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Abstract

The influence of external harmonic forcing in nonlinear chaotic systems is a subject of active investigation, chiefly in low-
dimensional dynamical systems, but fewer results are available for high-dimensional systems like plasmas. In this paper,
we consider a theoretical model for a weakly ionized plasma, in which the following effects are taken into account: (i)
ambipolar diffusion; (ii) the inflow of plasma particles through ionization processes; (iii) the outflow of plasma particles due
to recombination. The spatiotemporal patterns of the resulting nonlinear system, as revealed by numerical integration of the
reaction-diffusion partial differential equations, can be partially or totally suppressed through the action of acoustic waves
forming stationary patterns in the plasma container. These suppression effects are quantitatively investigated by a number of
numerical diagnostics like the average Lyapunov exponents and spatial correlation function. Suppression of spatiotemporal
chaos can be achieved through adequate choices of amplitude and frequency of the applied waves.

Keywords Nonlinear reaction-diffusion equations - Weakly ionized plasmas - Fisher-KPP equation - Spatiotemporal chaos

1 Introduction

Chaos and turbulence are often seen as a great challenge
in many situations of plasma physics interest [1, 2]. In
fusion plasma physics, the existence of chaotic behavior
often leads to turbulence [3, 4]. The combination of
nonlinearity with other instability phenomena is a severe
problem in the magnetic confinement of plasmas in fusion
devices [2]. Generally, one has to distinguish between
temporal low-dimensional chaos, related to oscillations, and
spatiotemporal chaos, related to waves, also classified as
weakly developed turbulence [5].

In the framework of nonlinear dynamical systems, sev-
eral strategies have been developed to obtain active control
over complex temporal or spatiotemporal behavior [5, 6].
Recent applications of control theory have been developed
to control chaotic behavior [7, 8]. For example, small per-
turbations have been used to control chaotic oscillations of
the current and plasma potential in plasma diodes [9].
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Successful approaches in controlling chaos in low-
dimensional systems have motivated the search of tech-
niques for taming fully developed spatiotemporal chaos. As
an example, continuous global control can be used to stabi-
lize plasma turbulence due to weakly developed ionization
waves [9, 10].

A system that presents a rich dynamics with spatiotem-
poral chaos is the reaction-diffusion equation in weakly
ionized plasmas [11]. Depending on the parameter values,
such systems can display spatiotemporal chaos. Particularly
in technological plasmas, it is of great interest to under-
stand the physics of control or suppression of turbulence
in this system [12]. The reaction-diffusion model used in
this paper is characterized by the simultaneous presence of
a diffusion and a nonlinear reaction term, where the diffu-
sion term leads to configurations where density gradients
are smoothed out [13].

Reaction processes, on the other hand, are nonlinear inte-
raction processes like ionization and recombination, leading
to positive and negative source terms. The competition of
reaction and diffusion can lead to either simple, uniform,
equilibrium configuration as well a complicated pattern
formation, including the possibility of spatiotemporal chaos
[14, 15]. The transition to spatiotemporal chaos in a weakly
ionized magnetoplasma was experimentally investigated in
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a cylindrical RF magnetron, showing a substantial reduction
of spatiotemporal coherence with large RF power [16].

One of the various spatiotemporal patterns that are pos-
sible in nonlinear reaction-diffusion systems is the creation
of spatially localized regions of chaotic behavior [17, 18].
In a recent work, it has been shown that, depending on the
parameters of the reaction and diffusion, the plasma can
present regimes where it has turbulent regions mixed with
periodic regions, to regimes where the plasma has fully
developed turbulence [19]. A discrete version of this model,
yielding a coupled map lattice, has also been investigated
leading to qualitatively similar behavior [20]. The goal of
the present work is to understand the spatiotemporal dynam-
ics that occurs when we apply an external perturbation in
the form of a standing wave.

In the present work, we show that the injection of external
electrostatic waves, forming stationary wave patterns in
the plasma container, can exhibit different effects, being
able to suppress or mitigate the space-time chaos, as to
trigger this effect. A tool used to quantify the influence
of the disturbance on the turbulent plasma regime is
called the average Lyapunov exponent, developed by
Shibata [21, 22] for the temporal dynamics of a spatially
extended system. Using the spatial correlation function, we
characterize the spatial profiles with fixed time for different
amplitudes of the applied external wave [23]. The spatial
correlation function is very useful in the characterization of
spatiotemporal chaos in a spatially extended system [24].

The rest of this article is organized as follows: in
Section 2, we derive the reaction-diffusion equation with
a sinusoidal external perturbation that describes a bounded
one-dimensional weakly ionized plasma with applied den-
sity waves. In this section, we also present spatiotempo-
ral patterns obtained through numerical integration of the
equation for nonlinear reaction-diffusion perturbation, for
limited parameter ranges of interest in plasma physics.
Section 3 deals with the average Lyapunov exponents used
to characterize the chaoticity of the spatiotemporal profiles
and how they are affected by the external wave perturbation.
The spatial correlation function for different spatiotemporal
profiles is dealt with in Section 4. The last section contains
our conclusions.

2 Reaction-Diffusion with Stationary Wave
Perturbation

In this section, we outline the theoretical model used
to derive the reaction-diffusion equation which describes
a non-magnetized weakly ionized plasma. Assuming
the existence of ambipolar diffusion, the nonlinear

reaction-diffusion equation for a weakly ionized plasma can
be written in the form

on(r,t)

— 2 —
a7 DVon(r,t) = Q(r, 1), (1)

where n = n, is the electron density of the plasma (equal
to the ion density n; due to quasi-neutrality), D > 0 is a
constant diffusion coefficient, and Q(r, ¢) is a source term.

The source term has both positive and negative contribu-
tions, representing production and loss terms, respectively
[25]. The positive source term is represented by ionization
[11] which is proportional to the product between electron
density n, = n and neutral atom density n,

ot = (2—’:) = an, 2)

where a > 0 is the ionization coefficient. Another
type of source is known as recombination [11], which
corresponds to a sink that acts as a loss term. Recombination
occurs when a negative ion captures a free electron,
the recombination rate being proportional to the product
between electron and ion densities:

0 = (%’Z) = b2, 3)

where b > 0 is the recombination coefficient. We thus
have two kinds of reaction processes: ionization, which acts
as a source, and recombination, which acts as a sink, the
nonlinear reaction term being written as

Q) = 0t + Q0™ =an — bn’. )

After substitution into (1), we have a nonlinear reaction-
diffusion equation
d
o DV2n=n(a—bn). (5)
at

Let us consider a one-dimensional version of the
reaction-diffusion equation (5), where the plasma is
confined by metallic (perfectly conducting) walls at x = 0

and x = ¢, respectively, corresponding to the boundary
conditions
nx=0,t)=nx=14¢,1t)=0. (6)

Moreover, we have to specify the initial condition, which is
a given spatial pattern n(x, t = 0).

If we neglect the diffusion coefficient in (5), the resulting
differential equation has an elementary solution, namely

aC

D= =
n(D=0,1) T 5O

(N
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where the integration constant is expressed in terms of the
initial condition n(t = 0)

n( =0)

C= i Toa=0 ®)

and such that, if a > 0, for large times the density tends to
the stationary value ng = a/b.

Considering also a characteristic time fy, we can define
normalized variables as u = n/ng, p = x/¢, T = t/tg, in
such a way that the reaction-diffusion equation now reads

2

g—’:—e%zau(l—u), ©)]
where the number of system parameters has been reduced
from three to just two, namely

&= %, o = aty, (10)
representing the coupling constant due to diffusion and the
overall nonlinearity parameter due to reaction processes,
respectively. The expression (9) is the so-called Fisher-KPP
equation, with many physical and biological applications
[19].

We model the influence of an external density distur-
bance on a non-magnetized weakly ionized plasma, and we
consider an ion-acoustic wave injected into the plasma. Due
to the bounding metallic walls, after a short time, we expect
the presence of stationary wave patterns. For simplicity, we
consider a single resonant mode, with nodes at the walls
(p = 0and p = 1) and at the center point p = 0.5. This

Fig. 1 Space-time plots of the
normalized plasma density (in
colorscale) for e = 0.01,

o = 2.60 x 10*, where an
external wave perturbation of
amplitude ug = 0.04 is applied
at T = 10 with different
frequencies: w = (a) 1, (b) 10,
(c) 20, and (d) 100

@ Springer

adds a new term on the right side of the reaction-diffusion
equation (9) such that it can be written in the form:

ou 0%u
e
T 9p2
where up and w are the amplitude and frequency of the
stationary wave, respectively.

The resulting partial differential equation with external
perturbation given by (11) was solved, with boundary
conditions (6) using an implicit finite difference scheme.
The time and space steps used in the integration were chosen
as At = 10~*and Ap = 5 x 1073, respectively. The initial
profile was specified as u(p,0) = sin(2wp). Since the
system is globally dissipative, and we have discarded a large
number of transient times, the spatial patterns observed
were found not to depend on the initial conditions used. On
the other hand, the fixed boundary conditions used in our
numerical simulations affect in a very important way the
spatiotemporal dynamics.

Initially we show numerical results illustrating the
effect of waves of different frequencies on a plasma with
spatiotemporal chaotic dynamics (a regime called frozen
random pattern, [19]), that can be found for a coupling
coefficient ¢ = 0.01, and a nonlinearity parameter ¢« =
2.6 x 10%, for example. The frozen random pattern has, as
main characteristics, a large number of small domains with
low temporal periods mixed with equally small regions with
chaotic motion. These patterns are “frozen” in the sense that
their boundaries do not move with time. Figure la—d are

=au(l —u) +up sin2rp) sin(wr), (11)
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space-time plots of the normalized density before and after
the application (at time 7 = 10) of a stationary wave of
fixed amplitude 1o = 0.04 and different frequencies w.

For all cases depicted in Fig. 1, we observe a breakdown
of the frozen random patterns after the wave is switched on,
and the plasma is forced to oscillate at the same spatial mode
as the external wave, with a node at the center point p = 0.5.
For small frequency, the patterns are almost as irregular
as before (Fig. 1a) but, as w increases, the plasma density
exhibits oscillations with roughly the same frequency as the
external wave, in an example of entrainment (Fig. 1b—d).

Another example of the effect of an external stationary
wave is illustrated in Fig. 2, where we have a spatiotemporal
pattern with chaotic defects, before the perturbation is
switched on. Chaotic defects are spatially localized chaotic
regions and bounded by regions of low temporal periods
known as zigzag domains. These defects move along the
lattice in a Brownian motion with memory [19, 20].

After the application of the stationary wave at T = 10,
with low frequency, we observe that the chaotic defect does
not disappear but is spatially displaced or reappears after
a transient (Fig. 2a). For higher frequencies, however, the
chaotic defects disappear and are replaced by oscillations
nearly resonant with the external forcing (Fig. 2b—d).

A third example is provided by Fig. 3a—d, where the
dynamical regime before the perturbation is switched on
can be classified as spatiotemporal intermittency pattern, for
which there is an intermittent transition between chaotic and

Fig.2 Space-time plots of the
normalized plasma density (in
colorscale) for e = 0.01,

o = 2.8202 x 10*, where an
external wave perturbation of
amplitude ug = 0.04 is applied
at T = 10 with different
frequencies: w = (a) 1, (b) 10,
(c) 20, and (d) 100

regular oscillations. After the perturbing wave is applied,
the plasma response follows the same spatial pattern
of the wave, with oscillations entrained to the external
perturbation. Moreover, we observe an overall decrease in
the turbulent density oscillations, since the density tends to
concentrate on the wave maxima.

3 Average Lyapunov Exponent

Some of the conclusions we obtained in the previous section
were essentially qualitative and based on a superficial
inspection of the space-time plots. A proper characterization
of the degree of suppression of chaotic behavior, in both
space and time, would need suitable numerical diagnostics.
One of these diagnostics is the average Lyapunov
spectrum for the partial differential equation (11), obtained
through the application of a method proposed by Shibata
[21, 22]. From the numerical integration scheme, we
transform (11) into a finite difference equation in the form

Mk~+1 - Ltk

= Mo, (D, (12)

where At and Ap are the time and space steps, respectively,
and (k, j) denote the discrete time and position, such that

ulj‘ =u(p = jAp, 7 = kA7), where k, j = 1,2,...N —
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Fig.3 Space-time plots of the
normalized plasma density (in
colorscale) for ¢ = 0.01,

a = 2.83 x 10%, where an
external wave perturbation of
amplitude ug = 0.04 is applied
at T = 10 with different
frequencies: w = (a) 1, (b) 10,
(¢) 20, and (d) 100

1. The corresponding Jacobian matrix at time kAt has
elements
k+1
kN _ U
By = auk
J

@j=12,...N—1). (13)

According to Shibata, the average Lyapunov exponent at
discrete time k is defined by

1
Ax = — In|det BXN). 14
k= | | (14)

The reasoning behind this definition is that the determinant
of the Jacobian matrix (13) can be interpreted as represent-
ing the disorderness of the state variable u at discrete time
k [22]. Hence, the average Lyapunov exponent (14) repre-
sents the mean degree of this disorderness over the lattice,
yielding a larger value when the spatial disorder is higher.
However, as the dynamical system evolves with time, the
degree of disorderness represented by Aj varies with time, in
such a way that it is better to work with the temporal mean
of the average Lyapunov exponent

1 Ml

A=—>". (15)
Ly

where ny is a large integer, chosen after transients have

decayed.

It must be emphasized that these averaged Lyapunov
exponents are different from those usually computed in
phase space, and which measure the exponential rate
of separation between two initially close trajectories. As

@ Springer

defined by Shibata, the average exponent must be taken
as a local measure of disorder, and do not correspond
to exponential separation rates. However, the general
interpretation is basically the same: positive values of A
indicate spatial disorder, whereas negative values are related
to ordered patterns.

We plot in Fig. 4a-b the values of A (in colorscale) as
a function of different pairs of parameters. The regions for
which the exponent diverges to minus infinity are painted
white. In the absence of external perturbation (¢ = 0), the
exponent varies from negative to positive according to the
degree of disorder (i.e., increasing «). In fact, the examples
depicted in Figs. 1, 2, and 3 correspond to different regions
of spatiotemporal behavior along this line: frozen random
patterns, chaotic defects, and spatiotemporal intermittency,
with an increasing degree of disorder.

As the perturbation is switched on, we have substantial
modifications in this profile. As ug increases, the value
of A achieves minus infinity (white regions in Fig. 4a)
indicating that the wave perturbation has been able to
effectively suppress the spatiotemporal chaos, yielding
more ordered patterns. In fact, Figs. 1, 2, and 3 show that the
spatiotemporal patterns become entrained with the external
perturbation, oscillating with the wave frequency. It is worth
noting that the critical values of u(, above which the value of
A goes to minus infinity, lay on a straight line with negative
slope. In Fig. 4b, the value of A is plotted against the wave
frequency w and the nonlinearity «. Here we observe that
the effect of increasing frequency is only noticeable for
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Fig.4 Average Lyapunov

. 0.3
exponent (in colorscale) as a
function of the pair of
parameters: (a) wave amplitude 0.2
uo and nonlinearity « for fixed u
0
wave frequency w = 10 ;
(b) wave frequency w and 0.1
nonlinearity « for fixed wave
amplitude up = 0.04 0
25 26 27 28
oL (10%)

small values of w, a fact already seen in the space-time plots
of Figs. 1, 2, and 3.

The effect of different wave amplitudes and frequencies
for increasing nonlinearity can be also seen in Fig. 5, where
we plot the average Lyapunov exponent A as a function of
the wave frequency w for three different amplitudes uy =
0.02, 0.04, and 0.08; and different values of the nonlinearity
parameter. In Fig. 5a obtained for « = 2.60 x 10* and
& = 0.01 (for which the unforced system displays frozen
random patterns), we see A is practically independent on
the wave frequency, but there is a decrease of the average
Lyapunov exponent as we increase the amplitude of the
perturbation. In other words, there is a decrease in the of
spatiotemporal chaos in the plasma, as we switch on the
wave perturbation.

Figure 5b, for « = 2.8205 x 10* and ¢ = 0.01, which
shows chaotic defects in the absence of wave perturbation,
displays an increase of A with w, and a decrease of A
with ug, as in the previous case. Hence, the effect of wave
frequency is more pronounced on the dynamics of chaotic
defects. The same features are shown in Fig. 5c for «
2.8300 x 10* and & = 0.01 (the unperturbed system exhibits
spatiotemporal intermittency).

4 Spatial Correlation Function

Another quantitative index that we can use to characterize
spatiotemporal patterns and the influence of the wave

785
1 10 1
0.5 8 0.5
6
0 0
® 4
0.5 b -0.5
-1 0 -1
29 25 26 27 28 29
oL (10°)

perturbation is the so-called spatial correlation function,
which has been used to investigate many dynamical effects
in spatially extended systems. For a fixed time T = kAT,
the spatial average of the normalized density for the system
is

N
1
() (@) =~ Zlum = jdp. 1), (16)
]:
and the corresponding deviation from this average is
u(p=iAp, 1) =u(p=iAp,7) — (u)(0). a7

We define the spatial correlation function, which character-
izes the correlation between the different individual lattice
sites, as [24]

YL dip = idp, Dii(p = (i + j)Ap. 1)
YL ip = inp, D)

Clp=jhAp,t)=

(18)

The definition above is similar to the time correlation
function of a time series, the difference is that we consider
spatial averages instead of time averages, and the values
considered in (18) are taken at a fixed time.

We show in Fig. 6 the dependence of the spatial
correlation on the spatial separation jAp along the lattice,
for three different spatiotemporal profiles with and without
perturbation. For all cases, we take a fixed time v = 10,
e = 0.01, = 10 and different values of o« and ug. In

-0.1

-0.2

\/\I\\N\/f \/’\M"'W’V\wf”l ‘”\vf'\/'v“"www-w,’”\/@

20 40 60 80 100

(O}

Fig.5 Average Lyapunov exponent A versus wave frequency w for ug = 0.
for e = 0.01 and o = 2.60 x 10* (a), 2.8205 x 10* (b), and 2.83 x 10* (¢)

100 0'20

02 (black curves), ug = 0.04 (red curves), and uy = 0.08 (blue curves)
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Fig.6 Spatial correlation
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Fig. 6a, we consider « = 2.60 x 104, for which there is a
frozen random pattern without perturbation (red curve). The
data are well-adjusted by a power law in the form
Clp=jAp,1)=Co(jAp)™” 19)
where the decay exponent is y = 0.0575 (Table 1), with
regression coefficient R?> = 0.9294. The closer the latter is
to the unity, the more representative the regression.

After the application of an external wave with amplitudes
ug = 0.04 (blue curve), the spatial correlation also decays as
a power law with exponent 0.053, which is slightly less than
for the unperturbed case. Increasing the wave amplitude to

0.08 (green curve), however, the decay exponent decreases
to 0.039, indicating a slower decay and a diminishing

Table 1 Values of the coefficients of the power-law fitting (19) for the
decay of the spatial correlation functions depicted in Fig. 6

o/10* uo Co y R?

2.60 0.00 1.057 0.0575 0.9294
2.60 0.04 1.053 0.0531 0.9542
2.60 0.08 1.042 0.0393 0.9623
2.70 0.00 1.653 0.0459 0.9346
2.70 0.04 1271 0.0229 0.9531
2.70 0.08 1.095 0.0931 0.9345
2.82 0.00 1.047 0.0438 0.9294
2.82 0.04 1.044 0.0399 0.9532
2.82 0.08 1.034 0.0336 0.9492

@ Springer

disorder in the spatiotemporal profile with respect to the
amplitude of the applied wave.

The same observations can be made for the case depicted
in Fig. 6b, where o = 2.70 x 10*. The unperturbed case (red
curve) corresponds to a pattern selection, and the power-
law decay occurs with a smaller exponent, namely 0.046.
The application of the external wave (blue and green curves)
yields a slower power-law decay, also suggesting a decrease
of the spatial disorder caused by the wave.

A similar behavior can also be identified in Fig. 6c,
where @ = 2.82 x 10* corresponding to chaotic defects
when unperturbed. The novel feature here is that there is an
oscillating behavior of the spatial correlation function for
the unperturbed case. This can be due to the existence of
zigzag patterns in both sides of a chaotic defect, as observed
in coupled map lattices. The decay becomes more regular,
however, as the wave perturbation is switched on, with a
slightly smaller decay exponent reflecting a relatively mild
effect of the external wave.

There are some arguments that can be used to justify
the conclusions drawn upon the decay of the spatial
correlation function. We start from the assumption that
spatial correlations (at fixed time) are for spatial profiles as
the time correlations (at fixed position) are for time series.
The latter have been extensively studied in the context of
nonlinear dynamics.

For hyperbolic chaotic systems, it is known that time-
correlations decay exponentially in time [26]. For chaotic
orbits of area-preserving non-hyperbolic systems, it has
been shown that time correlations decay as a power law due
to the presence of stickiness [27]. The latter is a kind of
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behavior caused by stretches of almost-periodic behavior in
a chaotic orbit near enough a periodic island [28].

Using the abovementioned analogy, if a spatial profile
is highly disordered, it would be reasonable to speculate
that spatial correlations also would decay exponentially.
However, since the spatial disorder is not completely chaotic
in spatiotemporal patterns, we expect a power-law decay of
spatial correlations, which holds for the cases depicted in
Fig. 6. From the analogy with the temporal case, the more
spatially ORDERED is the pattern, the slower will BE the
spatial correlation decay, and that is what we see after the
application of the external wave.

5 Conclusions

Reaction-diffusion systems have many applications in
fusion, astrophysical, and technological plasmas, and they
provide simple yet efficient mathematical models for the
description of many spatiotemporal phenomena. There is
a rich variety of dynamic pattern formations depending on
the parameters used, such as regimes containing chaotic and
regular regions to regimes with fully developed space-time
chaos, for example. We observed that the application of an
external wave drives the plasma to oscillate at the same
frequency as the applied wave. There is also a decrease in
the space-time chaos, as we increase the amplitude of the
applied wave, that is, the external wave acts to decrease
these chaotic regions. These conclusions were obtained
from an average Lyapunov exponent.

Another analysis that confirms this decrease in spatial
disorder was performed using spatial correlation, where we
observed a decrease in the correlation decay as a function of
the wave amplitude. The cases we studied show a power-law
decrease, what can be justified from an analogy with time
correlations. The power-law decay becomes slower after the
application of the wave perturbation, indicating a decrease
of the spatial disorder.

One shortcoming of our theoretical model is that we
considered just one species of particles in the plasma (free
electrons) and is thus of limited application since we did not
describe self-consistently the dynamics of the positive ions
and neutral atoms. It is conceptually possible to extend the
present analysis to a full description of diffusion-reaction
involving also ions and neutral atoms. However, our aim was
to show that even a toy model like the present one is able to
describe the formation of complex spatiotemporal patterns,
in particular those involving temporal chaos and spatial
disorder. Moreover, the pure electron model can also explain

the decrease of spatial disorder through the application of
stationary wave perturbations.

Funding This work has the partial financial support of CNPq (proc.
301019/2019-3).
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