands which do not escape at all, but whose effect
in the exit basins would be negligible.

Since the labelling of black holes A and B is imma-
terial, their escape basins would be symmetric, i.e. they
must have the same size. On the other hand, figure 2
shows that the dominant basin is that of infinity (C).
The sequence of red and blue regions, however, has
a fine structure that cannot be seen in figure 2, but
requires further magnifications. This characterisation is
also possible by defining a function g(b) such that [20]
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g(b) = 1, if the orbit falls into black hole A, g(b) = —1,
if it falls into B, and g(b) = O if the orbit escapes to
infinity.

In order to investigate the escape basin boundary for
the regions in figure 2 we analyse two regions in the
vicinity of the points with ¢9 = 0 and ¢9 = m. For
both regions, we divide the impact parameter interval
by < b < beg into 10° points. The corresponding
escape basins are plotted in (a) and (d), respectively,
as a horizontal bar with green, red and blue stripes. We
also plotted the corresponding function g(b) below the
bars. In figures 3b and e we show magnifications of two
intervals of figures 3a and d, respectively, and figures 3c
and f are further magnifications. These zoomings clearly
show that there are regions for which there are pieces of
the three escape basins in all scales. This self-similarity
is a signature of the fractality of the basins as well as of
its basin boundary.

Since some regions of different escape basins are
intertwined in arbitrarily fine scales it is extremely diffi-
cult, if not impossible at all, to predict the final outcome
of a light ray, given its initial condition being always

a)|_|

|_|d)

) | W
2 01 .
OD
-1 i
2.60 2.64 2,67 2.60 2.64 2.67
b) [ e | | SSSSSS— |e)
) | H
= 0- -
bD ‘
-1 i
2.598 2.600 2.603 2.598 2.600 2.603
C) = — i3 f)
) | W {
2 01 .
1A i
2.5981 2.5981 2.5982 2.5981 2.5981 2.5982
b b

Figure 3. The horizontal bars represent the escape basins as a function of the impact parameter b for ¢y = 0 in (a), with
magnifications in (b) and (¢); and ¢y = 7 in (d), with magnifications in (e) and (f). The colour code is the same as in figure 2.
We plot, below the horizontal bars, the corresponding values of the function g(b) (see text for details).
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known up to a given uncertainty. One of the observable
consequences of the existence of fractal structures in
phase space is final-state sensitivity, i.e. small uncertain-
ties in the initial conditions may lead to large uncertain-
ties with respect to the future behaviour of the system
[25].

The nature of the complicated structure of the escape
basins displayed in figure 3 can be understood by con-
sidering the invariant chaotic set underlying the chaotic
region in phase space. Let P be an unstable periodic
point of the map embedded in the chaotic region, with
its stable and unstable manifolds. The unstable and sta-
ble manifolds are sets of points which asymptote to the
periodic orbit under forward and backward iterations
of the map, respectively. The intersection of the sta-
ble and unstable manifolds of an infinite number of
unstable periodic orbits, called a chaotic saddle, is a
non-attracting invariant chaotic set with a dense chaotic
orbit [4]. Initial conditions belonging to this chaotic sad-
dle remain in the chaotic region, unless portions of the
saddle cross the escape regions [26].

In order to get the invariant manifolds of the chaotic
saddle we used the sprinkler method, which starts by
partitioning the phase space region into a fine mesh of
points. For each initial condition point we compute the
escape time, i.e. the number of map iterations it takes for
the corresponding orbit to leave the phase space region
[27]. The stable manifold is formed by initial conditions
set with a connection length larger than some specified
value n., and the unstable manifold are their last iter-
ations before leaving the phase space region [28]. The
chaotic saddles are those initial conditions with a given
connection length 7 = &n.., where 0 < & < 1. To get the
manifolds the values of n,. and & must be chosen after
trial and error, but the numerical results seem not to be
substantially affected by them [27].

Figure 4c shows a numerical approximation of
the chaotic saddle resulting from the intersection
of the stable and unstable manifolds illustrated in
figures 4a and b, respectively. Starting from a grid of
103 x 107 initial conditions, we record those initial con-
ditions with an escape time larger than n. = 40. Such
initial conditions constitute an approximation to the sta-
ble manifold of the chaotic saddle (figure 4a). On the
other hand, the end points of the trajectories related to
the recorded initial conditions (i.e., the orbit points for
those trajectories after n. = 40 map iterations), are an
approximation to the unstable manifold of the saddle
(figure 4b). The points from the middle of these trajec-
tories (77 = 0.5n, = 20) are thus representations for the
chaotic saddle (figure 4c).

The connection between escape basin boundary and
invariant manifold structure is similar to that exist for
basins of attraction, and it is based on the fact that the
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Figure 4. (a) Stable and (b) unstable manifold and (¢) chaotic
saddle for a chaotic orbit in the case of the scattering map for
D = 15. The sprinkler method is used with n. = 40 iterations
and £ =0.5.

basin boundary is the closure of the stable manifold of
a saddle periodic orbit P belonging to the chaotic sad-
dle, under the map F (in our case, the scattering map
(32) and (33)) [25]. We show this situation schemati-
cally in figure 5: let S to be a segment of the escape
basin boundary to intercept the unstable manifold of
P. The backward images of this segment, like F~'(S)
and F~2(S) (figure 5) are smoothly deformed, becoming
also increasingly elongated and accumulate at the sta-
ble manifold of P. This occurs because the intersections
between the unstable manifold and the basin bound-
ary converge exponentially fast according to the cor-
responding eigenvalue of the tangent map DF(P); and
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unstable
manifold

escape basin boundary segment

Figure 5. Schematic figure showing the accumulation of
escape basin filaments at the stable manifold of a chaotic
saddle.

the length of the lobes formed by the backward image
increases to preserve areas [4].

Hence, if the segment S crosses the unstable (or sta-
ble) manifold of the chaotic saddle, the escape basin
boundary is fractal. In the next section, we characterise
quantitatively the fractal behaviour of the escape basin
boundary using appropriate numerical diagnostics.

5. Uncertainty fraction and basin entropies

In this work we present two different quantitative char-
acterisation of the escape basin boundary. The first
is the computation of the box-counting dimension of
the escape basin boundary by the uncertainty fraction
method [25, 29] and the second is the determination of
the so-called basin entropy and basin boundary entropy
to quantify the degree of uncertainty due to the fractality
of the escape basin boundary [23, 30]. The concept of
uncertainty dimension has been long introduced in the
literature of dissipative dynamical system for estimat-
ing the box-counting dimension of the basin boundary
between two basins of attraction [25, 29]. It was also
applied in open Hamiltonian (conservative) systems, for
the boundary between escape basins [5].

We compute the uncertainty dimension of the escape
basin boundary numerically by using the following
method: we randomly pick up a large number of ini-
tial conditions by in the interval [b,,, bes.] for ¢ = cte,
and for each one of them we iterate the map (32) and
(33) a certain number of times, finding out its outcome
and therefore to which basin the corresponding initial
condition belongs.

For each initial condition (¢,by) we choose
(¢o,bo = €), where ¢ < 1 is the uncertainty
upto which the initial condition is known, and we
again iterate the map until this perturbed initial
condition escapes. Whenever the three points do
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not belong to the same escape basin, the condi-
tion by is labelled as e-uncertain initial condition.
After a number (N, = 10%) of initial conditions are
tested the fraction f(e) of e-uncertain initial conditions
is computed. These steps are repeated 10 times for each
e, which varied from 107! to about 10~'°, The frac-
tion of uncertain initial conditions f(e) is expected to
increase with € as a power-law f(¢) ~ €%, where « is the
so-called uncertainty exponent [25, 29].

The uncertainty dimension d quantifies the final-state
uncertainty of the points belonging to basin boundary.
Let d, be the dimension of the phase space region to
be considered, and let N (&) be the minimum number of
d,-dimensional boxes of length § necessary to cover the
boundary. The box-counting dimension of the latter is

__InN©
390 In(1/9)”

(39)

such that N(8) scales as ¢ for small enough & [3].
If we set § = ¢, the volume of the uncertain region
in the phase space will be N(¢) times the volume of
the d,-dimensional cubes, which is e . Since the initial
conditions are uniformly chosen over the phase space
region, the uncertain fraction is of the order of the
total volume N(e)e®» = €%~ Thus, the uncertainty
exponent results in &« = d, — d. A rigorous analysis
would show that the uncertainty dimension d coincides
with the box-counting dimension of the escape basin
boundary [29].

Since we set ¢y = const, we are considering a phase
space cross section with d, = 1, suchthata = 1 —d, in
such a way that a smooth boundary withd = Ohasa = 1,
whereas 0 < a < 1 characterises a fractal basin bound-
ary [25, 29]. We computed the uncertainty exponent for
the escape basin boundary depicted in figures 3a—f for
¢o = 0 and ¢9 = m. We have chosen these magnifica-
tions to cover chiefly fractal pieces of the boundary, and
we obtained for the corresponding uncertainty dimen-
sions for ¢g = 0 and ¢y = 7 the values d = 0.19 £ 0.02
and d = 0.21 4 0.02, respectively.

As the uncertainty exponent « is small, the fraction
of e-uncertain initial conditions is increasingly inde-
pendent of the uncertainty ¢ itself. This means that the
escape basin boundaries become so convoluted that vir-
tually any attempt to decrease the fraction of uncertain
conditions may be in vain.

An alternative measure of the unpredictability is to
evaluate the area of each escape basin and the frac-
tion it occupies of a given phase space area, whose
ratio has been called basin stability by Menck et al.
[31, 32]. It is understood that larger basins would be
more stable, in the sense that small deviations of an ini-
tial condition would less probably result in uncertainty.
Another approach to quantify the degree of final-state
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uncertainty of a given basin is the computation of the
so-called basin entropy [23, 30].

Let us consider the general case of N, exiting in the
phase space region () for an open system, and cover this
region with a box grid of size . Each box contains an
infinitely large number N of initial conditions, each of
them leading to an escaping trajectory through a given
exit labelled as j = 1,2, ... Ny. We assign a probability
pi; that an initial condition in the ith box leads to an
escape through the jth exit. Depending on the chosen
box, the corresponding initial conditions may exit to
a limited number of exits m; < Nju. In the language
of statistical mechanics m; is the number of accessible
microstates of the system [23].

Summing over the total number of microstates, the
Gibbs entropy of the ith box is [30]

m; 1
-2 )
j=1 v

such that the entropy related to the whole grid is
obtained by summing the contribution of each box
S = Zfil S;. The basin entropy results by normalising
this value S, = S/N. If we restrict the computation of
the basin entropy only to the N, boxes containing points
of the boundary, we obtain the so-called boundary basin
entropy Spb = S/Np.

In order to get an intuitive idea of the meaning of
basin entropy let us consider two limiting situations:
if we have a single exit (N4 = 1) the corresponding
probability is equal to unity and hence Sy, = 0, i.e.
no uncertainty at all. The opposite situation consists
of completely randomised basins with N4 equiprobable
escapes, for which p;; = 1 /m;, which gives Sy, = log Ny
as the upper bound of the basin entropy.

The basin boundary entropy Sy, measures the com-
plexity of the basin boundary. Moreover, there is a
threshold value of Sy, that separates basins with smooth
boundaries from those with fractal boundaries. For
example, suppose that our basins were separated by a
smooth boundary. The number of boxes in the bound-
ary will be negligible for the computation of the basin
entropy in the boundary Sy, since there are many more
boxes with just one basin. Thus, the maximum possible
value of Sy, that a smooth boundary can have is In 2,
which would be a pathological case where every box in
the boundary contains equal proportions of two basins.
Therefore, if Sy, > In 2, the basin boundary is said to
be fractal, but this is a sufficient but not necessary crite-
rion for fractality, though, since some fractal basins do
not fulfil this condition [10, 11, 30, 33].

We applied those concepts to the escape basins of
figure 3, by computing the corresponding values of the
basin entropy and basin boundary entropy. We varied the

(40)
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grid of phase space Q) considering 250 x 250, 200 x 200,
125 x 125 and 100 x 100 boxes, with 16, 25, 64, 100
initial conditions per box, respectively. For each grid
point we computed a maximum number of 10* iterations
of the map and exclude from the statistics those initial
conditions leading to orbits that do not escape during
this maximum iteration time.

Denoting by n4, ng and n¢ the number of points escap-
ing the system by asymptoting to the exits A (light ray
falling on a black hole), B (light ray falling on the
other black hole) and C (light ray going to infinity),
respectively, the corresponding probabilities are given
by

na np
Par=—"", Pp=—"T" —",
ng +ng+nce ny +ng+nc
nc
pc = 1)

nA+nB+nc’

and the entropy for each box is, from (40),

S = —pa log ps — pp log pp — pc log pc. (42)

The values of the basin entropy and basin boundary
entropy of the region in figure 3 centred at ¢ = O are,
respectively, Sy, = (8.44 £3.16) x 107> and Sy, = 0.94
£0.09. For the region in figure 3 centred at ¢y = 7 the
corresponding values are S, = (7.34 £ 2.42) x 1073
and Spp = 0.93 +0.08. For the two cases of ¢y the value
of basin entropy Sy is low, thanks to the fact that most
boxes considered in this region contains initial condi-
tions that escape through a single exit. The statistics
become relatively poor and the dispersions are relatively
large. However, the entropy of the boundary of basin Sy,
obeys the inequality Sy, > In 2, i.e. the basin bound-
ary is indeed fractal, as the uncertainty dimension has
already pointed out.

6. Wada escape basin boundaries

If, for two basins the boundary is a fractal curve, one
may ask what this would mean for three or more exit
basins. The answer lies in the so-called Wada property:
if the boundary between two basins is smooth, three
of such basins have only one common boundary point.
However, if the boundary is fractal there may be an
infinite number of such common points [34].

Let B be an escape basin. It has a boundary point P
if every open neighbourhood of P intersects the basin
B and at least another basin. The set of all boundary
points of that basin is defined as the corresponding basin
boundary. The boundary point P is called a Wada point if
every open neighbourhood of P intersects at least three
different basins [35]. A basin boundary is said to possess
the Wada property if every boundary point of B is a
Wada point, such that the boundary of such a basin is
a Wada escape basin boundary. A necessary (but not
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Figure 6. Escape basins of the scattering map for D = 15.
The colour code for the basins is the same as in figure 2.
The black curve is a segment of the unstable manifold of a
periodic orbit embedded in the chaotic region.

sufficient) condition for the Wada property to exist is
that the unstable manifold of an unstable periodic orbit P
belonging to this boundary must intersect every escape
basin [36, 37].

The Wada boundaries have important physical con-
sequences, since in this case any boundary point turns
to be arbitrarily close to points of all escape basins
[38]. Hence it is not possible to say with certainty to
which basin will the trajectory asymptote to, even if we
could improve the uncertainty. This is a case of extreme
final-state sensitivity.

In order check the validity of condition for the Wada
property in our system, in figure 6 we plot (in black) a
segment of the unstable manifold of some periodic orbit
embedded in the chaotic region together with the escape
basin. It is clearly seen that such manifold intercepts
points of the blue, red and green basins. The successive
magnifications of the escape basin, previously plotted in
figure 3 show that stripes of all basins coexist in increas-
ingly finer scales, suggesting that at least some of the
boundary points have the Wada property. Thus, if any
but not all boundary points do, then we have only partial
fulfilment of this property.

7. Conclusions

The scattering of light rays by a binary black hole system
is an outstanding example of open Hamiltonian sys-
tems. Being a non-integrable Hamiltonian system, one
expects the presence of many dynamical features, like
invariant tori, periodic islands, homoclinic points and
chaotic motion. On the other hand, being an open sys-
tem the chaotic motion is typically transient, since the
fate of an incident light ray is either to escape to infin-
ity or fall into one of the black holes. In these cases,
one is interested to obtain the respective exit basin, or
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the set of initial conditions leading to a given outcome.
In non-integrable open Hamiltonian systems, the exit
basins and their common boundary are fractal struc-
tures, chiefly due to the presence of a non-attractive
invariant set called chaotic saddle.

In this paper we considered the light ray scattering by
a binary black hole system from the point of view of an
open Hamiltonian systems, focusing on the fractal struc-
tures present in the chaotic dynamics. The equations
of general relativity for a light ray in the gravitational
field of a binary Schwarzschild black hole system were
integrated approximately to obtain a discrete-time map,
which exhibits chaotic dynamics for a wide range of
its parameters (the most important being the distance
between black holes). The chaotic dynamics here is
transient, though, for the light rays can either escape
to infinity or fall into one of the black holes.

The fractal exit basin boundaries for this systems
were investigated by computing the so called uncer-
tainty exponent, which yields a numerical estimate of
the fractal dimension of the exit basin boundary. More-
over, the chaotic saddle responsible for the latter has
been evidenced numerically. In most of the cases anal-
ysed the escape basin boundary dimension has been
found to be about 0.20. Another quantitative character-
isation of the fractal exit basin boundaries is the basin
entropy, which measures the uncertainty of the final-
state when more than one outcome exists for a typical
trajectory.

The basin entropy, which is basically the information
entropy related to the probability of going to a given
basin, has been found to vary according to the mag-
nification used to represent the exit basins. The basin
boundary entropy, however, which takes into account
only the intervals containing basin boundary points,
shows consistently uniform values, compatible with the
basin boundary dimension of 0.20 obtained through a
different method.

Finally, in the present paper we described the Wada
property, which is typical for systems with three or more
basins with a fractal basin boundary. The Wada property
means that every boundary point is such that an arbitrar-
ily small neighbourhood centred at that point contains
points of the three (or more) basins. It is actually an
extreme form of final-state uncertainty. We have veri-
fied the presence of the Wada property by showing that
the unstable manifold of some periodic orbit embedded
in the chaotic saddle intercepts all three basins. If this
intersection occurs once, it will occur an infinite number
of times.

In summary, we have studied some fractal struc-
tures present in the chaotic motion of a light ray
under the gravitational field of two Schwarzschild black
holes, a problem which is classically non-integrable and
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has a non-attractive chaotic invariant set responsible
for chaotic transient dynamics. Such fractal structures
are responsible for various signatures of the so-called
chaotic scattering, which is a phenomenon ubiquitous
in non-integrable open Hamiltonian systems. Further
investigation in the footsteps of the present paper will
take into account black holes with charge, for which the
Reissner—Nordstrom metric must be used instead. The
general procedure outlined in this paper, which is an
approximate solution of the equations of motion, can be
used to take into account this metric with charge effects.

The strong lensing effect caused by the black holes’
gravitational field generate an infinite number of images
of the light source. These images are directly related to
the regions whereby the photon escapes out to infin-
ity. From our results concerning the escape basins of
the open Hamiltonian system represented by the scat-
tering map, we see that the escape regions have a larger
area than those regions for which the photon is cap-
tured by the black holes. Moreover we consider the
effects of each black hole individually, without taking
into account the influence of the other black hole. Hence
we do not expect any drastic changes in the analysis of
the images due to the lensing effect in the case of two
black holes investigated in this paper.
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