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a b s t r a c t 

The deflection of light by a pair of black holes can be considered an open conservative non-linear dy- 

namic system. The basis of our approach is our understanding of strong gravitational lensing and the 

geodesic movement of light. We obtain a two-dimensional map that sets out the impact parameter and 

the escape angle when the light gets deflected by each black hole. Being a non-integrable system, the 

chaotic area-filling orbits occur in a specific parameter range. Fractal structures are related to the exis- 

tence of a non-attractive invariant chaotic set. This can be seen in the dynamics of these chaotic orbits. 

The light-ray that enters the system has two potential defined outcomes. Either the light ray can diverge 

to infinity or it will fall into one of the two black holes. We describe the escape basins and their bound- 

aries, adopting two methods: firstly the corresponding basin and basin boundary entropies and secondly 

the computation of the uncertainty exponents. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fractal structures are quite common in chaotic systems. Exam- 

les are chaotic attractors, basin boundaries, invariant manifolds 

nd others [1] . It is important to note that open chaotic systems 

resent a variety of fractal structures. The so-called strange saddle 

s caused by the existence of an invariant non-attracting chaotic 

anifold [2] . Geodesic motions in a curved space are used to de- 

cribe the dynamics in General Relativity. If the curvature is nega- 

ive, then there is a sensitive dependence to the initial conditions. 

his is a necessary condition for chaotic motion, although there are 

ther conditions [3] . 

The presence of fractal structures in open non-integrable 

amiltonian systems with chaotic motion has been described in 

any physical manners. Examples include the motion of a star 

round a galactic center [4,5] , open billiards [6,7] , drift motion of 

agnetically confined charged plasma particles [8] , magnetic field 

ines in Tokamaks [9] , amongst others. 

Cosmic objects such as black holes, produce space-time cur- 

ature which leads to the deflection of the light ray as it trace 

ut null geodesics in curved space-time [10] . Systems of binary 

lack holes have been confirmed by the observation of gravita- 

ional waves by LIGO Scientific Collaboration [11] . In such systems, 
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here the relative velocities are much lower than the light velocity 

, you can consider them as fixed in space. 

The null geodesics equations describing the light ray scatter- 

ng by a pair of black holes are non-integrable and constitute an 

pen conservative dynamical system. This form of chaotic motion 

s possible [12] . One such example is the Majumdar-Papapetrou 

inary black hole which occurs when a system of two charged 

lack holes are in static equilibrium due to their electrostatic re- 

ulsion [13,14] . Many authors [15,16] have investigated the pres- 

nce of fractal structures in this system, caused by the chaoticity 

f geodesic motion [15,16] . 

The escape basin is a basic fractal structure. It can be investi- 

ated in a binary black hole system, which is the array of initial 

onditions that point to one of three possible outcomes. The light 

ay can fall in the first black hole; fall into the second black hole 

r escape to infinity. Escape basins are very important in astro- 

hysical investigations. They are actually the so-called shadows of 

 black hole. A shadow is a region in the observer’s sky which can- 

ot be illuminated by distant light sources due to the blockage of 

 black hole [17] . Daza and others have studied escape basins in 

 Majumdar-Papapetrou binary black hole [12,13] . The show that 

he escape basin boundaries are not just fractal but also display 

he stronger Wada property: any boundary point belongs to the 

oundary of at least two other basins. 

The investigation of fractal exit basins proposed by de Moura 

nd Letelier produces a two-dimensional map. It describes the 

cattering of light rays by a system of two static Schwarschild black 

oles [18] . This is different from the Majumdar-Papapetrou binary 

https://doi.org/10.1016/j.chaos.2021.111139
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lack hole system, which requires a numerical integration of the 

eodesic equations. de Moura’s proposal comprises a system where 

he black holes are supposedly so far apart from each other, that 

ne black hole doesn’t affected the other black hole. In this way, 

he influence of each black hole on the light rays can be studied 

eparately using the exact solution for Schwarschild black holes 

18] . 

In this paper we advance the investigations by considering a 

ystem of charged black holes. The charge is important, as charged 

lack holes are said to be the final stage of the collapse of magne-

ized stars. It is known that black holes in the universe are ruled 

y the Kerr-Newman metric. We can simplify the system, as the 

otation breaks the spherical symmetry and introduces avoidable 

omplications in the calculations. So a general approach enables 

s to describe each black hole using a spherically symmetrically 

etric (Reissner-Nordström). 

We can use this approximation for the scattering angle by a 

lack hole and combine it with a second black hole to obtain a 

cattering map similar to that obtained by de Moura and Letelier. 

owever in our case the scattering angle is defined by an analyti- 

al method [19] . The second step in our work is to characterize the 

ractality of the escape basin using the recently developed notion 

f basin entropy. This is a measure of final state uncertainty related 

o the fractality of the escape basin boundary [20] . We also use the

ell-know uncertainty method to obtain the fractal dimension. 

This paper is organized as follows: In Section 1 we lay out the 

asic equations for the scattering of a light ray by a spherically 

ymmetric black hole. In Section 2 we outline the approximate so- 

ution of the geodesics equation for the light ray deflection un- 

er the gravitational field of two Reissner-Nordström black holes. 

ection 3 is devoted to the detailing of the two-dimensional scat- 

ering map describing the light ray deflection due to the binary 

lack hole system and also discusses some of its dynamical prop- 

rties. Section 4 contains a description of the corresponding es- 

ape basins. Section 5 deals with the characterization of the es- 

ape basins using the basin entropy and basin boundary entropy 

elated to them, together with the uncertainty dimension, which 

s a measure of the fractality of such structures. The last Section 

ontains our Conclusions. 

. Basic equations 

In this work, we use the notion of gravitational lensing, which 

s the deflection of light by a gravitational field. In this case, the 

ens or gravitational body is a black hole. We define how the light 

ehaves in the vicinity of a black hole using a space-time metric 

 μν with signature (−, + , + , +) and constants c = G = 1 . The light

ays follow the geodesic 

 μνd x μd x ν = 0 , (1) 

dopting the summation notation and considering a metric for a 

ymmetrically spherical and static space-time with length element, 

 s 2 = A (r) d t 2 − B (r) d r 2 − C(r) 
(
d θ2 + sin 

2 θd φ2 
)
, (2)

here A (r) , B (r) and C(r) define the metric produced by the black

ole. 

If a photon approaches the black hole from infinity with impact 

arameter b, then the substitution of (2) into (1) gives the follow- 

ng general equation for the geodesics 

A (r) B (r) 

[ C(r)] 
2 

[
d(φ) 

dr 

]2 

+ 

1 

[ V (r)] 
2 

= 

1 

b 2 
, (3) 

here [ U(r)] 
−2 = A (r) /C(r) . After approaching the black hole with 

 minimum distance r the photon is deflected and emerges out 
0 

2 
n another direction. From (3) this distance is called the critical 

mpact parameter 

 c = 

(
C(r 0 ) 

A (r 0 ) 

)1 / 2 

≡
(

C 0 
A 0 

)1 / 2 

. (4) 

On substituting (4) back into (3) it turns out that the angle of 

eflection is α = −π + I(r 0 ) , where 

(r 0 ) = 

∫ ∞ 

r 0 

dr 

(
B (r) 

C(r) 

)1 / 2 (
A 0 

A (r) 

C(r) 

C 0 

)−1 / 2 

. (5) 

In the limit of strong gravitational fields [19] , we can expand 

5) and use the relation between b and r 0 so as to obtain 

(b) = −ā ln 

(
b 

b m 

− 1 

)
+ c̄ , (6) 

here a , ā , c, and c̄ depend on the functions A , B , and C, evalu-

ted at the photosphere radius r m 

. Similarly to (4) we have b m 

=
 C(r m 

) /A (r m 

)] 1 / 2 . 

The evaluation of the coefficients in (6) , must be done carefully 

ince the integral (5) diverges at r 0 . In order to do so, we rewrite

5) as 

(r 0 ) = 

∫ 1 

0 

dz f (z, r 0 ) R (z, r 0 ) , (7) 

here we define auxiliary variables 

 = A (r) , y 0 = A 0 , z = 

y − y 0 
1 − y 0 

, (8) 

nd the following functions 

(z, r 0 ) = 

2(ByC 0 ) 
1 / 2 

CA 

′ (1 − y 0 ) , (9) 

f (z, r 0 ) = 

{ 

y 0 − [(1 − y 0 ) z + y 0 ] 
C 0 
C 

} −1 / 2 

. (10) 

Observe that N(z, r 0 ) is regular for all values of z and r 0 , where

f (z, r 0 ) diverges for z → 0 . Expanding the integrand of (10) up to

econd order terms we have 

f (z, r 0 ) ≈ f 0 (z, r 0 ) = 

(
1 

γ z + βz 2 

)1 / 2 

, (11) 

here 

= 

1 − y 0 
C 0 A 

′ 
0 

( C ′ 0 y 0 C 0 A 

′ 
0 ) , (12) 

= 

(1 − y 0 ) 

2 C 2 
0 

A 

′ 3 
0 

[
2 C 0 C 

′ 
0 A 

′ 2 
0 

+ (C 0 C 
′ 
0 − 2 C ′ 2 0 ) − C 0 C 

′ 
0 y 0 A 

′′ 
0 

]
. (13) 

Proceeding in this way, we obtain the desired coefficients, 

amely 

¯
 = 

a 

2 

= 

N(0 , r m 

) 

2 

√ 

βm 

, (14) 

¯
 = c r + ā ln 

(
2 βm 

y m 

)
− π, (15) 

here βm 

= β(r m 

) and c r is the real part of the integral (7) . 

In this paper, we shall consider Reissner-Nordström black holes, 

here these functions are given, in a suitable system of units [21] , 

y 

 (r) = 1 − 2 M + 

q 2 

2 
, (16) 
r r 
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Fig. 1. Scattering map: the trajectory of a light of a light ray on the binary black 

hole system. 
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 (r) = 

1 

A (r) 
, (17) 

(r) = r 2 . (18) 

The Reissner-Nordström metric has two event horizons de- 

cribed by the radii where it diverges, at r ± = 

3 
4 { 2 M ± [(2 M) 2 −

32 Q 2 

9 ] 1 / 2 } . Without loss of generality we will rewrite 

 = 

r 

2 M 

, Q = 

q 

2 M 

. (19) 

When Q ≥ 0 . 5 there is no event horizon and causality violations 

ppears [22,23] , so in this work we are going to use only values of

 < 0 . 5 . 

For the Reissner-Nordström metric, the coefficients (12) and 

13) are given, respectively, by 

= 

(
2 − 3 

R 0 

+ 

4 Q 

2 

R 

2 
0 

)
R 0 − Q 

2 

R 0 − 2 Q 

2 
, (20) 

= 

(
3 

R 0 

− 1 − 9 Q 

2 

R 

2 
0 

+ 

8 Q 

4 

R 0 

)
R 0 (R 0 − Q 

2 ) 2 

(R 

3 
0 

− 2 Q 

2 ) 
. (21) 

The positive radius of the photosphere (equal to the radius of 

he event horizon) is 

 m 

= 

3 

4 

[ 

1 + 

(
1 − 32 Q 

2 

9 

)1 / 2 
] 

, (22) 

n such a way that 

m 

= 

[
−9 + 32 Q 

2 − 144 Q 

4 + 512 Q 

6 + (9 − 32 Q 

2 ) 1 / 2 

×(3 + 16 Q 

2 − 80 Q 

4 ) 
][

9(Q − 4 Q 

3 ) 
]−2 

. (23) 

The regular term c R can’t be directly analyzed, however we can 

xpand it in terms of Q , giving 

 R = c R, 0 + c R, 2 Q 

2 + O (Q 

4 ) , (24) 

he first term is 

 R, 0 = 2 ln { 6[2 − (3) 1 / 2 ] } = 0 . 9496 , (25) 

nd the quadratic correction in Q is 

 R, 2 = 

8 
9 

{ 

(3) 1 / 2 − 4 + ln 

[
6 

(
2 − (3) 1 / 2 

)]} 

= −1 . 5939 . 

(26) 

From these results, it is straightforward to show that the coef- 

cients (14) - (15) of the expansion for the deflection angle (6) are 

iven by 

¯
 = 

R m 

(R m 

− 2 Q 

2 ) 1 / 2 

[(2 − R m 

) R 

2 
m 

− 2 Q 

2 R m 

+ 8 Q 

4 ] 1 / 2 
, (27) 

¯
 = −π + c R + ā ln 

{ 

2(R m 

− Q 

2 ) 2 

× [(3 − R m 

) R 

2 
m 

− 9 Q 

2 R m 

+ 8 Q 

4 ] 

(R m 

− 2 Q 

2 ) 3 (R 

2 
m 

− R m 

+ Q 

2 ) 

} 

, (28) 

 m 

= 

[
3 + 9(9 − 32 Q 

2 ) 1 / 2 
]

2 

4(2) 1 / 2 
[
2 − 8 Q 

2 + (9 − 32 Q 

2 ) 1 / 2 
]

1 / 2 
. (29) 

The scattering of a light ray by a single black hole can now be

nderstood in terms of the impact parameter. A light ray comes 

rom infinity and approaches the black hole with impact parame- 

er b and the direction makes an angle φ with the reference axis. If 
3 
 < b m 

, then the light ray falls into the black hole and disappears.

n the other hand, for this light ray not to escape back to infin- 

ty, it is necessary that the impact parameter b be such that the 

cattering angle α is at least π . We thus impose b > b esc , where

(b esc ) = π . Using (6) this means that 

 esc = b m 

[
exp 

(
c̄ − π

ā 

)
+ 1 

]
. (30) 

. The scattering map 

In this work, we make use of a system of two identical black 

oles with equal mass. Binary systems rotate around their center 

f mass and the LIGO Scientific Collaboration has confirmed the 

xistence of this by the observation of gravitational waves from the 

erging of two black holes [11] . In such systems, it is possible to 

onsider their relative velocity as fixed in space because it is much 

maller than c. 

When working with a such a system, there is no exact solution 

f field equations, unlike the case of a single black hole treated in 

he previous Section. But the non-linear interaction between their 

ravitational fields can be neglected if the distance D between the 

lack holes is bigger than their Schwarzschild radius 2 M. 

In this case, we consider the deflection of light from each black 

ole in a separate way using the expressions previously found for 

he Reissner-Nordström metric. In other words, the scattering of 

ight by a given black hole ignores the effect of the other black 

ole. Similar approximations for the Schwarzschild metric are dis- 

ussed in detail in Ref. [18] . In particular, they may not hold if we

onsider the scattering of massive test particles. 

The axial symmetry axis is the line connecting the two black 

oles. Assume that the light rays have zero angular momentum in 

his direction. The light rays are constrained to move in the plane 

ontaining the two black holes. Fig. 1 shows the basic geometry in- 

olved in the light scattering by the system. Coming from infinity, 

 light ray approaches the first black hole with impact parameter b

n a direction that makes an angle φ with the axial symmetry axis. 

o for this light ray not to escape back to infinity, it is necessary 

hat b > b esc , where b esc is given by (30) . 

We don’t want the light ray to fall in the first black hole as soon

s they meet, so the impact parameter must be b < b m 

. If the light

ay is not deflected to infinity by the first black hole, it goes to the

ther black hole and is again deflected. If not deflected to infinity, 

t returns to the vicinity of the first black hole, and so on. 

For convenience we define discrete variables (b n , φn ) to be the 

mpact parameter and escape angle respectively. With reference to 

he symmetry axis in the neighborhood of the n th scattering. Odd 

Even) values of n correspond to the second (first) black hole. Us- 

ng such definitions the differential equations for light scattering 

educe to a discrete map. 

 n +1 = b n + Dφn , (31) 
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Fig. 2. For φ = 0 , we variate the charge from 0 to 0.49 and we plot the correspond- 

ing values of the function g(b) (see text for details). a ) for 0, b) for 0.1, c) for 0.2, 

d) for 0.3, e ) for 0.4 and f ) for 0.49. 
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Fig. 4. Second approximation for φ0 = 0 which correspond to the charge value of 

a ) for 0, b) for 0.1, c) for 0.2, d) for 0.3, e ) for 0.4 and f ) for 0.49. 
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n +1 = π + φn − α(b n +1 ) , mod 2 π (32) 

alled the scattering map [18] . Some sign conventions are essen- 

ial: positive values of b imply that the light ray goes from black 

ole 1 to 2 (from “right” to “left” in Fig. 1 ), and negative values 

ignify the opposite; whereas positive values of φ correspond to 

ounterclockwise rotations. 

. Escape basins 

Our system of black holes fits the model of open dynamical 

ystems whereby trajectories in that system will eventually escape 

rom the phase space region. As there are different ways that the 

ight ray can escape from the two black holes system, we can ana- 

yze the initial conditions that make the particles escape through a 

iven exit. This set of initial conditions is called the escape basins. 

hen we have two or more exits, we can point out the boundary 

hat divides the basins [24] . It is long known that conservative dy- 

amical systems with chaotic dynamics have fractal escape basins 

nd fractal escape basin boundaries [1] . 

To obtain the escape basins we use the scattering map (31) - 

32) . We isolate the phase space region ι = { 0 ≤ φ0 ≤ 2 π, b m 

<

 0 < b esc } in a extensive number of points (a set of initial condi-

ions (b 0 , φ0 ) ). We iterate the map and observe which exit they 

scape to, saving the outcome for each point. 

After a number of map iterations, the light ray may fall into 

ne black hole ( A ), into the other black hole ( B ), or escapes in the

irection of infinity ( C ). This depends on the initial conditions. All 

utcomes can be treated as exits. We stop iterating the map once 

 light ray goes into one of the exits. Accordingly, we denote the 

orresponding escape basins to be B (A ) , B(B ) and B(C ) . 

Labeling the black holes A and B is immaterial, because their 

scape basins would be symmetric, i.e. they have the same size. 

s well it is expected that the dominant basin will be the infinity 

ne ( C ). Following the analyses requires further magnifications as 

equences of exits cant be observed. In order to better understand 

he exits, we define a function g(b) such that g(b) = 1 . If the orbit

alls into black hole A , g(b) = −1 , if it falls into B , and g(b) = 0 if

he orbit escapes to infinity [18] . 

As we are working with the Reissner-Nordström metric, we 

ant to see how the basin will behave when we have different 

harge values. As we defined previously, the charge has a limit of 

 ≤ 0 . 5 . Analyzing two regions, defined as φ0 = 0 and φ0 = π . For

he impact parameter we divided b m 

< b < b esc in to 10 6 points.

or φ0 = 0 we vary the value of Q from 0 to 0.49. Iterating the 

ap for each value, we plot the escape basin in Fig. 2 a) to f), the
4 
attern maintains the same visual appearance for each charge, but 

he range of b changes. To assess if the basins are fractals, we make 

n approximation in the zone where there is a rapid variation of 

scape direction. So Fig. 3 shows us the respective first approxi- 

ation. The pattern repeats itself from Fig. 2 with little difference. 

e take another approximation in Fig. 3 to obtain Fig. 4 . Again the

attern is the same as Figs. 2 and 3 . For φ0 = π the results are

imilar. 

That shows us that the system is fractal. For this analysis of the 

scape basins the metric of Reissner-Nordström is visually indis- 

inguishable to the Schwarzschild. The difference comes from the 

act that the particle passes closer to the black hole as the charge 

ncreases ( b range goes from 2.6 to 2.04). 

This can be explained looking at the impact parameter defini- 

ion as detailed in [25] . It shows that in the study of gravitational

ensing b = D ol θ where θ is the position of the formed image. D ol 

s the distance between the observer and the lens. We use a black 

ole as gravitational lens as a base for our study. If the image po- 

ition results decrease as the charge is increased then the impact 

arameter results will behave similarly. 

. Dimension and entropy 

Given the complex nature of this boundary, we analyze the frac- 

ality of the system using two quantitative characterizations of the 

scape basin boundary. First we determinate the basin entropy and 

asin boundary entropy. Next we compute the uncertainty expo- 

ent of the escape basin boundary by using the uncertainty frac- 

ion method. 

In this work, we use the proposed method of basin entropies, 

hich quantifies the degree of uncertainty due to the fractality 



E.E. de Souza Filho, A.C. Mathias and R.L. Viana Chaos, Solitons and Fractals 150 (2021) 111139 

Fig. 5. The basin entropy S b and the basin boundary entropy S bb for each charge Q

when φ0 = 0 . 

o  

g

t  

m

i

t

t

t

b

S

t  

c

a

f

i

c

t

1

i

a

c

f

S

t

a  

n

0

e  

S

t

s

o

3  

Fig. 6. The basin entropy S b and the basin boundary entropy S bb for each charge Q

when φ0 = π . 

Fig. 7. Dimensions of each basin as the charge Q changes for a ) φ0 = 0 and b) 

φ0 = π . 
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t
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F
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T

f basin. The basic idea of this method is as follows: for a sin-

le basin or unique exit, the corresponding probability is equal 

o unity ( p A = 1 ), hence the basin entropy is zero ( S b = 0 ). This

eans zero uncertainty, whereas for N A equiprobable basins or ex- 

ts, the corresponding probability is p A = N A , thus the basin en- 

ropy is S b = ln N A . This gives a completely randomized basin struc- 

ure. 

The basin boundary entropy S bb , quantifies the complexity of 

he basin boundary. There are also limit situations that separate 

asins with smooth boundaries from those with fractal boundaries. 

uppose that the basins were separated by a smooth boundary, 

hen the maximum value possible is S bb = ln 2 . This would be a

ase of only two basins, where every box computed in the bound- 

ry contains equal proportions. If S bb > ln 2 , the basin boundary is 

ractal. This is a sufficient but not a necessary criterion for fractal- 

ty, i.e., there are fractal boundaries even if S bb < ln 2 . 

We computed the basin entropies of φ0 = 0 and φ0 = π . We 

onsidered boxes with 4, 5, 8 and 10 initial conditions per box and 

hen we iterated each initial condition for a maximum number of 

0 4 iterations of the map. We excluded from the statistics those 

nitial conditions leading to orbits that do not escape. For φ0 = 0 

nd φ0 = π , we computed the probabilities of points into each box 

orresponding to the exits A, B and C. Thus, the entropy entropy 

or each box is 

 = −p A log p A − p B log p B − p C log p C . (33) 

Then, the total basin entropy is the summation of the basin en- 

ropy of each box divided by the total number of boxes N : S b = S/N 

nd the basin boundary entropy is S bb = S/N b , where N b is the

umber of boxes that containing points of the boundary. 

Fig. 5 show the results. For each value of charge Q for φ0 = 

 then (a) shows the basin entropy and (b) the basin boundary 

ntropy of the escape basin. Fig. 6 show the results of S b in (a) and

 bb in (b) corresponding to the case φ = π . The results suggests 

hat the basin entropy and the basin boundary entropy take on the 

ame values for each value of charge Q, within the uncertainty of 

ur measurements. 

The corresponding values are S b (φ0 = 0) = 9 . 846 × 10 −5 ±
 . 330 × 10 −5 and S (φ = π) = 5 . 90 × 10 −5 ± 2 . 00 × 10 −5 for the
b 0 

5 
asin entropy. S bb (φ0 = 0) = 0 . 954 ± 0 . 070 and S bb (φ0 = π) =
 . 923 ± 0 . 090 for the basin boundary entropy. For φ0 = 0 and φ0 =

the value of S b is low, and accordingly, S bb > S b , since the num-

er of boxes containing the boundary is generally less than the to- 

al number of boxes. However, S bb > ln 2 , i.e. the basin boundary is 

ractal for two cases. 

As a general trend, the degree of complexity of the basin in- 

reases with the charge of the black holes Q . We can observe in 

ig. 5 b) that the basin boundary entropy increases as the charge 

oes from 0 to 0.4 and suffers a decrease afterwards for Q = 0 . 49 .

he same happens in Fig. 6 b). The increase of basin entropies 
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eans that their structures become progressively more mixed as 

he charge of the black holes increases. 

To go further and confirm the fractality of the system we com- 

uted the uncertainty dimension of the escape basin boundary by 

sing the uncertainty fraction method. The uncertainty dimension 

quantifies the final-state uncertainty of the points belonging to 

asin boundary. Thus, we obtained the fraction of uncertain initial 

onditions f (ε) varying the uncertainty (ε) for the two cases of 

0 varying the charge Q . After this, we obtain the uncertainty ex- 

onent ( α). Since α = K − d, where K = 1 , in our case, a smooth

oundary with d = 0 , has α = 1 , whereas 0 < α < 1 characterizes

 fractal boundary. 

We computed the uncertainty dimension of the escape basin 

oundary for φ0 = 0 and φ0 = π , the results being shown in 

ig. 7 a) and b), respectively. The variable parameter is the charge 

. The maximum dimension value for φ0 = 0 occurs in Q = 0 . 4

nd has d = 0 . 218 ± 0 . 005 . The corresponding maximum dimen-

ion value for φ0 = π occurs in Q = 0 . 49 and has d = 0 . 244 ±
 . 012 . This therefore suggests that the escape basin boundaries are 

ractals and consistent with the results obtained for the basin en- 

ropies. 

. Conclusion 

A system of two black holes yields important information about 

ow the behavior of the universe. Investigating gravitational waves 

s key to unlocking this information and so analysis of binary sys- 

ems is crucial. We studied how light behaves when enters a sys- 

em of two black holes. The distance between the black holes is 

uch, that the system is simplified and we can analyze the behave 

n each black hole separably. Reissner-Nordström black holes are 

tatic and have the charge as one of their characteristics making 

t closer to a real black hole. In this work, we varied the charge

rom 0 (Schwarzschild) to 0.49 which is the limit for a Reissner- 

ordström black hole with event horizon. 

The black holes behave as a system but work individually. 

trong gravitational lensing allows us to describe the light move- 

ent by a two-dimension map. We chose two fixed points for the 

scape angle. We ran the map giving the initial conditions for the 

arameter of impact. The light ray can escape in three directions; 

nto the first black hole, into the second black hole or escaping to 

nfinity. 

We plotted the escape for each initial condition and analyzed 

he patterns exhibited. We observed zones where the region of es- 

ape varies rapidly and where chaos exists. We did an approxima- 

ion exactly at the chaos zones and saw that the pattern repeats 

tself. Another approximation gives the same results. This indicates 

hat the system is fractal. 

It is important to highlight that all the plots have the 

ame structure as the Schwarzschild case, but with a different 

ange of the impact parameter. This is explained by the lensing 

tudy that shows that the position of the images produced by 

eissner-Nordström black holes are closer to each other than the 

chwarzschild. As the charge increases, they get closer and closer. 

he impact parameter is proportional to the image position and so 

e can see that as the charge increases then the impact parameter 

ecreases. 

We considered two approaches to confirm the fractal charac- 

eristic of the system. Firstly, we considered the entropy method 

here if the value of the basin boundary is greater than ln 2 , then

he system is fractal, giving us a parameter of comparison. For ev- 

ry case proposed, our results show that the basin boundary is 

reater than ln 2 . Secondly, we considered the dimension where 

 = 0 is smooth and d = 1 total fractal. Our results again confirm

hat the system is fractal and that the small value of d results from 

aving a very smooth area where the light ray escapes to infinity. 
6 
In this paper, we analyzed the binary Reissner-Nordström black 

ole system. If we iterate a two-dimension map, varying the charge 

alues, then we discovered that the system has fractal charac- 

eristics and that there is no major difference structurally from 

eissner-Nordström to Schwarzschild when within the given pa- 

ameters for a black hole with event horizon to exist. 
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