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ABSTRACT

Oscillatory activities in the brain, detected by electroencephalograms, have identified synchronization patterns. These synchronized activities
in neurons are related to cognitive processes. Additionally, experimental research studies on neuronal rhythms have shown synchronous oscil-
lations in brain disorders. Mathematical modeling of networks has been used to mimic these neuronal synchronizations. Actually, networks
with scale-free properties were identified in some regions of the cortex. In this work, to investigate these brain synchronizations, we focus on
neuronal synchronization in a network with coupled scale-free networks. The networks are connected according to a topological organization
in the structural cortical regions of the human brain. The neuronal dynamic is given by the Rulkov model, which is a two-dimensional iterated
map. The Rulkov neuron can generate quiescence, tonic spiking, and bursting. Depending on the parameters, we identify synchronous behav-
ior among the neurons in the clustered networks. In this work, we aim to suppress the neuronal burst synchronization by the application of an
external perturbation as a function of the mean-field of membrane potential. We found that the method we used to suppress synchronization
presents better results when compared to the time-delayed feedback method when applied to the same model of the neuronal network.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0056672

The brain is a complex structure that controls the function-
ing of the body. The outermost layer of the brain is the cortex,
which is composed of billions of neurons. Connections occur
among neurons within the same region and also among neurons
in different brain regions. Network models of coupled neurons
have been developed to mimic neuronal activities in the brain,
for instance, synchronous behavior. Neuronal synchronization
is related to many different cognitive functions. It can also be
associated with seizures in epilepsy and tremor activity in Parkin-
son’s disease. Due to these facts, studies about synchronous
activities are relevant for understanding various processes that
arise in the brain. In this work, we build scale-free networks
coupled according to a structural cortical network. Depending on

the parameters, the neurons can exhibit synchronous behavior.
Considering an external perturbation that behaves as a selector
switch, we propose a signal as a function of the mean-field of
membrane potential variance to suppress synchronization. We
show that this perturbation can suppress or considerably reduce
network synchronization. By using this method, we obtain better
results for suppression of the neuronal network than when using
perturbation like the time-delayed feedback method.

I. INTRODUCTION

Networks have been used to describe the behavior of
complex dynamical systems, such as electric power grid,1 World
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Wide Web,2 and metabolic reactions.3 In neuroscience, networks
have been considered to analyze and model neurobiological
systems.4 The neuronal networks are composed of neuron models
coupled using different topologies, for instance, random,5 small-
world,6 and scale-free.7,8

Scale-free networks are characterized by a fraction of nodes
with a degree that follows a power law.9 Barabási and Albert10

demonstrated that a scale-free network can be generated by the addi-
tion of new nodes that are attached preferentially to well-connected
nodes. Eguíluz et al.11 reported brain functional networks, in which
the probability of finding a link as a function of distance and dis-
tribution of functional connections are both scale-free. Neuronal
networks with scale-free topology can mimic much different neu-
ronal behavior observed in the brain. Lameu et al.12 studied the syn-
chronization of neuronal bursting activities in a clustered scale-free
network.

Synchronization plays a crucial role in the brain during dif-
ferent tasks.13 Neurons spiking in synchrony were identified in the
neocortex during sleep and wakefulness.14 Knoblich et al.15 found
synchronous behavior in a mouse primary visual cortex. However,
neuronal synchrony in the brain can be associated with disorders.16

Lehnertz et al.17 reported synchronization in human epileptic brain
networks from analyses of electromagnetic signals. Parkinson’s dis-
ease has been related to synchronous oscillatory dynamics, par-
ticularly, in the beta frequency band.18 Due to this fact, studies
about methods to suppress synchronization are important to control
undesired rhythms that emerge in brain diseases.

In this work, we construct a network composed of coupled
subnetworks with scale-free topology. The subnetworks are con-
nected according to the structural network of the human brain
reported by Lo et al.19 They used diffusion tensor image tractog-
raphy to build human brain networks. In our network, the local
neuronal dynamic is given by the model introduced by Rulkov.20 The
Rulkov neuron is a two-dimensional map that mimics some neu-
ronal behaviors, such as tonic spiking, resting, and chaotic bursts.
Coupled Rulkov neurons have been utilized to carry out research
about synchronization21 and brain plasticity.22 Recently, Reis et al.23

showed the existence of bursting synchronization in neuronal
assemblies of scale-free networks based on a human connectivity
matrix.19

We focus on the suppression of neuronal burst synchronous
behavior in clustered scale-free networks by means of external per-
turbation. Also so, we propose to use a signal as a function of
the mean-field of membrane potential variance to suppress neu-
ronal synchronization. Our results show that synchronization can
be suppressed by an external signal that acts like a selector switch.

This article is organized as follows. We introduce the network
construction in Sec. II. In Secs. III and IV, we show the neuronal
network dynamic and the methods used to calculate neuronal syn-
chronization and suppression, respectively. Sections V and VI bring
the results and a brief discussion. We draw our conclusions in the
last section.

II. NETWORK CONSTRUCTION

The cortex is the outer layer of the brain and is divided into
two hemispheres. It is involved in many different functions, such

FIG. 1. Representation of the connectivity matrix for healthy humans, divided
into 78 cortical regions. Weights are assigned as follow: 0 (white), 1 (blue), 2
(magenta), and 3 (yellow). These weights indicate the lack of connection (or not
identified), sparse, intermediate, and dense connections, respectively.

as movement control24 and learning.25 The areas in the cortex are
organized into an architecture of neuronal networks.26

Given the neuronal architecture connections, we build a net-
work with coupled subnetworks, in which the subnetworks have
scale-free properties and are coupled using a weighted connection
matrix related to the cortical brain structure obtained by Lo et al.19

The structural connection matrix with 78 elements is illustrated in
Fig. 1, where the weights are separated into 0 for no connections
(white), 1 for low density of connections (blue), 2 for intermediate
density of connections (magenta), and 3 for high density of con-
nections (yellow). In our model of coupled scale-free networks, we
consider 50, 100, and 150 random connections for the weights 1, 2,
and 3, respectively.

For a better understanding of the coupled subnetwork model,
we represent a simplified structure of this construction in Fig. 2. On
the left side of Fig. 2, each circumference represents a cortical region
(subnetwork) coupled through chemical connections (dashed green
arrows). As the weighted matrix was divided into 78 cortical regions,
we created the same number of subnetworks connected to each
other, according to the weight of the matrix. We built the corti-
cal regions as subnetworks composed of 200 neurons in a scale-free
network topology,23 as illustrated on the right side of Fig. 2.

Just as corticocortical connections, all connections made within
each subnetwork (blue or gray arrows) are chemical. The growth
method for scale-free networks used is in accordance with the
Barabási–Albert algorithm.10,27 The obtained network topology
presents the main hub (red circle highlighted in Fig. 2), that is, it
is the vertex that presents the majority of connections, and one or
more secondary hubs (magenta circle), whose number of links is
much larger than in most vertices and less than in the main hub.

Each new neuron added to the network is linked twice: once as
a pre-synaptic and then as a post-synaptic. So that, every vertex of
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FIG. 2. Simplified scheme of the network used in numerical simulations. On the left side, we represent a network with six subnetworks (larger circumferences), although,
for the study, 78 cortical regions were considered. Chemical connections (arrows dashed in green) were established between the subnetworks according to the adjacency
matrix, with 50% of the connections in each direction. On the right side, we illustrate the cortical regions built with a scale-free network topology. Some connections have been
omitted for greater legibility of the figure. We highlight the hub (red circle), the secondary hub (magenta circle), and the connections with other subnetworks (green dashed
lines). For both schemes, each vertex represents a neuron, and all adopted connections are chemical, that is, directed (arrows in blue or gray).

the subnetworks has at least one connection in which it sends a sig-
nal and another in which it receives, respectively. Such construction
prevents the existence of neurons with only outgoing or, in addi-
tion, incoming connections, which would act semi-isolated without
receiving or sending signals to the network.

The chemical links are one-way,28 so we established the cou-
pling between the pairs of cortical regions by drawing two neurons,
one in each region of the pair. The incoming and outcoming con-
nections are defined are defined with a 50% probability in each
direction. During this process, the choice of neurons is equiprobable
and relevant if there is no repetition of links in both directions.23

Scale-free networks feature the power-law degree distribution
P(k) ∝ k−γ , with the exponent lying between 2 ≤ γ ≤ 3. For pur-
poses of simplicity, in Fig. 3, we show in log × log scale the distri-
bution obtained in only one of the subnetworks generated for the
study. The power-law exponent was obtained by fitting the degree
distribution (γ = 2.17), which is included in the accepted range for
a scale-free network. For all subnetworks generated in this study,
γ ≈ 2.20. This exponent value is associated with star-like scale-free
network topology, with a densely connected vertex (hub) and a few
other vertices that can connect to each other.29,30

Once the internal and corticocortical connections are estab-
lished, we obtain the adjacency matrix A, which consists of a block
matrix with 78 × 78 sub-matrices A(u,v) of order 200 × 200. We
identified the elements of A by the notation a(u,v)(i,j), where the
indices u and v locate the sub-matrix of weights of the connections
between the cortical regions, where i and j are the vertices of the u
and v subnetworks, respectively.

Due to the unique direction of the links, the sub-matrix is not
symmetrical, with the presynaptic neuron addressed in the columns
and the postsynaptic neuron in the lines, that is, a(u,v)(i,j) is the con-
nection weight whose signal originated from the jth neuron of the
v subnetwork and destined to the ith of the u subnetwork. The
sub-matrix A(u,u) of the main diagonal corresponds to the internal

links of cortical regions in scale-free topology with unit weight. The
other elements A(u,v 6=u), outside the main diagonal, establish connec-
tions between the cortical regions. In these, the weight is determined
according to the human adjacency matrix.

We can say that, in general, the adjacency matrix does not
depend on the mathematical model of the neuron. In Sec. III, we
describe the model adopted in this study for neuronal dynamics and
the mathematical formulation of coupling between neurons.

III. NEURONAL NETWORK DYNAMICS

The neuronal dynamic is characterized by the occurrence
of spikes and bursts that are related to communication between

FIG. 3. Probability P(k) for each degree k in a scale-free network with 200
vertices generated by the Barabási–Albert algorithm.10 Considering a logarithmic
scale, the power-law P(k) ∝ k−γ is evident, being γ = 2.17.
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neurons. In general, each neuron has a different neural spike rate.
However, when neural spikes are combined, burst synchronization
occurs causing neural firing at the same time in most neurons.

Some studies have reported neural synchronization as a cause
of Parkinson’s disease, essential tremors, and epilepsy.31–33 There-
fore, this research aims to find a means for suppressing neuronal
synchronization using a control technique resulting from the appli-
cation of perturbation as a function of the mean-field that acts on
neurons.

Given this proposal, we will use the two-dimensional Rulkov’s
map to mimic neuronal dynamics. This map describes a phe-
nomenological model that shows the characteristic bursts and has
been widely used in recent studies about synchronization in neural
networks. The Rulkov’s map is written in terms of two variables: a
fast (x) and a slow (y), one parameter that gives the nonlinearity to
the map (α) and another that can simulate an external current (σ ).
The setting of the different values of these parameters gives different
firing patterns.20

Our network structure is formed by coupling neurons accord-
ing to the matrix A using the factor ε C(u,i)

n , resulting in the following
equations:

x(u,i)
n+1 =

α(u,i)

1 +

[

x(u,i)
n

]2
+ y(u,i)

n − ε C(u,i)
n , (1)

y(u,i)
n+1 = y(u,i)

n − σ
[

x(u,i)
n − ρ

]

. (2)

The upper indexes u and i identify the cortical region and the neu-
ron, respectively. We define the typical parameters for the Rulkov’s
map σ = 10−3, ρ = −1, and α ∈ [4.1, 4.3). The choice of these val-
ues contemplates the range for which the Rulkov’s map mimics the
neuronal burst dynamics.20,34

As for the connections, ε is the chemical coupling parameter
with ε = 0 being the case where neurons are not coupled. C(u,i)

n car-
ries information from synapses, specifically accumulating all signals
received by the ith neuron from the uth cortical region; this includes
the internal and external connections. Thus,

C
(u,i)
n =

1

K(u,i)

N
∑

v=1

M
∑

j=1

a(u,v)(i,j)H
(

x(v,j)
n − θ

) [

x(u,i)
n − V(u,v)(i,j)

]

, (3)

where the sums are given over all connections destined to the con-
sidered neuron, with the number of subnetworks being N = 78 with
M = 200 maps in each. The term a(u,v)(i,j) is the weight matrix that
addresses the connections between different cortical regions. Here,
K(u,i) is the number of connections directed to the neuron (u, i), and
H(·) is the Heaviside function, defined by

H(q) :=

{

0, for q < 0,

1, for q ≥ 0.
(4)

So, if a(u,v)(i,j) 6= 0 and x
(v,j)
n > θ , there is signal transmission from

element (v, j) to (u, i). We adopt the threshold potential θ = −1. The
chemical synapses may be excitatory or inhibitory, distributed in
75% (excitatory) and 25% (inhibitory).35,36 Such distinction is given

FIG. 4. Parts from the time series of the variable x
(1,1)
n (black line) and mean-field

X
(1)
n (red line) from the same subnetwork, ε = 0.1 in both frames. (a) Synchro-

nized case obtained in the absence of perturbation, oscillations in the mean-field
follow the bursts. The dashed vertical lines mark the nk ’s start times for bursts.
(b) Non-synchronized case with β = 0.028 and τ = 1 in Eq. (7); the mean-field
does not follow the bursts dynamics.

through the potential V(u,v)(i,j), with the condition

V(u,v)(i,j) =

{

1.0, (excitatory),

−0.5, (inhibitory).
(5)

Recent studies employ a similar formulation for both the coupling
term23,37,38 and the Rulkov neuron, thus being a good basis for study-
ing the dynamic behavior of the system. It is important to mention
that we consider non-identical neurons, with the diversity being
promoted through a random choice of α(u,i) values in the referred
interval.

The network synchronization takes place according to param-
eter ε, a characteristic analyzed in Sec. IV A. Assuming ε = 0.10,
we observe synchronized neuronal activity and, consequently, the
mean-field

X(u)
n =

1

M

M
∑

i=1

x(u,i)
n , (6)

calculated in each cortical region, it presents oscillations following
the bursts. In Fig. 4(a), we superimpose the time series of x(1,1)

n (black
line) and X(1)

n (red line), where we can see the biggest variations
in the mean-field of the subnetwork, following the rhythm of the
bursts, which start at the times labeled nk’s.

Among the methods to reduce or suppress synchronization
in neuronal networks, one that has been widely used is suppres-
sion by a time-delayed feedback39–41.Contrary to the usual technique,
our approach is to use a perturbation that acts in the mean-field of
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the neuronal membrane potential suppressing synchronization only
when necessary. The perturbation is chosen at two levels: 0 or β ,
which is switched by the average of the mean-field in each subnet-
work. When the average of the mean-field passes a threshold (θ), the
perturbation is activated. This perturbation will be added to Eq. (1)
in the form

x(u,i)
n+1 7→ x(u,i)

n+1 − β H
(

X(u)
n,τ − θ

)

. (7)

The presence of synchronization in the subnetwork causes a regu-
lar oscillation in its mean-field. Thus, inserting a negative term in
Eq. (7), after the mean-field exceeds a given threshold, prevents this
oscillatory behavior.

By adopting the average of the mean-fields calculated in the
last iterations, we aim to reduce the effects of the abrupt oscillations
observed during the bursts. In Eq. (7), β is the magnitude of the
perturbation, τ is the accumulation time for the calculation of the
mean-field measured over the previous times of the time series, and

X(u)
n,τ =

1

τ

τ−1
∑

k=0

1

M

M
∑

i=1

x(u,i)
n−k =

1

τ

τ−1
∑

k=0

X(u)

n−k (8)

is the current time average of the mean-field of the uth corti-

cal region, note that X(u)
n,τ=1 = X(u)

n . The mean-field value plays an
important role in the evaluation of neuronal network synchroniza-
tion. If the network is synchronized, the mean-field is characterized
by a large amplitude of oscillation and high variance [Fig. 4(a)]. If the
network is not synchronized, the mean-field will have low amplitude
and low variance.

The time series under the effect of perturbation can be seen
in Fig. 4(b), with β = 0.028 and τ = 1 in Eq. (7). Similar to the
one shown in Figs. 4(a), in (b), the curves of subnetworks’ mean-
field (red line) and the neuron fast variable (black line), both from
the region 1, are superimposed. The included perturbation leads
to the non-synchronization of neuronal activity, which can be seen
through the mean-field, since the variation in its amplitude does not
follow the bursts dynamics, as shown in Fig. 4(b).

In Sec. IV B, we analyzed the suppression of synchronization
according to parameters β and τ . When X(u)

n,τ ≥ θ in Eq. (7), the
perturbation is applied to the subnetwork; that is, when the aver-
age given in Eq. (8) reaches the burst threshold, all neurons in the
cortical region receive the same pulse of intensity −β . In Eq. (8),
the average of the mean-field in the recent τ iterations of the sys-
tem aims to circumvent the effects of oscillations around the burst
threshold.

IV. METHODS

A. Neuronal burst synchronization

To measure the phase synchronization of the network, we use
the Kuramoto order parameter.1,42,43 This indicator has been used
successfully in recent studies, allowing to analyze phase synchro-
nization between neuronal patterns such as spikes and bursts. In
our model, we calculate the Kuramoto order parameters for the (i)
network formed by the corticocortical connections and within the
subnetworks (global network) and (ii) only for the subnetworks. For
the first case, the global network, we define the Kuramoto order

parameter as

R̄ :=
1

(nb − na + 1)NM

nb
∑

n=na

∣

∣

∣

∣

∣

N
∑

u=1

M
∑

i=1

eiϕ
(u,i)
n

∣

∣

∣

∣

∣

, (9)

where the sum occurs over the M = 200 neurons of the N = 78 cor-
tical regions. Times na < nb delimit the closed evaluation interval,
being (nb − na + 1) the total iterations in that interval. The phase
ϕ(u,i)

n associated to ith neuron of uth cortical region is given by

ϕ(u,i)
n := 2kπ + 2π

n − n(u,i)
k

n(u,i)
k+1 − n(u,i)

k

, (10)

with n(u,i)
k ≤ n < n(u,i)

k+1 , where n(u,i)
k is the beginning of the kth burst

[see Fig. 4(a)].
In addition to the evaluation of global network synchroniza-

tion, the time average of the order parameter for the uth subnetwork
is obtained from the following equation:

R(u) =
1

(nb − na + 1)M

nb
∑

n=na

∣

∣

∣

∣

∣

M
∑

i=1

eiϕ
(u,i)
n

∣

∣

∣

∣

∣

. (11)

Here, Eq. (11) represents the average Kuramoto order parame-
ter calculated for each subnetwork. In this way, the average order
parameter of the subnetwork can be calculated using

〈R(u)〉 =
1

N

N
∑

u=1

R(u). (12)

Note that Eqs. (9) and (12) differ for allowing us to evaluate, sepa-
rately, the synchronization of the global network and subnetworks,
respectively. This evaluation is important because it shows us how
synchronization occurs between different cortical regions and in
different subnetworks.

The order parameter belongs to the interval 0 ≤ R̄ ≤ 1.42,43

When R̄ = 0, neurons are non-synchronized, and when R̄ = 1, they
are said to be synchronized in phase. In general, is assumed that R̄
values between 0 and 1 correspond to partial phase synchronization.

B. Suppression of synchronization by a function of

the mean-field

Previous studies have shown success in suppressing synchro-
nization in neural networks using a feedback technique through
the mean-field.23,37,44 We also investigate the effects of perturbation
as a function of the mean-field, with the intention of suppressing
synchronization. For that, we insert transformation 7 in Eq. (1),
so that amplitude perturbation, −β , affects all neurons in the per-
turbed subnetwork since the average of the mean-fields in the last τ

iterations exceeds θ .
The proposal presented in Ref. 23 uses the time-delayed feed-

back method as a measure of suppression through the measurement
of the mean-field, with and without feedback perturbation, adjust-
ing the intensity of the feedback control to a percentage of cortical
regions. Unlike the time-delayed feedback technique, we highlight
in our research, the main goal is the application of perturbation that
has an effect directly on the mean-field of the network, affecting
all neurons and not just a percentage of them. This perturbation
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FIG. 5. Kuramoto’s order parameter as a function of ε, after discarding 104 tran-
sient iteration and evaluating synchronization during 104 steps. We present the
averages over 10 evolutions of the system from different initial conditions. The

abscissa was discretized into 21 equidistant values in the range ε ∈ [0, 0.2]. R̄
(blue dots) was calculated for the global network and R(u) (red line) is the average

Kuramoto order parameter in the subnetworks, where 〈R(u)〉 > R̄ indicates the
subnetworks that are more internally synchronized than between different cortical
regions.

acts in a subnetwork as a selector switch, adding or not, a pertur-
bation depending on the value assumed by the mean-field of the
fast variable of the Rulkov map, which is responsible for describing
the neuron membrane potential. As we show later, the suppression
method proposed in this work leads to values of S � 1 according
to the relationship between the amplitude of perturbation β and
coupling parameter ε.

The suppression of synchronization will be evaluated with
respect to the mean-field given by Eq. (13). Several studies demon-
strate the effectiveness of this type of control.23,37,41,45 In this way, we
can write

ζn(ε, β , τ) =
1

NM

N
∑

u=1

M
∑

i=1

x(u,i)
n (ε, β , τ), (13)

with ε being the network coupling parameter, β being the amplitude
of perturbation, and τ being the accumulation time for the calcula-
tion of the mean-field in Eq. (8), measured over the previous times
of the time series. We explicit the parameter set (ε, β , τ) in order to
map suppression according to them, as shown in Fig. 6.

As mentioned in Sec. IV A, the mean-field value plays an
important role in the evaluation of neuronal network synchroniza-
tion that can be seen by an analysis of mean-field variance. In this
way, we will measure the suppression of the network through the
mean-field variance ratio ζn(ε, β , τ) with and without the applica-
tion of the control,41

S(ε, β , τ) =

√

Var [ζn(ε, β=0, τ)]

Var [ζn(ε, β , τ)]
, (14)

where Var[ζn(ε, β , τ)] and Var[ζn(ε, β=0, τ)] are the mean-field
variance with and without perturbation, respectively. The success

of the suppression method is achieved when S � 1. The higher
the value of S, better the effect of suppression. Values of S < 1
imply enhanced synchronization in the disturbed region, that is, the
opposite effect that we are looking for.

We highlight as an advantage of the method proposed here, in
relation to others found in the literature, the possibility of imple-
menting, in the real world, an electronic device that generates pulses
of amplitude β as a function of average neuronal activity, which
computed along of τ iterations within each cortical region. It is
worth mentioning that high suppression is obtained with the appli-
cation of the method, which significantly exceeds that obtained in
previous works with similar networks.

V. RESULTS

A. Bursting synchronization

The information about network synchronization is presented
in Fig. 5. For these results, we use 104 iterations after a 104 transient
and a set of 10 initial conditions. It is important to say that for each
new set of initial conditions, a new scale-free network is generated,
respecting the same growth process and with the same number of
neurons in the networks previously presented.

The average Kuramoto order parameter R̄ for all networks is
represented by the blue dotted curve in Fig. 5. Initially, the network
has low synchronization for small values of ε. The synchronization
value increases according to the intensity of chemical coupling. It
is also possible to observe that there is an abrupt growth in syn-
chronization for ε = 0.02, reaching its maximum value close to
R̄ ≈ 0.9.

The average Kuramoto order parameter in the 78 cortical
regions, 〈R(u)〉, is represented in Fig. 5 by the solid red line.
We observed that the subnetworks present a greater synchroniza-
tion than the composition of all networks with 〈R(u)〉 ≈ 0.99. This
includes the onset of synchronization, which, on average, presents
higher values with ε very close to zero.

An indication that the subnetworks are internally more con-
nected than the different cortical regions is the fact that the adjacent
matrix of free-scale networks has unit weights, connecting all neu-
rons within the same region; in contrast, the number of connections
established between different cortical regions is given by the weight
of the human connectivity matrix; for this reason, the number of
internal connections (within the cortical regions) is greater than the
external connections.

The maximum and minimum values of synchronization in
the cortical regions can be seen by the pink region in Fig. 5. The
minimum synchronization value is around 〈R(u)〉 ≈ 0.8, while the
maximum value is approximately 〈R(u)〉 ≈ 1.0.

B. Suppression of synchronization

The results for suppression of synchronization according to
parameters β and τ [Eq. (14)] are presented in Fig. 6. On the
horizontal axis of the three presented frames, β ∈ [0, 0.04] and is
discretized in steps of 0.002. We use combinations of these parame-
ters for ε ∈ [0.05, 0.20], which is the interval where synchronization
is observed in Fig. 5. With ε = 0.10, there is no suppression for
β ≤ 0.01 according to Figs. 6(a) and 6(b). For values of τ = 1, . . . , 5,
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FIG. 6. Suppression of synchronization as a function of the magnitude of perturbation β for different τ . We drop a 104 transient, calculate S over the next 104 steps, and
present the averages over 10 evolutions of the system from different initial conditions. In (a), we illustrate S as a function of β with τ between 1 and 5 and ε = 0.1. We
observe the onset of suppression from β = 0.012, and the curves for different values of τ are closer to β = 0.028. (b) and (c) are the parameter space with S represented
in color, according to label. In (b), ε = 0.10 and τ are discretized in steps of 5 units, and in (c), τ = 5 and ε discretized in steps of 0.01. The blue boxes highlight equivalent
regions in both figures.

the S curves as a function of β are similar, with the smallest distance
between them observed in β = 0.028, from that point there is an
inversion in the suppression values, which is now slightly higher for
the lowest values of τ , see Fig. 6(a).

Starting from τ = 50, the condition S � 1 is not obtained, as
shown in Fig. 6(b), reaching modest values for suppression between
1 < S < 10 . In this case, synchronization is not significantly sup-
pressed when compared to other cases analyzed. In Fig. 6(c), we
set τ = 5 and calculate S for pairs (β , ε). We observed that the
suppression value also depends on the values adopted for chemical
coupling parameter ε since, with higher values, we obtain higher val-
ues for suppression. The blue boxes highlight the equivalent regions
in Figs. 6(b) and 6(c).

Another interesting observation is the fact that some initial
conditions are shown to be more robust to perturbation, keeping
neuronal activity synchronized. In Fig. 7, we show R̄ for β = 0.028
and τ = 1. The points R̄− and R̄+ are the averages of the order
parameter for cases higher or lower than 0.5, respectively. The
occurrence rate of order parameter greater than 0.5 is indicated by
yellow triangles, and it was observed only for ε ≥ 0.17, from that
value, the percentage of initial conditions that lead to robust states
to the perturbation grows fast (triangles in yellow in Fig. 7), reaching
21% in ε = 0.20. It is important to say that we obtain these results
considering a set of 100 distinct initial conditions.

To validate the effectiveness of the presented method, we eval-
uate what happens with synchronization, and with the Kuramoto
average order parameter, in certain regions that we will call win-
dows. The choice of windows’ evaluation allows a better visual-
ization than during the evolution of the system. The windows are
observed within 104 iterations (considering the same value for the

transient) for 5 × 104 steps. We evaluated the system evolution with
(ε, β , τ) = (0.2, 0.027, 5) border region between S ≈ 1 and S � 1 in
Fig. 6(c). From the results shown in Fig. 7, we infer that the success
of the suppression method may depend on the initial conditions for
certain pairs of parameters (ε, β). In Fig. 8, we show two different
series generated changing only the initial conditions.

FIG. 7. Kuramoto’s average order parameter obtained with β = 0.028 and
τ = 1. The averages are calculated for 100 different initial conditions. We high-

lighted R̄+ for the order parameter higher than 0.5 and R̄− for the opposite case.

We indicate p+ as the occurrence rate of R̄+. The range of values observed in
each case is represented in colored regions.
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FIG. 8. SuppressionS (red line) and Kuramoto average order parameter R̄ (green
line) illustrated in windows of 104 iterations. We can observe that when the pro-

posed suppression method is successful, S reaches high values while R̄ reaches

low values (a). When the method stops working, S drops abruptly and R̄ grows
rapidly until it reaches values close to the unit (b).

In Fig. 8(a), we show a case for which synchronization is
suppressed by more than 5 times the number of iterations evalu-
ated in the frames in Fig. 6, that is, by 5 × 104 iterations in addition
to 104 evaluated previously. This can be seen by the high value of
S, with maximum values reaching approximately S ≈ 43, with small
fluctuations. On the other hand, in Fig. 8(b), we find a case in which
the suppression method stops working and leads to a synchroniza-
tion of the network after a certain number of iterations. As we can
see, initially, the suppression values are high (as opposed to the syn-
chronization values), and after 36 × 103 iterations, the situation is
reversed, causing S to fall to values close to 1 and R̄ increase, reach-
ing values above 0.8. This indicates that, for the case of Fig. 8(b), the
perturbation method by the addition of a −β factor works well to
suppress the synchronization of the network for a certain number of
iterations. After that, the perturbation ceases to have the effect and
the network starts to synchronize, causing an increase in the order
parameter until it stabilizes. Considering that we calculate R̄ in the
window of the last 104 iterations, the ramp-up seen in Fig. 8(b) is
related to an abrupt synchronization that occurred after 36 × 103

iterations; this sudden synchronization is clear on the curve for S,
which falls rapidly from S = 40 to approximately S = 1.

In order to extend the suppression of synchronization to longer
times, we modified the perturbation as a function of variance of x(u,i)

n

in each subnetwork. Given that we observed an abrupt synchroniza-
tion for pairs (ε, β) in the border region between S � 1 and S ≈ 1
in Fig. 6(c), we propose to increase the amplitude of perturbation by
taking the pair (ε, β) to regions where the synchronization was not

observed in the evaluated time interval, and now, we will have the
perturbation applied at three levels: 0, β < 0.04, or β = 0.04. Being

β 7→ 0.04, if Var
(

x(u,i)
n

)

i
< 1. (15)

That is, we use β = 0.04 for networks where the variance of the
fast variable is less than the unit in the previous iteration, keeping
the value of the perturbation parameter unchanged when Var(x(u,i)

n )i

≥ 1. Again, the perturbation is activated when the mean-field
exceeds θ . The selection of β level less than 0.04 or equal to 0.04
depends on the variance of the variable x(u,i)

n in the previous iteration
in each subnetwork.

We performed tests with modified perturbation for (ε, β , τ)

= (0.2, 0.027, 5) starting from 100 different initial conditions, dis-
carding the first 104 iterations and calculating S and R̄ in windows of
104 steps over 5 × 104 iterations. For all cases, we obtained S � 1
and, equivalently, R̄ ≈ 0, with the proposed modification being a
successful alternative to extend the suppression of synchronization
to longer times. We also computed the number of times that the per-
turbation was applied to each subnetwork during 100 repetitions,
being applied on average to 51% of the iterations with 22% of these
triggered the change β = 0.04. In Fig. 9, we compare the cases with-
out change in perturbation [Fig. 9(a)] with the result of the change
in β [Fig. 9(b)], both started with the same initial condition. The
upper frame is an extension of that shown in Fig. 8(b), where the net-
work abruptly synchronizes after approximately 36 × 103 iterations
after the transient. In the bottom frame, with the modified pertur-
bation acting, the network does not present synchronization in the

FIG. 9. Comparison between cases without (a) and with (b) perturbation β , both
evolving from the same initial condition. Suppression S (red line) and Kuramoto

average order parameter R̄ (green line) are illustrated in windows of 104 iterations.

We note that the change in β leads to higher values of S, with R̄ very close to 0,
while keeping the network out of synchronization.
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evaluated time interval, as well as higher values of S and R̄ are very
close to 0.

VI. DISCUSSIONS

The evaluation of synchronization revealed that when the net-
work is composed as a model with internal and external connections,
there is, initially, very low synchronization resulting in values of R̄
close to zero. From a threshold of network chemical coupling, there
is a significant change in the dynamics of the system: the network
synchronizes itself abruptly, quickly reaching values greater than
R̄ = 0.6, which indicates high phase synchronization. The same phe-
nomenon was observed when evaluating synchronization for each
subnetwork. All of them, after a chemical coupling threshold, exhibit
the same behavior observed in the global network (composed of
internal + external connections).

An interesting situation was observed when comparing these
two measures, we found that the synchronization of subnetworks
is greater than that of the global network. This is because the sub-
networks are internally more connected than the cortical regions
(external connections made by the human connectivity matrix);
even though the connections’ matrix of Barabási–Albert networks
has unit weights, these connections are established for all neurons
within the network.

The synchronization can also be evaluated through the mean-
field of the network since for a synchronized network, the mean-
field follows the bursts with large amplitudes. Since we aim to
suppress (or reduce) burst synchronization, we add a perturbation
−β that is a function of the mean-field of the network’s time series.
This term acts like a selector switch; that is, it receives the values −β

or 0 if synchronization exceeds a threshold. As result, we obtained
significant values for suppression, which is measured by the ratio of
the mean-field with and without perturbation, which showed that
the chosen control method was well employed for several values of
τ considered.

Through a parameter space of (ε, β , τ), we saw that when we
consider ε to be fixed, the suppression reaches high values of S > 50
for certain combinations of β and τ , reaching values lower than
S < 10, for longer times τ > 40. When we evaluate the suppres-
sion factor with fixed τ = 5 (where we had the highest suppression
values), we see a large of the plan (ε, β , τ) where S > 10, which indi-
cates a good use of the implemented method. We also found that
some initial conditions seem to be more robust to the perturbation
factor, keeping the system synchronized.

We also evaluate the Kuramoto order parameter and suppres-
sion in windows of 104 steps and show that, in fact, different initial
conditions lead to different cases for S and R̄. In the same way
that the evaluation of synchronization was considered, the suppres-
sion also falls abruptly and, on the other hand, synchronization
grows in the same way, which characterizes two situations in which
we can validate the success of the adopted method. We also show
that a slight change in the perturbation in each subnetwork (x(u,i)

n )

extends, in time, the suppression of synchronization for cases where
an abrupt synchronization was observed, thus extending the success
of the proposed method for certain regions of ε × β plan.

Although there is a similarity to the work already published in
Ref. 23, when we evaluate the Kuramoto average order parameter

to measure synchronization (as this is a characteristic of the net-
work model studied according to the value of parameters adopted
in this research), the results achieved for the suppression of syn-
chronization are quite different. As we could see, our results show
that the suppression of synchronization reaches values S � 1 for
the majority of the presented cases, in contrast with Ref. 23, where-
with the control technique of the time-delayed feedback showed
some regions of parameter space where the method was successful
but reaching suppression values close to S ≈ 3.30. It is important to
make clear that this does not invalidate the use of the time-delayed
feedback control method because, as it is known, this method is
well applied for other systems. We also emphasize that the method
to suppress synchronization proposed in this research allows us
to evaluate some specific windows where there is high synchro-
nization and to “turn on” the control to suppress synchronization
in the evaluated region, which contrasts with the result obtained
in the Ref. 23 in which by increasing the percentage of cortical
regions in which the time-delayed feedback was applied, there was
an increase in synchronization. Even when considering the topol-
ogy of the Barabási–Albert networks, when the feedback control was
applied in the hubs, there was no significant effect on suppression.
And yet, when considering 100% of the network, the results for the
suppression factor were always less than those achieved by applying
perturbation in the mean-field.

VII. CONCLUSIONS

In this article, we analyzed the burst phase synchronization in
a neuronal network whose connection architecture is set in levels by
internal links that connect neurons within scale-free subnetworks
and the connections performed between distinct cortical regions
(corticocortical) through a human connectivity matrix. We seek to
suppress the synchronization of neuronal bursts, given the neu-
rological interest in this issue. Our model uses a method based
on feedback with the increment of a selector switch that applies
the control only for the necessary time to suppress the network
synchronization.

Our results showed the advantage of using the feedback method
by including the selector switch instead of the usual time-delayed
feedback method. The suppression of synchronization was achieved,
reaching values of S � 1 for the majority combinations of the
considered parameters. Also, we show that after the perturbation
stops, we can keep low network synchronization after a long time,
making this method a good tool to reduce or almost completely sup-
press synchronization in systems of coupled networks. Although our
model considers an idealized situation, applying the perturbation in
the whole network is relevant to allow us to understand how this
method can help to improve this study for different sets and network
constructions.
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