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Abstract In this work, we demonstrate numerically
that two-frequency excitation is an effective method to
produce chaotification over very large regions of the
parameter space for the Duffing oscillator with single-
and double-well potentials. It is also shown that chaos
is robust in the last case. Robust chaos is characterized
by the existence of a single chaotic attractor which is
not altered by changes in the system parameters. It is
generally required for practical applications of chaos
to prevent the effects of fabrication tolerances, exter-
nal influences, and aging that can destroy chaos. After
showing that very large and continuous regions in the
parameter space develop a chaotic dynamics under two-
frequency excitation for the double-well Duffing oscil-
lator, we demonstrate that chaos is robust over these
regions. The proof is based upon the observation of the
monotonic changes in the statistical properties of the
chaotic attractor when the system parameters are varied
and by its uniqueness, demonstrated by changing the
initial conditions. The effects of a second frequency in
the single-well Duffing oscillator is also investigated.
While a quite significant chaotification is observed,
chaos is generally not robust in this case.
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1 Introduction

Nonlinear dynamical systems are widely found in
nature and engineering and have been investigated for
both fundamental reasons and for their potential prac-
tical applications. One of the most interesting features
of nonlinear systems is that in many cases they can
develop chaos, the seemingly random behavior of the
system which is, however, dictated by deterministic
equations [1]. This chaotic dynamics is not only rel-
evant for academic reasons, it is considered for prac-
tical applications. Examples are chaos-based commu-
nication [2], data encryption for secure communica-
tions [3], pseudo-random number generators [4,5], to
improve the performance of switched mode power sup-
plies [6], and in more efficient radars and sonars [7].
Some of these applications rely upon sources of con-
tinuous time chaotic signals, such as radars and certain
communication systems, while others can also use a
discontinuous source, like chaotic maps [8].

While many nonlinear dynamical systems may dis-
play chaos, it can be restricted to small regions in the
parameter space, or be less complex than required for
certain applications. In order to improve this condition,
several methods for the chaotification of the dynam-
ics have been developed [9]. These methods allowed
to induce chaos even on linear systems, however, at
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the cost of introducing relatively complex control sys-
tems. Here, we show that it is possible, in a very simple
manner, to generate a strong chaotification (increased
regions in the parameter space with chaos) in the Duff-
ing oscillator, a well known and paradigmatic nonlinear
system [10].

A potential problem for the practical applications
based upon continuous chaotic signals generated by
physical sources of chaos is that the known dynami-
cal systems usually present fragile chaos. In this form
of chaos, the chaotic attractor has other attractors in
the vicinity of the parameter space. Therefore, small
changes in the system parameters may change signifi-
cantly its dynamics. This situation is nicely illustrated,
for instance, by the phase diagrams for several rele-
vant dynamical systems presented in [11]. If the chaotic
attractor is fragile in a physical system designed as
a source of chaotic signals, it may not develop the
expected chaotic dynamics. This can be a result of
imperfections in the fabrication process, which may
produce a system with a set of parameters correspond-
ing, for instance, to a nonchaotic attractor. Further-
more, even if the system starts by operating in a chaotic
regime, it is possible that chaos disappears due to small
changes in the operational parameters induced by exter-
nal influences (vibrations, electromagnetic waves, heat,
etc) or aging of the components. Such problems can be
avoided in practical applications resorting to systems
with robust chaos.

A concept first introduced by Banerjee et al. in [12],
robust chaos is characterized by the existence of a sin-
gle chaotic attractor which is not altered by changes in
the system parameters. Banerjee et al. [12] first stud-
ied a chaotic map, and after their work, several other
chaotic maps have been proven to have a robust chaotic
attractor [8]. On the other hand, very few continuous
time chaotic systems present the same characteristic
[8]. Of particular relevance are the hyperbolic sys-
tems investigated by Kuznetsov et al. [13,14]. While
based on well-established theoretical grounds, hyper-
bolic systems are hard to conceive as an actual physical
system. However, Kuznetsov and collaborators have
been able to devise adequate dynamical systems. They
have proposed and investigated nonautonoumous non-
linear systems based on coupled oscillators, which have
been implemented experimentally in the form of elec-
tronic circuits [13,14]. It was also recently discovered
by Gusso et al. [15] that micro- and nanoresonators
can display robust chaos. More specifically, they have
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found through an extensive numerical analysis that sus-
pended beam micro- and nanoresonators when excited
by two frequencies, through distinct lateral electrodes,
can develop a large region with robust chaos. This find-
ing is interesting because micro- and nanoresonators
have been investigated for a large range of potential
applications which include the generation of chaos
[16,17], but in configurations for which only fragile
chaos is expected. However, it was only recently that
experiments have observed chaos in a microresonator
of the kind investigated in Ref. [15] when excited by a
single frequency [18], and further experimental inves-
tigations and characterization of the chaotic dynamics
are needed.

In this work, we show through extensive numerical
analysis that the Duffing oscillator [10] when excited
by two frequencies develops robust chaos over very
large regions in the relevant parameter space, like the
nanoresonator in [15]. One of the motivations for this
work is that each particular dynamical system has its
advantages or limitations for a specific practical appli-
cation, such as the maximum frequency of oscilla-
tion, spectral distribution of the chaotic signal, phys-
ical dimensions, power consumption, etc. Therefore,
it is always necessary to have as many dynamical sys-
tems with robust chaos as possible to chose the one that
fits better to a given application. Another motivation
is to investigate whether other dynamical systems can
develop robust chaos when excited by two frequencies.

The Duffing oscillator was chosen for several rea-
sons. One is the mathematical similarity of Eq. (1)
with the model describing the micro-/nanoresonators
investigated by Gusso et al. [15]. Furthermore, there
are several physical systems that can be described, at
least approximately, by the Duffing equation. As an
example, we have clamped beams excited by magneto-
motive forces and used as micro- and nanoresonators
[19]. In a one degree of freedom, reduced order (lumped
mass) model of the beams a cubic, hardening type, non-
linear term results from the beam stretching effect [20].
Also, microelectromechanical oscillators of the spring-
mass type investigated experimentally and displaying
chaos were modeled using extensions of the Duffing
equation [16,17]. Finally, the Duffing equation can be
physically implemented by suitably designed mechani-
cal and electronic systems. An interesting alternative of
practical relevance is based upon simple electronic cir-
cuits [21], which can be designed within a large range
of frequencies, power consumption, etc.
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2 The Duffing oscillator

The Duffing oscillator is one of the simplest nonlinear
oscillators and represents a simple extension of the har-
monic oscillator. The equation for the driven Duffing
oscillator has the form [10]

mi + cx £ kx + kax> = F(1), (D)

where m represents the mass of the oscillating system,
c¢ the linear damping coefficient, k the linear spring
constant, k3 to the nonlinear spring constant. On the
right-hand side of the equation, F (¢) represents a gen-
eral forcing function. For a single harmonic forcing,
F(t) = Acos(wt), Eq. (1) can be recast in a more con-
venient form, with the smallest number of free param-
eters. With the change of variables

X c A2 [k
:k—’ = s :k -, = —_—,
* A kym p SR m

w
T = 0)0[» § = CL)_()’ (2)

Equation (1) turns into

Lv'+as':|:s+/3s3 =cos(¢T1), 3)

which contains only three independent parameters
o, B, and ¢. The reduction to a smaller number of
parameters makes it much easier to analyze the Duffing
oscillator.

An important feature of Eq. (3) is the + sign in
the linear force s. With a positive sign, the oscillator
is always subject to a restoring force due to the posi-
tive linear and nonlinear stiffness. The potential energy
is U(s) = s2/2 + Bs*/4 and has a single minimum
(single-well potential). When the sign is negative, we
have a negative linear stiffness and a repelling linear
force dominates for small amplitudes. The cubic restor-
ing force dominates when the amplitude increases,
maintaining the oscillations bounded. The potential
energy in this case U(s) = —s2/2 + Bs*/4 has two
minima (double-well potential).

The Duffing oscillator has been widely investigated
[10]. Tt is well known that it can develop a chaotic
dynamics when excited by a single harmonic frequency
for both single and double-well potentials [10]. In the
last case, the system presents homoclinic chaos. The
chaotic dynamics in this case is characterized by the
switching between wells, which favors the appearance

of chaos [1]. Therefore, for the double-well chaos is
more easily found than in the single-well case. The
chaotic regime has also been investigated experimen-
tally and theoretically when the Duffing oscillator is
excited by more than one harmonic frequency. The
double-well Duffing oscillator (DWDO) excited by two
frequencies was investigated experimentally by Moon
and Holmes [22]. However, the experimental investi-
gation took into account a limited region of the param-
eter space, in which no evidences of robust chaos
were found. Soon after that, Wiggins [23] analyzed
the DWDO theoretically and treating the effect of the
superposed harmonic excitations as a perturbation was
able to conclude that the threshold for chaos decreases
significantly with the addition of a second harmonic
excitation. Therefore, we should expect an increase in
the regions where chaos is observed when the Duffing
oscillator is excited by two frequencies. However, the
result of Wiggins cannot be used to establish the size
and shape of these regions, neither we can infer that the
two-frequency excitation leads to robust chaos over a
quite significant portion of the parameter space.

In fact, while for maps some strategies have been
developed there is no general theoretical method to
establish that a continuous time dynamical system
presents robust chaos [8]. Due to the limitations of ana-
lytical methods, a purely numerical method for proving
the existence of robust chaos was proposed by Gusso et
al. [15]. The method consists in the search for the exis-
tence of more than one attractor (regular or chaotic) in
a given region of the parameter space. For that purpose,
the statistical moments of the attractors are calculated
for a given set of parameters and for varying initial con-
ditions (ICs). For chaos to be considered as robust, it
is acceptable that these statistical moments vary only
slowly as parameters are changed. For fixed parameters
and different ICs, only small statistical fluctuations are
acceptable. If the region in the parameter space is swept
with sufficiently high resolution and a large number of
ICs are tested for each point, it is proved that chaos is
robust in the case that no data point is observed that
differs significantly from its neighbors. This is a proof
in the sense that the probability that chaos is not robust
becomes negligible.

In what follows, we are going to study Eq. (3) with
an added forcing term of the form cos(¢t/r), where
r > 1 represents the ratio between the two excitation
frequencies. While there is an effect of the amplitude of
the second excitation, it is with equal amplitude that the
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best results are obtained for the robustization of chaos,
and we are going to present results only for this case.
The resulting equation

§+asts+ Bs =cos(Ct) + cos(CT/r), 4

is solved numerically using the method of Runge—Kutta
of fourth and eighth order in Fortran and Wolfram’s
Mathematica, respectively. A transient corresponding
to 3500 times the period of the fastest excitation is used.
We have observed that this comparatively long transient
time was necessary to assure only a negligible number
of points with transient chaos in the final results. In
what follows, chaos is characterized by the calculation
of the maximum Lyapunov exponent, A. Due to the
low dissipations, we are going to consider the values
of X are of the order of 0.1 ~ 0.01. Following Gusso
et al. [15], where A for the nanoresonator was of the
same order, the dynamics is considered chaotic when-
ever A > 1073, thus preventing the effects of small
statistical fluctuations due to limited numerical preci-
sion.

3 Results for double-well potential

In the investigation of the nanoelectromechanical res-
onator by Gusso et al. [15], the magnitude of an
applied voltage bias could be varied to produce a single-
or double-well effective potential energy. While this
potential was only a rough approximation in a sys-
tem with strong parametric excitation, it was observed
that the effect of chaotification produced by the sec-
ond applied frequency was mostly concentrated in the
double-well region. Therefore, we can expect that the
robust chaotic dynamics is more likely to be found in
the DWDO and we start by focusing on this case. How-
ever, we later investigate the single-well Duffing oscil-
lator (SWDO) under two-frequency excitation which
also presents interesting results.

3.1 Chaotification

The first step toward the proof that there is robust chaos
in the DWDO is to investigate the regions in the param-
eter space where chaos is observed. For that purpose,
we have calculated phase diagrams where the regions
with periodic and chaotic attractors are distinguished.

@ Springer

Fig. 1 Phase diagrams showing the regions with periodic and
chaotic attractors. Results for the double-well Duffing oscillator
with « = 0.01 subject to a single excitation frequency and b
two frequencies with r = 1.07. The color code is the following.
For the periodic attractors: yellow (period 1—P1 ), green (P2),
orange (P3), blue (P4), cyan (P5), magenta (P6), pink (P7), brown
(P8). Periods above 8 are colored gray, and chaos is presented in
black. The figures have a xy resolution of 2400 x 1000

To obtain the phase diagrams, two parameters are var-
ied with high resolution, the nondimensional frequency
¢, and the nonlinearity S. Different phase diagrams
have then been calculated for different values of dissi-
pation « and the frequency ratio r. In all cases, the ICs
were the same: s(0) = v(0) = 0.

In order to appreciate the relevance of the effect of
the second harmonic excitation, in Fig. 1a we present
the results for the system excited by a single frequency.
In Fig. 1b, a second frequency respecting the ratio
r = 1.07 is also exciting the DWDO. We can see that
while for the single frequency (1f) excitation chaos is
observed on small strips that traverse the region along
the direction of the axis of the parameter 8, for two-
frequency (2f) excitation the opposite occurs and, in a
region dominated by chaos, only thin strips of period-
icity are observed. In spite of the high resolution of Fig.
1b, not a single point with periodicity is found within
the black region below the lowest strip defining a peri-
odic region. Therefore, with addition of the second fre-
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Fig.2 Fraction f of periodic points within the region A defined
by B € [2,5] and ¢ € [1.0,2.0] as a function of r with steps
Ar=0.0l.Inaa =0.005and inb o = 0.01

quency with an equal amplitude we have obtained an
extreme chaotification of the dynamics. It is worth to
note that for the periodic dynamics in Fig. 1b the period
of the periodic attractors is not the same as those in Fig.
la. While in (a) the periods of oscillation are multiples
of T = 2m /¢, a period one attractor in (b) has a period
that equals 107 times 7. This occurs because the fre-
quency ratio is a rational of the form » = 107/100,
and the excitation is periodic with period 107 x T.
In general, if we can represent the frequency ratio as
the rational r = m/n, with m, n € N*, the excitation
is periodic with period T;, = m x T or, equivalently,
T,n = nxrT.Therefore, the strips of periodic behavior
result from the locking of the DWDO with this periodic
excitation.

This much extended fundamental period implies that
considering the transient time, the total simulation time
must be, at least, (3500 + P x m)T, for probing period
P (P =1,2,3...) oscillations. As we have probed
periods up to P = 12, the total simulation times can be
rather large if we do not restrict m. For this reason in
our analysis, we have chosen to take r between 1 and
2 with a resolution of 0.01. In this case, the largest m
was 199. The use of such ratios suffices for our analysis
since the chaotification of the DWDO does not depend
so crucially on r. In particular, » does not need to be

an irrational, what would be a stringent requirement
for practical applications. To demonstrate how r can
affect the chaotification, we investigate in more detail
a particular region of the parameter space. Based on
Fig. 1b, the region with 8 = 2 and ¢ < 2 is free of
points with periodicity. However, phase diagrams for
other r have revealed that this large region with chaos
can be either larger or smaller. We have thus sought
an optimal region with chaos to investigate. A com-
paratively large region in the 8 x ¢ plane which still
presented very low content of periodic points was the
region A defined by 8 € [2, 5] and ¢ € [1, 2]. Figure 2
presents the fraction f of periodic points within 4 as a
function of r, which varied between 1.01 and 2 in steps
of 0.01. The Lyapunov exponent for a total of 10.000
points, evenly distributed in the region, was calculated
for each r and used to classify a point as periodic or
chaotic. It can be seen that f in the region increases sig-
nificantly only for some particular values of r = m/n
corresponding to the cases where both m and n are
small integers, like r(m/n) = 1.2(5/6), 1.25(5/4),
1.4(7/5), 1.5(3/2), and 1.8(9/5). This result is analo-
gous to that found in [15] for the nanoresonator when a
three parameter volume was also investigated in more
detail for the relation between points with chaos and
periodicity in its interior. Therefore, except for very
specific frequencies, an extraordinary level of chaotifi-
cation is obtained within a large region of the parameter
space. We note that other regions of the parameter space
have been investigated in this same way and similar
results have been obtained. However, depending on the
region chosen, particularly with ¢ below 1, f becomes
significant for a continuum of r values above r ~ 1.4.

The investigation of the nanoresonator by Gusso et
al. [15] also revealed a crucial dependence of the chao-
tification with damping. We have also found a similar
trend which is revealed in Fig. 3. For large dissipa-
tions, the effect of chaotification is reduced. Yet, below
a ~ 0.02 no periodic points have been observed down
to o = 0.001, the smallest value we considered. We
have also investigated other values of » and different
regions in the parameter space, and a similar trend was
observed. However, it was possible to observe, for spe-
cific frequency ratios, the existence of large regions in
the B x ¢ plane that did not present periodic points for
« as large as 0.1.
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3.1.1 Comparison with analytical predictions of chaos

We have observed that most of the parameter space
in Fig. 1b has developed a chaotic dynamics under
2f-excitation. Interestingly, the existence of this large
region was predicted theoretically. Generalizing the
Melnikov’s method Wiggins [23] was able to predict
that for the Duffing oscillator excited by two frequen-
cies chaos could exist if

8a?
[¢ sech(w ¢ /2) + r~1¢ sech(mr—1¢/2)]?’
(5)

B>p =

where f; denotes the lowest required value of 8. Tak-
ing r = 0 in this equation, we recover the usual predic-
tion based on Melnikov’s method for 1f-excitation [24].
This inequality sets a necessary, but not sufficient, con-
dition for the existence of chaos. It has to be noted that
the addition of a second frequency lowers the threshold
for the existence of a chaotic dynamics. Considering
a = 0.01, as used in Fig. 1, Eq. (5) predicts that chaos
can exist for rather low values of 8. For the 2f-excitation
with r = 1.07, for instance, f; increases from ~ 1079
for { = 0.5 to only ~ 1073 for ¢ = 3. For the 1f-
excitation, these value are about three times larger, but
still very small. In fact, they are so small that it is not
worth showing the separatrix 8 = f;(¢) in Fig. 1.
While the vast majority of the region depicted in
Fig. 1a, b satisfies the necessary condition for the exis-
tence of chaos, for 1f-excitation only a small fraction
of the parameter space actually exhibits chaos. This
is, in fact, the result commonly found in most systems
for which chaos can be predicted based on Melnikov’s
method [24]. However, for the 2f-excitation almost
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Fig. 4 Statistical moments obtained for 200 random ICs for
points in the B x ¢ plane for the DWDO with r = 1.07 and
o = 0.01. The a dispersion and b kurtosis for s (v) are presented
in red (black). A nonmonotonic and fast change of the statistical
moments can be observed in this region of the parameters space,
characterized by smaller ¢

all this region has developed a chaotic dynamics for
o = 0.01. The interesting prediction by Wiggins [23]
that the 2f-excitation lowers the threshold for the emer-
gence of chaos is evidenced in Fig. 4, where a larger
o, equal to 0.2, is used allowing to trace the separatrix
B = Bi(¢). Comparing both panels in Fig. 4, it is clear
that chaos indeed emerges for values of 8 not allowed
for the 1f-excitation.
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3.2 Robust chaos

The existence of a significant region continuously cov-
ered with points with chaos in the parameter space is
a necessary but not sufficient condition for the exis-
tence of robust chaos. Ideally, the observed vast chao-
tification in the parameter space should be due to a
single chaotic attractor for chaos to be robust. How-
ever, except for certain maps, the attractor of dynam-
ical systems varies as parameters are changed. This
was the case, for instance, in the first map with robust
chaos analyzed by Banerjee et al. [12]. Therefore, the
requirement that the attractor does not change is relaxed
and what is usually required, instead, is only that the
attractor be locally robust. That means small changes in
the system parameters do not significantly change the
attractor. As a consequence, for large variations of the
parameters, what is require is that the attractor varies
slowly.

Because of the lack of sufficiently general analytical
methods for proving that a dynamical systems present
robust chaos, in [15] a formal numerical method was
proposed and used for that purpose. The proof is based
in the following three conditions that must be satisfied
simultaneously over a region of the parameter space: (i)
contiguous points in a high-resolution grid in the rel-
evant parameter space evolve toward a chaotic attrac-
tor (the system is not attracted to either periodic or
quasi-periodic orbits); (ii) at each grid point, the chaotic
attractor must be unique; and (iii) the statistical proper-
ties used to describe the chaotic attractor change slowly
and smoothly along the grid. Conditions (i) and (ii) are
necessary to determine that chaotic attractor is unique
within the region being considered, while condition
(iii) is introduced to ensure that the attractor persists
(does not change significantly) under small changes of
the parameters. Following this method, we proved that
there are large regions with robust chaos for the Duffing
oscillator excited by two frequencies.

In order to characterize all possible attractors that
may exist at each point of the grid in the parameter
space and for different ICs, we calculate the first four
statistical moments for each dynamical variable, in this
case s and v = §. More specifically, for s we calculate
the mean, dispersion, skewness, and kurtosis, respec-
tively, given by

1 N
§=NZS1',

i=1

1961
N -
55 — Yo (si —35)?
N
XL =8
VSENT a3
12N 6 -5
KS = NT, (6)

with similar expressions for v. We expect that any two
distinct attractors have, at least, one of these eight sta-
tistical quantities with significantly different values.
That is the case for all systems with multiple attrac-
tors known by the authors.

We have performed the analysis presented above in
most of the area that is below the lowest strip of peri-
odicity seen in Fig. 1b. We present first the results that
demonstrate the existence of a large area with robust
chaos which corresponds to region A. We have checked
if the chaotification observed in Fig. 1b persists if the
ICs are changed. For that purpose, a grid of points was
created in 4 with a resolution of 0.025 in both 8 and
¢, resulting in a total of 4,800 points in the region. At
each point, we solved Eq. (4) for 200 distinct and ran-
domly chosen ICs which were taken within the ranges
s(0) € [-3,3] and v(0) € [—5, 5]. This range of ICs
was chosen because it defines a region in the phase
space that encompasses the observed chaotic attractors.
The s; and v; used to calculate the statistical moments
of the attractor were obtained from the numerical solu-
tion of Eq. (4) for a total simulation time correspond-
ing 150 times the period 7}, beyond the transient. The
points used to calculate the moments were sampled at
arate of T;,/160, resulting in N = 24, 000.

In Fig. 5, we present the four statistical moments for
the DWDO excited by frequencies with » = 1.07 and
for o = 0.01. Each of the 200 distinct results obtained
for the different ICs are shown for each point in the
B x ¢ plane. We can see that the 200 values obtained
for the statistical moments resulting from each random
IC are all closely clustered around a central value. For
the mean and skewness, they are very close to zero. It
is only for the kurtosis that a slightly larger dispersion
is seen. It is, however, the result of the sensitivity of
the higher order moment to fine details of the attractor,
which are expected to have the same statistical prop-
erties only for an infinitely long sampling time. This
clustering is an evidence that the chaotic attractor at
each point in the grid is unique. Another feature of the
results is the smooth variation of the points as 8 and ¢
are changed. Actually, the variation occurs only for the
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Fig. 5 Statistical moments obtained for 200 random ICs for points in the 8 x ¢ plane for the DWDO with » = 1.07 and « = 0.01. The

moments for s (v) are presented in red (black)

dispersion and the kurtosis, while the mean and skew-
ness remain close to zero. The smooth variation is an
evidence of the robustness of the chaotic attractor as
mentioned previously.

We have performed the same analysis of the statis-
tical moments for other ratios r and dampings «. The
most noticeable difference with respect to the results
already shown for region A was observed for ¢ smaller
than 1. This is illustrated in Fig. 6, where the dispersion
and the kurtosis in a region with ¢ € [0.5, 1] clearly
display fast changes for ¢ ~ 0.7. Therefore, in this
region, the chaotic attractor may change significantly
with small changes of the parameters, with a particular
sensitivity to ¢, and criterion (iii) for chaos to be robust
is not satisfied.

4 Results for single-well potential

While in an extension or the work in [15] the authors
have observed for the nanoelectromechanical resonator
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the existence of regions with chaos that extended con-
tinuously from the region with an effective double-well
potential to the one with a single-well, the robustness
of the chaotic dynamics was proved in [15] only in a
region with the double-well potential. However, it is
interesting to know the effects of the 2f-excitation on
the SWDO, because many physical systems are more
frequently modeled as a SWDO than as a DWDO.
We have observed that the 2f-excitation also induces
a significant chaotification in the SWDO. This is illus-
trated in Fig. 7 where the phase diagrams for the 1f and
2f-excitation for » = 1.07 and &« = 0.01 are presented.
For 1f-excitation, only periodic attractors are seen in
the region investigated, and when the second frequency
is added a quite significant chaotification takes place.
However, it is not so effective as for the DWDO. The
region with chaos, observed at larger 8, now contains a
significant fraction of periodic attractors, distributed in
disconnected pieces along this region. In such a case,
it is difficult to use the SWDO as a reliable source
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Fig. 6 Phase diagrams showing the regions with periodic and
chaotic attractors for the double-well Duffing oscillator with

a = 0.2 subject to a single excitation frequency and b two fre-
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Fig. 7 Phase diagrams showing the regions with periodic and
chaotic attractors for the single-well Duffing oscillator with
a = 0.01 subject to a single excitation frequency and b two
frequencies with » = 1.07. The color code is the same as that in
Fig. 1

of chaos. The presence of periodic attractors can be
made smaller by the reduction in damping. In Fig. 8, o
was reduced to 0.002, and for r = 1.07 a much better
chaotification can be seen. While the chaotification is
generally better for smaller dissipation, for certain fre-

quencies with r = 1.07. The red curve separates the regions
where chaos is possible or not according to Eq. (5). The color
code is the same as that in Fig. 1. (Color figure online)

Fig. 8 Phase diagrams showing the regions with periodic and
chaotic attractors for the single-well Duffing oscillator with o =
0.002 subject to 2f-excitation. Inar = 1.07 andin b r = 1.27.
The color code is the same as that in Fig. 1

quencies the improvement is not so effective. This is
illustrated by the result for » = 1.27 in Fig. 8b.

The chaotification in the SWDO is not only less
effective, but the chaotic attractor is not robust along
most of the region where chaos prevails. This conclu-
sion can be drawn from the results in Fig. 9 for the dis-
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(b) 65”

43

os, ov

Fig. 9 The dispersion of the attractors for points in the  x ¢ plane for the SWDO with o« = 0.002 and a r = 1.07 and b r = 1.27.

The dispersion for s (v) is presented in red (black)

(a)1.0
0.8
0.6

-
0.4

01.0 1.2 1.4 1.6 1.8 2.0
r

Fig. 10 Fraction f of periodic points within the region C defined
by B € [3,6] and ¢ € [1.5,2.0] as a function of r with steps
Ar=0.0l.Inaa =0.002and inb o = 0.01

persion of the attractors in the 8 x ¢ plane, obtained for
the same IC: s(0) = v(0) = 0. We display the results
for alarge region BB on the parameter space that contains
both the periodic and chaotic attractors and is defined
by B € [2,6] and ¢ € [0.5,2]. As both chaotic and
periodic attractors coexist in the region investigated,
we could expect the sudden changes in the statistical
moments that are observed. However, what it is seen is
that even in the regions with chaos the dispersion also
changes significantly. While for r = 1.07, the varia-
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tions of s and v may not seen so severe, forr = 1.27,
for instance, sudden and almost random changes take
place. It is only for ¢ approximately between 1.5 and 2
that there seems to be a region with a smooth variation
of the attractor and, possibly, robust chaos. We have
further investigated the behavior of the attractors in B
and by varying the ICs little has changed. Therefore,
we conclude the chaotic attractor is unique at most of
the points in B, satisfying one of the criteria for chaos to
be robust. However, condition (iii) established in Sect.
3.2 is not satisfied.

The small region where the statistical properties of
the chaotic attractor are varying more regularly was
investigated more carefully to check for the existence
of robust chaos. Focusing on the region C defined by
B € [3,6] and ¢ € [1.5,2] the ratio r was varied,
and the fraction f of periodic points was calculated for
different values of «. The results are shown in Fig. 10.
It can be seen that for @ = 0.01 a significant fraction of
periodic points exist for almost any r and it is generally
much larger than for the DWDO. For lower dissipation

o = 0.002 f decreases for small r, but f is still
significant for several r in this region. The result is even
more disappointing if we note that the area of region C
is only half that of .A. Even if region C is divided into
two halves, the results within each half is quite similar
to the whole area C. The effect of the dissipation is
also quite different in the case of the SWDO. In Fig.
11, we can see that only for very small dissipation,
a < 0.003, no periodic points are observed in C for the
ratio r = 1.07. Above that there is a steady increase of
f which is, at least, one order of magnitude larger than
f for the DWDO for similar dissipation.
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Fig. 11 Fraction f of periodic points within the region C
obtained for » = 1.07 as a function of «, with steps Aa = 0.001

Therefore, while we can conclude that the 2f-
excitation can create small regions in the parameter
space with robust chaos in the SWDO, this effect is
much more limited, and more restricted in terms of
acceptable frequency ratios and dissipation.

However, while the significant chaotification that
we observe may not suffice for the use of the SWDO
in practical applications, this phenomenon is relevant
because chaos may emerge in several dynamical sys-
tems, modeled as a SWDO, much more easily then
previously thought. In fact, chaos is hardly observed in
the SWDO under 1f-excitation. It emerges only when
the linear restoring force is negligible compared with
that of the cubic nonlinearity. We have found through
numerical simulations that, typically, a B larger than
200 is required to produce chaos. For such large g,
the Duffing equation reduces to the famous pure cubic
oscillator first investigated by Ueda [10,25].

The Ueda’s oscillator presents a characteristic chaotic
attractor in the phase portrait which displays two lobes
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that partially superimpose. A representative example
of this attractor is displayed in Fig. 12a. In the case of
2f-excitation, we have also observed seemingly anal-
ogous chaotic attractors, in spite of the fact that they
are obtained for B smaller by two orders of magnitude.
As seen in the phase portrait in Fig. 12b, the two lobes
are also present in this case. However, a set of circular
trajectories are also seen around the origin of the phase
space. The trajectories are likely due to the role played
by the linear restoring force, which is of the same order
as the cubic one. Also, when we compare the time series
obtained for 1f and 2f-excitation, there are clear differ-
ences. In particular, for 2f-excitation the oscillations
within the lobes (corresponding to the laminar states
in the time series) are suppressed, while they prevail
for the 1f-excitation. This change contrasts to what we
observed in the DWDO, for which similar phase por-
traits and time series for both 1f and 2f-excitations are
found. The distinctive dynamics of the SWDO under
2f-excitation certainly deserves further investigation.
It represents a new chaotic regime in a system whose
chaotic dynamics was extensively investigated in the
literature [10,25] neglecting the role of the linear restor-
ing force.

5 Conclusions

The results in Figs. 2 and 3 demonstrate that the 2f-
excitation induces full chaotification of the DWDO
over a quite significant portion of the parameter space,
region A, for a wide range of frequency ratios and when
the dissipation is sufficiently small. In fact, only certain

2495 2500

yT

2485

i

2480

Fig. 12 Phase portraits and times series for a 1f-excitation and « = 0.01, 8 = 480, ¢ = 0.8 and b 2f-excitation with r = 1.27 and

a =0.01, 8 =1.7,and ¢ = 0.8. The period T corresponds to 27 /¢
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very specific frequency ratios must be avoided. For the
different values of r, we have tested in our investiga-
tions, which did not coincide with those that must be
avoided, the behavior of the chaotic attractor is essen-
tially that presented in Fig. 4 forr = 1.07. These results
support the conclusion that chaos is robust within, at
least, region A.

The existence of a large region in the parameter
space with robust chaos is important for the potential
practical applications of the system. For instance, an
electronic circuit designed to work as a source of chaos
is going to be built with components that have certain
fabrication tolerances. That is the case for either bulk
components or those constructed in a microchip. The
existence of a large region with robust chaos allows
for larger design tolerances, since the system parame-
ters can vary, but the existence of a chaotic dynamics
with statistical properties close to that of the design is
assured. The high tolerance to changes in the system
parameters also makes the DWDO under 2f-excitation
less sensitive to external perturbations and the changes
that occur due to the aging of components.

Applications that rely upon the change of parame-
ters of the system can also benefit. For instance, the
robustness of the chaotic dynamics must allow the use
of larger perturbations of the system parameters to
encode signals, rather than the small perturbations used
in chaotic modulation schemes [26].

Despite the significant chaotification predicted for
the SWDO, we have seen that no sufficiently large
areas with robust chaos could be found in the parameter
space that support the system as an adequate source of
chaotic signal. However, the result indicates that chaos
can emerge much more easily in many systems whose
dynamics is dictated by the single well Duffing equa-
tion. This can occur even for system with significant
damping. Therefore, the design and analysis of any
physical system that can be, at least approximately,
modeled as a SWDO and is subject to more than a sin-
gle excitation frequency, should take into account that
chaos could be part of its dynamics. This need becomes
more evident from the comparison of the results in Fig.
7 for the 1f and 2f-excitation of the SWDO.

Due to the existence of both beneficial and detri-
mental consequences of a strong chaotification by
2f-excitation, further investigations are needed. It is
important to know if other systems besides the sus-
pended beam micro- and nanoresonators [15] and the
Duffing oscillator suffer a strong chaotification and can
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present robust chaos. In particular, it would be inter-
esting to know what other system may develop robust
chaos, due to the potential relevance for practical appli-
cations. Finally, while there is no general theory or
method to establish if a system presents robust chaos
its important to pursue an adequate theoretical expla-
nation to why robust chaos emerges in these systems.
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