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Chapter 10

Fractal Structures in a Binary

Schwarzschild Black Hole System

E. E. de Souza Filho, A. C. Mathias and R. L. Viana

Department of Physics, Federal University of Paraná,

81530-990, Curitiba, Paraná, Brazil

In open Hamiltonian systems, the dynamics underlying chaotic scatter-
ing presents a number of fractal structures. One example is the deection
of light rays produced by a pair of supermassive (Schwarzschild) black
holes. A light ray approaching this system can diverge to innity, fall
down into one of the black holes or can orbit around the black hole pair as
periodic orbits. Using a two-dimensional area-preserving map proposed
by Moura and Letelier, we investigated the escape basins and their fractal
boundaries, using the corresponding basin and basin boundary entropies.
We also varied the distance between the black holes, showing how it
impacts in the complexity of the basin structure.

10.1. Introduction

Fractal structures appear often in chaotic systems, both dissipative

and conservative ones [1]. In General Relativity, the geodesic motion

in a curved space is a dynamical system of physical interest [2]. The

presence of fractal structures in open chaotic systems is caused by

the existence of an invariant nonattracting chaotic manifold, the so-

called strange saddle [3], which inuences the chaotic scattering of

particles for example [4].

The chaoticity of geodesic motion is responsible for fractal

distribution of the light ray scattering by a pair of black holes.

This dynamics is described by the null geodesics equations [5]. One

example is the Majumdar–Papapetrou binary black hole system

[6, 7]. The investigation by Sanjuán and coworkers of fractal exit
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basins in a Majumdar–Papapetrou binary black hole shows that

the escape basin boundaries are not just fractal but also display

the stronger Wada property: any boundary point belongs to the

boundary of at least two other basins [5]. Moura and Letelier have

proposed a two-dimensional map to describe the scattering of light

rays by a system of two static Schwarzschild black holes [8].

We investigate the fractality of the escape basin by using a

scattering map [8]. The escape basins are known to play an important

role in astrophysical investigations, since they are actually the so-

called shadows of a black hole [9]. Thus, we quantitatively investigate

the fractal nature of the structure of escape basin by computing the

basin entropy and the basin boundary entropy [10, 11].

This chapter is organized as follows. In Sec. 10.2, we introduce

the basic formulas for the scattering of a light ray by a spherically

symmetric black hole. In Sec. 10.3, we present the two-dimensional

map that describes the light ray deection due to the binary black

hole system discussing some of its dynamic properties. In Sec. 10.4,

we present some numerical results of the escape basin as we vary

the distance between black holes. In Sec. 10.5, we characterize the

fractality of the escape basins using the basin entropy and the basin

boundary entropy. Finally, in last section we report our conclusions.

10.2. Basic Equations

Assuming the spacetime metric gμν with signature (−,+,+,+) and

using Einstein’s summation convention for repeated indexes, we

dene c = G = 1. In a curved spacetime, the light rays follow

geodesics given by

gμνdx
μdxν = 0, (10.1)

where we consider a metric for a symmetrically spherical and static

spacetime with length element

ds2 = A(r)dt2 −B(r)dr2 − C(r)


dθ2 + sin2 θdφ2


, (10.2)

where A(r), B(r) and C(r) dene the metric produced by the black

hole.
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For a photon approaching the black hole from innity with impact

parameter b, the substitution of (10.2) into (10.1) gives the following

general equation for the geodesics

A(r)B(r)

[C(r)]2



dr

dφ

2

+
1

[U(r)]2
=

1

b2
, (10.3)

where [U(r)]−2 = A(r)/C(r). After approaching the black hole with

a minimum distance r0 the photon is deected and emerges out in

the other direction. From (10.3) this distance is called the critical

impact parameter

bc =



C(r0)

A(r0)
≡



C0

A0

. (10.4)

On substituting (10.4) back into (10.3) it turns out that the angle

of deection is α = I(r0)− π, where

I(r0) =



∞

r0

dr



B(r)

C(r)



A0

A(r)

C(r)

C0



−1/2

. (10.5)

In the limit of strong gravitational elds, we can expand (10.5)

so as to obtain

α(r0) = −a ln



r0
rm



+ c+ o(r0 − rm) = −ā ln



b

bm
− 1



+ c̄+ o(b− bm), (10.6)

where a, ā, c and c̄ depend on the functions A, B and C, evaluated

at the photosphere radius rm. Similarly to (10.4) we have bm =


C(rm)/A(rm).

We shall consider Schwarzschild black holes, such that these

functions are given, in a suitable system of units [12]

A(r) = 1− 2M

r
, (10.7)

B(r) =



1− 2M

r



−1

=
1

A(r)
, (10.8)

C(r) = r2. (10.9)

The Schwarzschild metric has an event horizon, given by the

radii where it diverges, corresponding to r = 2M , without loss of
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generality we will rewrite

R =
r

2M
. (10.10)

Using (10.7)–(10.9) and computing the extreme of the eective

potential results that the radius of the photosphere is Rm = 3/2.

From these results, Bozza [13] shows that the coecients of the

expansion for the deection angle (10.6) are given by

ā = 1, (10.11)

c̄ = −π + 0.9496 + ln 6 ≈ −0.4002, (10.12)

bm =
3
√
3

2
≈ 2.5981. (10.13)

The scattering of a light ray by a single black hole can now

be understood in terms of the possible values of the corresponding

impact parameter. A light ray comes from innity and approaches

the black hole with impact parameter b and whose direction makes

an angle φ with a reference axis. If b < bm, the light ray falls into the

black hole and disappears. On the other hand, for this light ray not

to escape back to innity, it is necessary that its impact parameter

b be such that the scattering angle α is at least π. Thus we impose

b > besc, where α(besc) = π. Using (10.6), this means that

besc = bm



exp



c̄− π

ā



+ 1



≈ 2.67332. (10.14)

As a result, for a light ray deected by a single black hole not to

escape to innity or to collide with a black hole, the impact parameter

must belong to the narrow interval bm < b < besc.

10.3. The Scattering Map

When working with a system of two black holes in orbit of each

other, the map has no exact solution of eld equations (unlike the

case of a single black hole treated in the previous section). But

the nonlinear interaction between their gravitational elds can be

neglected if the distance D between the black holes is much higher

than their Schwarzschild radius R = 1.
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In this case, we consider the deection of light from each black

hole in a separate way using the expressions previously found for

the Schwarzschild metric. In other words, in the light scattering by

a given black hole, the eect of the other black hole is neglected.

Similar approximations for the Schwarzschild metric are discussed

by de Moura [8]. In particular, they may not hold if we consider the

scattering of massive test particles.

The axial symmetry axis is the line connecting the two black

holes. Assuming that the light rays have zero angular momentum

in this direction, as a result, the light rays are constrained to move

in the plane containing the two black holes. Figure 10.1 shows the

basic geometry involved in the light scattering by the system. Coming

from innity, a light ray approaches the rst black hole with impact

parameter b, the direction makes an angle φ with the axial symmetry

line. So that this light ray does not escape back to innity it is

necessary that b < besc, where besc is given by (10.14). As we do not

want the light ray to fall to the rst black hole as soon as they meet,

we dene the impact parameter as b > bm. As the light ray is not

deected to innity by the rst black hole, make it goes to the other

black hole and is again deected. Again, if not deected to innity

it returns to the vicinity of the rst black hole, ad innitum.

For convenience, we dene discrete variables (bn,φn), the impact

parameter and escape angle, in reference to the axis symmetry line

Fig. 10.1. Schematic gure for the trajectory of a light ray in the two black hole
system.
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in the neighborhood of the nth scattering. Odd (even) values of n

correspond to the second (rst) black hole. Using such denition, the

dierential equations for light scattering reduce to a discrete map,

bn+1 = bn +Dφn, (10.15)

φn+1 = π + φn − α(bn+1) (mod 2π), (10.16)

which is called scattering map by Moura and Letelier [8]. Some sign

conventions are essential: positive values of b imply that the light ray

goes from black hole 1 to 2 (from “right” to “left” in Fig. 10.1), and

negative values otherwise; whereas positive values of φ correspond to

counterclockwise rotations.

The Jacobian matrix of this transformation is given by

J =



1 D cosφn

− α(bn+1) 1−Dα(bn+1) cos φn



, (10.17)

whose determinant is equal to the unity, hence the scattering map

(10.15)–(10.16) is a twist and area-preserving mapping, correspond-

ing to the following continuous-time Hamiltonian:

H(b,φ, n) = πb−
 b

dbα(b) +Dδ1(n) cos φ, (10.18)

where

δ1(n) =

∞


m=−∞

δ(n −m) = 1 + 2

∞


q=1

cos(2πqn), (10.19)

is a periodic delta function(“Dirac comb”).

Fixed points of the scattering map are φ∗

1,2 = 0,π and b∗1,2 = besc.

The eigenvalues of the Jacobian matrix (10.17) at these points are

λ1,2 =
ζ

2
± i



1−


ζ

2

2

, (10.20)

where

ζ = 2−Dα(bn+1) cos φn (10.21)

is the trace of Jacobian matrix.

These xed points are stable provided that |ζ| < 2. It turns out

that the point (besc, 0) is stable if 0 < Dα(besc) < 4, whereas the
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other xed point (besc,π) is stable if −4 < Dα(besc) < 0. In both

cases, the light ray trajectory is such that bn+1 = −bn. Considering

D > 0 and α(besc)) < 0 the xed point at φ = 0 is always unstable

(a hyperbolic saddle). If, further, we have that |α(besc)| < (4/D),

the other xed point at φ = π is an elliptic center.

The Hamiltonian (10.18) is generally nonintegrable for D = 0.

However, if the light deection by one black hole has to be indepen-

dent on the existence of the another black hole, then we must assume

that D is typically a large number. In such an instance, both xed

points are unstable and we expect a sizeable area-lling chaotic orbit

in the phase space (b,φ).

10.4. Escape Basins

The system proposed of two black holes is an example of open

dynamical system, which is a system where trajectories (light rays)

eventually escape from a given phase space region. If there are

dierent ways by which trajectories can escape, then it is an

applicable problem to identify the sets of initial conditions that

causes trajectories to escape through a given exit. This array is called

the escape basin, which corresponds to that exit [4]. In the case of

two or more exits, we can identify the boundary that divides those

escape basins, termed escape basin boundary. It is long known that

conservative dynamical systems with chaotic dynamics have fractal

escape basins and fractal escape basin boundaries [1].

With the desire to obtain the plot of the escape basins corre-

sponding to the scattering map (10.15)–(10.16), we designated a

set of initial conditions (b0,φ0) and iterated them to encounter to

which basin they belong. We isolate the phase space region Ω =

{0 ≤ φ0 ≤ 2π, bm < b0 < besc} in a extensive number of points and

iterate the map (10.15)–(10.16) for each of these initial conditions,

saving the nal outcome for each point. Succeeding a number of map

iterations, depending on its initial conditions, a light ray may fall

into one black hole (A), into the other black hole (B), or escapes

in the direction of innity (C). All outcomes can be treated as exits

since we stop iterating the map once a light ray falls into a black
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hole. Accordingly, we denote the corresponding escape basins to be

B(A), B(B) and B(C).

To do this analysis, we use a range of values for D from D = 5

until D = 20, which is a value sucient to ensure that each black

hole deects light rays in an independent fashion. An orbit falls into

a black hole whenever bn < bm for a given escape time n = n̄ <

104. If n̄ is even (odd) we know that the light ray falls into black

hole A (B) and the corresponding initial condition is painted red

(blue). If the orbit goes to innity (bn > besc) for a given n = n̄ <

104 the corresponding initial condition is painted green. The red,

blue and green regions are thus numerical approximation for the exit

basins B(A), B(B) and B(C), respectively. There is a measured set

of unstable periodic orbits which never escape and, since D < ∞, we

cannot rule out orbits within very tiny periodic islands which do not

escape at all, but whose eect in the exit basins would be negligible.

Since the labeling of black holes A and B is immaterial, their

escape basins would be symmetric, i.e., they must have the same

size. On the other hand, it is expected that the dominant basin is

that of innity (C). But the analyses require further magnications

as sequences of exits cannot be observed. This characterization is also

possible by dening a function g(b) such that g(b) = 1, if the orbit

falls into black hole A, g(b) = −1, if it falls into B, and g(b) = 0 if

the orbit escapes to innity [8].

In order to investigate the escape basin boundary, we analyze two

regions in the vicinity of the points with φ0 = 0 and φ0 = π. For

both regions, we divide the impact parameter interval bm < b < besc
into 106 points. The corresponding escape basins are plotted in

Figs. 10.2(a) and 10.2(d), respectively, as a horizontal bar with green,

red and blue stripes. We also plotted the corresponding function g(b)

below the bars. In Figs. 10.2(b) and 10.2(e), we show magnications

of two intervals of Figs. 10.2(a) and 10.2(d), respectively, and

Figs. 10.2(c) and 10.2(f) are further magnications. These zooms

clearly show that there are regions for which there are pieces of the

three escape basins in all scales. This self-similarity is a signature of

the fractality of the basins as well as of its basin boundary.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10.2. For D = 12, 5, the horizontal bars represent the escape basins as a
function of the impact parameter b for φ0 = 0 in (a), with magnications in (b)
and (c); and φ0 = π in (d), with magnications in (e) and (f). We plot, below
the horizontal bars, the corresponding values of the function g(b) (see text for
details).

A cursory inspection of Fig. 10.2 suggests that the escape basin

boundary is self-similar and has a fractal structure that depends of b.

Actually, the escape basin boundary cannot be completely fractal,

since there are smooth parts of it corresponding to regions in which

the function g(b) has the same value for dierent ranges of b.

Since some regions of dierent escape basins are intertwined in

arbitrarily ne scales, it is extremely dicult, if not impossible, to

predict the nal outcome of a light ray, given its initial condition

being always known up to a given uncertainty. One of the observable

consequences of the existence of fractal structures in phase space is
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nal-state sensitivity, i.e., small uncertainties in the initial conditions

may lead to large uncertainties with respect to the future behavior

of the system [14].

10.5. Basin Entropies

We quantify the degree of uncertainty due to the fractality of the

escape basin boundary by the determination of the so-called basin

entropy and basin boundary entropy, a tool recently developed by

Miguel Sanjuán and collaborators [5, 10]. Let us suppose that an

open Hamiltonian system, like the scattering map, has NE exits, by

which typical trajectories can escape, with the corresponding escape

basins. We cover the phase space region with a grid of N boxes of size

ε, and consider the probability pij for the trajectory beginning to the

jth box to escape through the ith exit, where i = 1, 2, . . . , NE and

j = 1, 2, . . . ,mi, where mi ∈ [1, NE ] is the number of exits available

to trajectories originating from the ith box.

On supposing that the trajectories beginning in a box are

statistically independent, Daza et al. dened the entropy of the ith

box as

Si = −
mi


j=1

pij log(pij), (10.22)

in such a way that the entropy of the grid is obtained by summing

over all N boxes, S =
∑N

i=1
Si. The basin entropy is dened as

Sb = S/N .

The basin entropy quanties the degree of the uncertainty

associated with the escape basin, and varies from 0, in the case

of a unique exit, to logNE, if the escape basins are so completely

intertwined that we may consider them as equiprobable. If we restrict

the computation of the basin entropy to those Nb boxes covering the

escape basin boundaries, then we have the basin boundary entropy

Sbb = S/Nb, which quanties the uncertainty related only to the

boundary.

In order to compute the basin entropy and basin boundary

entropy of the escape basin of Fig. 10.2, we analyze the regions
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φ0 = 0 and φ0 = π, separately. For both regions, we consider boxes

with 4, 5, 9, 10 initial conditions per box. For each initial condition,

we computed a maximum number of 104 iterations of the map and

exclude from the statistics those initial conditions leading to orbits

that do not escape during this maximum iteration time. Then, we

compute the probabilities (10.23) of obtain the number of points

into each box nA, nB and nC corresponding to the exits A, B and

C, respectively.

pA =
nA

nA + nB + nC
, pB =

nB

nA + nB + nC
, pC =

nC

nA + nB + nC
,

(10.23)

and the entropy for each box is

S = −pA log pA − pB log pB − pC log pC . (10.24)

The entropy related to the each region of the escape basin is

obtained by summing the contribution of each box S =
∑N

i=1
Si.

Thus, the basin entropy results by normalizing this value Sb = S/N .

In limit situations, if we have a single exit, the corresponding

probability is equal to the unity (pA = 1), hence Sb = 0, i.e., no

uncertainty at all. The opposite situation consists in completely

randomized basins with N equiprobable escapes, which result in

Sb = logN as the upper bound of the basin entropy.

We obtain the so-called boundary basin entropy Sbb = S/Nb

limiting the computation of the basin entropy only to the boxes

containing points of the boundary (Nb). Thus, the basin boundary

entropy Sbb measures the complexity of the basin boundary. In the

case of two basins with smooth boundaries, the number of boxes in

the boundary is negligible for the computation of the boundary basin

entropy Sbb, since there are many more boxes with just one basin.

Thus, the maximum possible value of Sbb that a smooth boundary

can have is ln 2, which would a pathological case where every box

in the boundary contains equal proportions. Therefore, if Sbb > ln 2,

the basin boundary is said to be fractal.

We plot in Fig. 10.3 the values of the basin entropy Sb and the

basin boundary entropy Sbb of the escape basin considering the two

regions (a) φ = 0 and (b) φ = π. The variable parameter is the
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(a)

(b)

Fig. 10.3. Basin entropy Sb and basin boundary entropy Sbb as a function of
distance between the black holes D for (a) φ = 0 and (b) φ = π.

distance between the black holes D. For the two cases of φ the

value of basin entropy Sb is low, in fact most boxes contains initial

conditions that escape through a single exit. However, the entropy

of the boundary of basin Sbb obeys the inequality Sbb > ln 2, i.e., the

basin boundary is fractal.

As a general trend, the degree of complexity of the basin structure

and its boundary decreases with D. We can observe in (a) that the

entropies increase as D goes from 5 to 10 and suer a decrease
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afterwards. The same happens in (b) but the maximum entropy value

occurs in D = 7.5 and decreases for higher values of D. The decrease

of entropy means that the basins become progressively less mixed

and involved as the distance between the black holes increases.

10.6. Conclusion

An outstanding example of open Hamiltonian systems is the scat-

tering of light rays by a binary black hole system. But as an open

system, the chaotic motion is typically transient, the destiny of an

incident light ray is either to escape to innity or fall into one of

the black holes. In these cases, we seek to obtain the respective exit

basin, or the set of initial conditions that attend to a given outcome.

The exit basins and their common boundary are fractal structures,

essentially due to the presence of a nonattractive invariant set called

chaotic saddle.

We considered the light ray scattering by a binary black hole

system from the angle of an open Hamiltonian systems, focusing on

the fractal structures present in the chaotic dynamics. The equations

of general relativity for a light ray in the gravitational eld of a binary

Schwarzschild black hole system were integrated approximately to

gather a discrete-time map, which exhibits chaotic dynamics for a

wide range of its parameters, with the most important being the

distance between the black holes. The chaotic dynamics here are

transient, though, for the light rays can either escape to innity or

fall into one of the black holes.

The basin entropy, which is basically the information entropy

related to the probability of going to a given basin, has been found

to vary according to the distance used to represent the exit basins.

The basin boundary entropy only takes into account the intervals

containing basin boundary.

This work can be viewed as a connection to the research on black

hole shadows as we can see in [9, 15], the shadow is a direct result of

gravitational lensing as the black holes block some of the light rays

that converge to it. As we know, the study of black hole shadows

is important on the visualization and classication of black holes.
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The shadow that it produces is an exit basin, so in this work we can

use the exit basin we found to see the black hole shadow if necessary.

In summary, we have studied fractal structures that appear in

the chaotic motion of a light ray under the gravitational eld of two

Schwarzschild black holes, a problem which is classically noninte-

grable and has a nonattractive chaotic invariant set responsible for

chaotic transient dynamics. Such fractal structures are responsible

for various signatures of the so-called chaotic scattering, which is a

phenomenon ubiquitous in nonintegrable open Hamiltonian systems.
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