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Abstract Many systems of biological interest can be

modeled as pointlike oscillators whose coupling is

mediated by the diffusion of some substance. This

coupling occurs because the dynamics of each oscil-

lator is influenced by the local concentration of a

substance which diffuses through the spatial medium.

The diffusion equation, on its hand, has a source term

which depends on the oscillator dynamics. We derive

a mathematical model for such a system and obtain an

integro-differential equation. Its solution can be

obtained by an approximation scheme for which the

unperturbed solution is used to obtain a first-order

solution to the coupled oscillators and so on. We

present numerical results for the special case of a one-

dimensional bounded domain in which the oscillators

are randomly placed. Our results show the influence of

the coupling parameters on some aspects of the

dynamics of the coupled oscillators, like phase and

frequency synchronization.

Keywords Oscillator coupling � Synchronization �
Diffusion equation

Mathematics Subject Classification 35K57 �
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1 Introduction

The study of collective dynamics exhibited by

spatially extended coupled systems like continuous-

time flows and discrete-time maps is one of the main

topics of contemporary nonlinear dynamics [1]. One

of the most widely investigated model consists of

phase oscillators with frequencies randomly dis-

tributed according to a given probability distribution,

which are coupled mutually according to a global (or

all-to-all) prescription [2]. This model has been

adapted to many different situations so as to describe

a variety of effects like complex networks and delay

coupling [3]. Synchronization dynamics in complex

networks is a subject of intense research [4], espe-

cially in the context of propagation of epidemics [5].

There are situations, in particular, where the

coupling intensity depends on the relative distance

between pairs of oscillators. For example, the coupling

among systems can be achieved through releasing of

some substance which diffuses through the medium in

which the oscillators are embedded. The local dynam-

ics of each system is affected by the local
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concentration of this substance. Since the rate of

production of this substance depends on the oscillator

dynamics, we can say that the coupling is mediated by

the diffusion of the substance [6].

Among the various biological applications of this

kind of system, there is the assembly of clock cells

composing the so-called suprachiasmatic nucleus

(SCN), which is supposed to synchronize the circadian

rhythms with the external 24-h light–dark cycle [7]. In

mammals, there are about ten thousand of clock cells,

each one of them having its own frequency [8]. It is

necessary that a large amount of these cells synchro-

nize their rhythms so as to yield a collective rhythm

that is entrained to the 24-h photic stimulation [9].

This synchronization can be achieved by coupling of

the SCN clock cells mediated by the diffusion of

neurotransmitter GABA [10]. Other network models

of biological interest are discussed in

references [11–13].

There are also technological applications for this

type of coupled dynamical systems, like chemical

reactions occurring in emulsions, where the reactants

are in the form of droplets suspended in a liquid or

gaseous background (like aerosols). In these systems,

nonlinear reactions can occur in spatially localized

positions, and there is a diffusion process among those

positions [14, 15].

Although models of complex network based on the

Kuramoto model have been conceived to describe the

synchronization of SCN clock cells [16], it would be

desirable to have a model taking into account the

physics of neurotransmitter diffusion through the

intercell medium. In other words, a self-consistent

model for this type of coupling should include also the

diffusion equation with a suitable source depending on

the oscillator dynamics.

The first model for diffusion-mediated coupling

was due to Kuramoto and Nakao, who proposed a

system in which the coupling is so fast that the

concentration of the diffusing chemical relaxes imme-

diately to its equilibrium value [17, 18]. In this way, a

non-local type of coupling was obtained, in which the

intensity of the interaction between oscillators

decreases exponentially with the spatial distance [19].

The exponentially decaying interaction was thor-

oughly investigated by Kuramoto and his collabora-

tors [20–23]. The Kuramoto–Nakao model (of

diffusion-mediated coupling) has been used to

describe frequency synchronization in a system of

clock cells in a numerical study of SCN dynamical

behavior [24], as well as to investigate bursting

synchronization of neurons [25]. The Lyapunov spec-

trum and the complete synchronization of chaotic

systems coupled in the Kuramoto–Nakao model have

also been investigated [26].

The Kuramoto–Nakao model can be used in situa-

tions where the characteristic diffusion time is negli-

gible with respect to the typical oscillator period. This

approximation is valid in many situations of biological

interest. For example, in the problem of synchroniza-

tion of SCN clock cells, the diffusion time is of the

order or milliseconds, much shorter than the charac-

teristic 24-h period of circadian rhythms [24]. As a

second example, it has been proposed that menstrual

rhythms can be synchronized due to the diffusion of

pheromones in the atmosphere, the so-called McClin-

tock effect [27]. (The existence of this phenomenon

has been questioned by recent studies [28, 29].) Since

the menstrual period is about 28 days and the

characteristic diffusion time is about a second, the

conditions for the Kuramoto-Nakao model to be valid

are fulfilled [30].

However, there are examples in which this approx-

imation is not necessarily valid, like neuronal cells

exhibit spiking or bursting rhythms with periods in the

millisecond range [31]. One of the most important

sources of neuron coupling is chemical synapses, in

which a neurotransmitter is released by the axon

extremities and diffuses through the synaptic cleft,

before being absorbed by the post-synaptic den-

drites [32]. In this case, the characteristic diffusion

time is of the same order of the typical oscillator

periods, and there should be used a more general

model in which the time dependence of the neuro-

transmitter concentration has to be taken into account.

In this work, we propose an approach to the latter

situation, by tackling the more general problem of

coupling the oscillator dynamics, which is a many-

dimensional ordinary differential equation system,

with the diffusion dynamics, described by a partial

differential equation where the source term depends

on the oscillator dynamics. We solve the latter using

Green function method and obtain an integro-differ-

ential equation for the diffusion-mediated coupling

when the diffusion time is not negligible with respect

to the typical oscillator period.

The resulting integro-differential equation cannot

be exactly solved, and we propose a perturbative
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scheme akin to the Born approximation used to solve

the quantum mechanical integral scattering equa-

tion [33]. Using the first-order equation resulting from

this perturbative scheme, we consider the coupling

among phase oscillators in the general case. We show

results of numerical simulations of the coupled

dynamics in the simplest one-dimensional case where

the oscillators are distributed in a one-dimensional

bounded domain with absorbing boundary conditions.

The rest of this paper is organized as follows: In

Sect. 2, we develop the model of coupled oscillators

with interaction mediated by the diffusion of a

substance, so obtaining an integro-differential equa-

tion. In Sect. 3, we present some methods of solution

of this equation, stressing a perturbative approach. A

detailed example is given for a one-dimensional finite

domain, where the Green functions allow for an

analytical approach of the first-order dynamics. Sec-

tion 4 considers a example, where the oscillators are

embedded in a one-dimensional bounded domain. We

perform numerical simulations of the systems of

equations for this case and show the effect of the

various coupling parameters on the dynamics of the

coupled system, specifically phase and frequency

synchronization. Our conclusions are left to the final

section.

2 Model for coupled oscillators

We consider N pointlike dynamical systems, such as

phase oscillators, embedded in a d-dimensional

Euclidean space. The position vector of the jth system

in such a space is denoted by rj, where j ¼ 1; 2; . . .;N.

The dynamical state of the jth system, on its hand, is

described by a vector XjðtÞ in a M-dimensional phase

space (Fig. 1). Although we use continuous-time

flows in our description, the formalism can be

straightforwardly modified to include discrete-time

maps also. The time evolution of uncoupled system is

described by the following non-autonomous vector

field

dXj

dt
¼ FðXj; tÞ; ðj ¼ 1; 2; . . .;NÞ: ð1Þ

In this model, the coupling among systems depends

on the local concentration of this substance, which is a

scalar field denoted by Aðr; tÞ. The coupling function

can be represented by a M-dimensional vector field g,

in such a way that the coupled systems are described

by

dXj

dt
¼ FðXj; tÞ þ gðAðrj; tÞÞ: ð2Þ

This substance diffuses through the space in which the

systems are embedded, according to the following

partial differential equation

oA

ot
þ gA� Dr2A ¼ FðX; r; tÞ; ð3Þ

where D is the diffusion coefficient, g is a degradation
coefficient and F is a source function which depends,

in general, on the positions and dynamical states of all

oscillators. Underlying the existence of this term is the

assumption that the systems are capable of producing

some substance according to their own dynamics. For

example, if the system is a clock cell with some

characteristic frequency, we may consider the rate of

production of the substance (e.g., a neurotransmitter or

a pheromone) as a given function of this

frequency [17, 18].

Since the systems are pointwise, we can write the

source function as a combination of delta functions at

the systems’ spatial positions, and whose weights are

scalar functions h which generally depend on the

dynamical state of the oscillators [17, 18]:

oA

ot
þ gA� Dr2A ¼

XN

k¼1

hðXkÞ dðr� rkÞ: ð4Þ

Once we are able to solve this inhomogeneous

diffusion equation, the concentration is substituted at

the oscillator positions in Eq. (2) and the coupled

system of equations can be solved, at least in principle,

to yield the oscillator states at further times. It is

Fig. 1 A system of coupled pointlike oscillators
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necessary to specify, when solving Eq. (4), the

relevant boundary conditions at some surface oR.

For simplicity, we shall assume absorbing boundary

conditions, i.e., Aðr; tÞ ¼ 0 for r 2 oR. In addition,

there should be specified an initial condition

Aðr; t ¼ 0Þ.
The Green function for Eq. (4) is denoted

Gðr; t; r0; t0Þ and satisfies

oG

ot
þ gG� Dr2G ¼ dðr� r0Þ dðt � t0Þ; ð5Þ

where homogeneous Dirichlet conditions are consid-

ered: Gðr; t; r0; t0Þ for r 2 oR, and the initial condition

Gðr; t ¼ 0; r0; t0Þ ¼ 0. The Green function can be

shown to satisfy the symmetry condition

Gðr; t; r0; t0Þ ¼ Gðr;�t; r0; t0Þ.
After Eq. (5) is solved, the resulting Dirichlet

Green function can be used to obtain the solution of the

inhomogeneous diffusion equation (4):

Aðr; tÞ ¼
XN

k¼1

Z tþ

0

dt0 hðXkðt0ÞÞGðr; t; rk; t0Þ

þ
Z

R
ddr0 Aðr0; t0 ¼ 0ÞGðr; t; r0; t0 ¼ 0Þ

þ D

Z tþ

0

dt0
I

oR
dS0n̂ � r0Aðr0; t0ÞGðr; t; r0; t0Þ½

�r0Gðr; t; r0; t0ÞAðr0; t0Þ�;
ð6Þ

where tþ ¼ t þ 0 and n̂ is a unit vector pointing

outwards the boundary surface oR. Considering

absorbing boundary conditions in oR and

Aðr; t ¼ 0Þ ¼ 0, the solution reduces to

Aðr; tÞ ¼
XN

k¼1

Z tþ

0

dt0 hðXkðt0ÞÞGðr; t; rk; t0Þ; ð7Þ

which, after substitution into Eq. (2), gives an integro-

differential equation governing the coupling among

systems mediated by the diffusion of a substance

dXj

dt
¼FðXj; tÞ

þ g
XN

k¼1

Z tþ

0

dt0 hðXkðt0ÞÞGðrj; t; rk; t0Þ
 !

:

ð8Þ

For the sake of simplicity, we choose a linear coupling

function gwhich also does not depend on time, in such

a way that we rewrite (8) in a simpler form

dXj

dt
¼FðXj; tÞ

þ
XN

k¼1

Z t

0

dt0 HðXkðt0ÞÞGðrj; t; rk; t0Þ;
ð9Þ

where we have expressed the composition of functions

g � h simply as H. The case of future coupling occurs

when H ¼ F, but H can represent any nonlinear

coupling as well.

The Dirichlet Green functions can be obtained by

solving (5) in a d-dimensional space with absorbing

boundary conditions. Some results of interest in

applications are:

1. Free space (i.e., the boundary surface oR goes to

infinity, where the Green function itself is

expected to vanish):

(a) d ¼ 1 dimension

Gðx; t; x0; t0Þ ¼ Hðt � t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðt � t0Þ

p

� exp �g ðt � t0Þ � ðx� x0Þ2

4Dðt � t0Þ

" #
;

ð10Þ

where Hðt � t0Þ is the Heaviside unit-step

function.

(b) d ¼ 2 and 3 dimensions

Gðr; t; r0; t0Þ ¼ Hðt � t0Þ
½4Dpðt � t0Þ�d=2

exp

� �g ðt � t0Þ � jr� r0j2

4Dðt � t0Þ

" #
:

ð11Þ

2. Finite domains

(a) d ¼ 1 dimension: interval of finite length

0� x� L

Gðx; t; x0; t0Þ ¼ 2

L

X1

n¼1

sin
npx
L

� �
sin

npx0

L

� �

� exp � D
np
L

� �2
þ g

� �
ðt � t0Þ

	 

Hðt � t0Þ:

ð12Þ
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(b) d ¼ 2 dimensions: rectangular domain with

0� x� a and 0� y� b

Gðr; t; r0; t0Þ

¼ 4

L

X1

n¼1

X1

m¼1

sin
npx
a

� �
sin

npx0

a

� �
sin

mpy
b

� �

� sin
mpy0

b

� �
Hðt � t0Þ

� exp � D
n2

a2
þ m2

b2

� �
p2 þ g

� �
ðt � t0Þ

	 

:

ð13Þ

(c) d ¼ 2 dimensions: circular domain

ð0� r� aÞ

Gðr; h; t; r0; h0; t0Þ

¼ 1

pD

X1

m¼�1

X1

n¼1

Jm xmn
r
a

� �
Jm xmn

r0

a

� �

½J0mðxmnÞ�2

� cos½mðh� h0Þ� exp �Dx2mn
a2

ðt � t0Þ
	 


;

ð14Þ

where xmn is the nth positive root of the

Bessel function Jm.

(d) d ¼ 2 dimensions: complementary circular

domain ða\r\1Þ

Gðr; h; t; r0; h0; t0Þ

¼ 1

2p

X1

m¼�1

X1

n¼1

cos½nðh� h0Þ�Hðt � t0Þ

�
Z 1

0

da exp �Da2 ðt � t0Þ

 �

� aUnðarÞUnðar0Þ
J2nðaaÞ þ N2

n ðaaÞ
;

ð15Þ

where Nn is the Neumann function and we

define the special function

UnðarÞ ¼ JnðarÞNnðaaÞ � JnðaaÞNnðarÞ.
(e) d ¼ 2 dimensions: annular domain

a\r\b,

Gðr; h; t; r0; h0; t0Þ

¼ p
4

X

m;n

½JmðamnrÞ�2UmðamnrÞUmðamnr0Þ
½J0mðamnaÞ�2 � ½J0mðamnbÞ�2

� a2mn cos½mðh� h0Þ�Hðt � t0Þ
� exp �D a2mn ðt � t0Þ


 �
;

ð16Þ

where amnb is the nth positive root of Um.

Analytical expressions for bounded domains in two

and three dimensions and also other coordinate

systems can be found in the literature on mathematical

physics [34]. These expressions reduce, in the limit of

very fast diffusion, to the results obtained by

Kuramoto and coworkers [17, 19], as explained in

‘‘Appendix.’’

3 Methods of solution

The integro-differential equation (9) is very difficult to

solve in the general case, since knowledge of the

oscillator state Xkðt0Þ is required for all values of

0� t0 � t in order to solve the integral in the right-hand

side, for a given time t. A simpler case is whenH does

not depend on the oscillator state itself (it can depend

on time, though):

dXj

dt
¼ FðXj; tÞ þ

XN

k¼1

Z t

0

dt0 Hðt0ÞGðrj; t; rk; t0Þ:

ð17Þ

This coupling prescription, however, depends only on

the position of the oscillators, not on their dynamics. In

the simplest situation,H is just a constant vector, such

that

dXj

dt
¼ FðXj; tÞ þH

XN

k¼1

rðrj; rk; tÞ; ð18Þ

where we defined the interaction kernel

rðrj; rk; tÞ ¼
Z t

0

dt0 Gðrj; t; rk; t0Þ: ð19Þ

A possible approach to solve the integro-differential

equation (9) is to proceed in an analogous way to the

scattering integral equation in quantum mechanics,

which is a perturbative procedure. In the first Born
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approximation, we insert the zero-order solution,

which is a plane wave, in the scattering integral, to

get a first-order solution, which turns out to be a

spherical wave, and so on [33]. Hence, we may

consider the solution of the vector field for the

uncoupled oscillators (1) as the zeroth-order solution

dX
ð0Þ
j

dt
¼ F X

ð0Þ
j ; t

� �
; ð20Þ

and then substitute it into the integral in the right hand

side of (9), so as to obtain a first-order solution

satisfying

dX
ð1Þ
j

dt
¼ F X

ð1Þ
j ; t

� �

þ
XN

k¼1

Z t

0

dt0 H X
ð0Þ
k ðt0Þ

� �
G rj; t; rk; t

0� �
:

ð21Þ

This iterative procedure can continue in such a way

that a second-order solution is obtained and so on

dX
ð2Þ
j

dt
¼F X

ð2Þ
j ; t

� �

þ
XN

k¼1

Z t

0

dt0 H X
ð1Þ
k ðt0Þ

� �
G rj; t; rk; t

0� �
:

ð22Þ

By assuming convergence of the method, one expects

to have an acceptable solution after a presumably

small number of iterations. However, the key issue

here is that the uncoupled (zeroth order) solution

X
ð0Þ
j ðtÞ must be known, which is usually difficult,

except for very simple dynamical systems.

A such simple system is a phase oscillator, for

which M ¼ 1 and the system state is described by a

single phaseXjðtÞ ¼ hjðtÞ, with 0� hj\2p. A uniform

oscillator has a constant frequency, which is the vector

field FðXjÞ ¼ xj, where the values of x can be

randomly chosen from a given probability distribution

function gðxÞ, like in the Kuramoto model of globally

coupled phase oscillators [2, 3]. The integro-differen-

tial equation for coupling (17) becomes in this case

dhjðtÞ
dt

¼ xj þ
XN

k¼1

Z t

0

dt0 H hjðt0Þ
� �

G rj; t; rk; t
0� �
;

ð23Þ

where H is a (nonlinear) coupling function. We can

make further contact with the Kuramoto model of

phase oscillators by choosing [2, 3]

HðhjÞ ¼
K

N
sinðhk � hjÞ; ð24Þ

where K[ 0 is a coupling strength, for which (23)

reads

dhjðtÞ
dt

¼ xj

þ K

N

XN

k¼1

Z t

0

dt0 sin hkðt0Þ � hjðt0Þ
� �

G rj; t; rk; t
0� �
:

ð25Þ

In this case, the zeroth-order solution is simply

hð0Þj ðtÞ ¼ xjt þ hjð0Þ; ð26Þ

such that the first-order solution (25) is

dhð1Þj ðtÞ
dt

¼xj þ
K

N

XN

k¼1

Z t

0

dt0 sin ðxk � xjÞt0



þ hkð0Þ � hjð0Þ
�
G rj; t; rk; t

0� �
:

ð27Þ

4 One-dimensional domain

We present in this section numerical results for the

model of linearly coupled phase oscillators given by

(25) in one spatial dimension, within a finite domain

0� x� L, for which the Green function with absorbing

boundary conditions is given by (12). A straightfor-

ward integration gives the following expression for the

first-order solution (27):

dhð1Þj ðtÞ
dt

¼ xj þ
K

N

XN

k¼1

I jkðtÞ; ð28Þ

where the interaction term in this expression is given

by
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I jkðtÞ ¼
2

L

X1

n¼1

sin
npxj
L

� �
sin

npxk
L

� �
a2jk þ c2n

� ��1

� sin ajkt þ bjk
� �

� ajk cos ajkt þ bjk
� �
 ��

� e�cnt sinbjk � ajk cos bjk

 ��

;

ð29Þ

and where the following abbreviations have been

introduced

ajk ¼xk � xj; ð30Þ

bjk ¼ hkð0Þ � hjð0Þ; ð31Þ

cn ¼D
np
L

� �2
þ g: ð32Þ

Using the zeroth-order solution, again, we rewrite the

interaction term (29) in such a way that the dynamics

of the coupled oscillators is governed by the following

set of differential equations

dhjðtÞ
dt

¼ xj þ
K

N

XN

k¼1

I jkðtÞ; ð33Þ

where

I jkðtÞ ¼
2

L

X1

n¼1

sin
npxj
L

� �
sin

npxk
L

� �
a2jk þ c2n

� ��1

� sin hkðtÞ � hjðtÞ
� �

� ajk cos hkðtÞ � hjðtÞ
� �
 ��

� e�cnt sin bjk � ajk cos bjk

 ��

;

ð34Þ

where we dropped the superindexes for the sake of

notational simplicity.

We consider N pointlike oscillators located at

randomly chosen positions within a spatial one-

dimensional domain of length L, whose endpoints

represent absorbing boundary conditions. We also

suppose that the oscillator natural frequencies xj are

chosen from a Gaussian probability distribution with

zero mean gðxÞ, such that gðxÞdx is the probability of

finding an oscillator with frequency in the interval

from x to xþ dx, with normalization
Z 1

�1
dx gðxÞ ¼ 1: ð35Þ

The presence of negative frequencies in this case is not

anomalous at all, since we can interpret them as

rotations in the opposite sense (e.g., clockwise). The

initial phases hið0Þ (with i ¼ 1; 2; . . .;N) are randomly

chosen according to a uniform distribution in the

interval ½0; 2pÞ. The first-order solution (33)–(34) is

numerically integrated using a fourth-order Runge–

Kutta method.

Two numerical results of interest are the distribu-

tion of phases hjðtÞ and of perturbed frequencies,

defined as

Xj ¼ lim
t!1

hjðt þ TÞ � hjðtÞ
t

; ðj ¼ 1; 2; . . .;NÞ;

ð36Þ

where T is chosen in such a way that transients have

decayed. The quantities XjðtÞ reduce to the natural

frequencies xj for vanishing coupling. We fix the

values of all parameters but three: the coupling

constant K, the diffusion coefficient D and the

degradation coefficient g.
An example of the phase distribution of coupled

oscillators (at a fixed time) is shown in Fig. 2, where a

system of N ¼ 100 oscillators are coupled with K ¼
10:0 and different values of D and g. Whenever

relatively large difference of values among D and g is

used as in case of Fig. 2a or Fig. 2b, the phases are

incoherently distributed over the domain ½0; 2pÞ,
whereas for smaller values of D and g the phases

become almost synchronized, forming a coherent

bunch with a few outliers.

In Fig. 3, we show the distribution of perturbed

frequencies (at a fixed time), using the distribution of

unperturbed frequencies are a label. For both fixed

g ¼ 1:0 and decreasing D-values, and fixed D ¼ 1:0

and decreasing g, we see a trend to frequency

synchronization. The roles of the diffusion and

degradation coefficient are quite similar, suggesting

that the decrease of diffusion and the degradation are

both factors contributing to synchronization, for a

fixed coupling strength K.

Since phase synchronization implies frequency

synchronization in this case (although the converse

is not always true), we focus on the former. The

transition to phase synchronization can be quantified

by the complex order parameter introduced by

Kuramoto [2]

RðtÞ eiwðtÞ ¼ 1

N

XN

k¼1

eihkðtÞ: ð37Þ
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If R � 0, the oscillators are completely non-synchro-

nized in phase, whereas if R � 1, they are completely

synchronized. Intermediate values of R characterize

partial phase synchronization. Since, for finite N, the

order parameter magnitude exhibits size-dependent

fluctuations, we compute its mean value over a given

time, �R ¼ ð1=TÞ
R T
0
RðtÞdt.

Fixing the values K ¼ 10:0 and D ¼ 1:0, we

compute the values of �R for increasing D (Fig. 4a)

and different number of oscillators. In all cases

considered, from N ¼ 50 to 400, the order parameter

magnitude decreases as D increases, confirming that

the effect of a larger diffusion coefficient is to

desynchronize the oscillators. The same conclusion

comes from varying the degradation coefficient g, for
fixed g ¼ 1:0 (Fig. 4b).

Finally, in Fig. 4c we consider the variation of �R
with increasing coupling constant K, for fixed

g ¼ D ¼ 1:0, where there is a transition to phase

synchronization as K increases past a critical value

K � 2:5. The transition is characteristically slow,

since for K values as large as 20 we have �R � 0:9.

Indeed, the coupling constant K actually measures the

overall strength of the interaction term (34), similarly

to what happens in the classical Kuramoto model (for

global coupling). Hence, it is not surprising that the

phase synchronization of oscillators increases with

increasingK, with a similar transition as that displayed

by the Kuramoto model [2].

On the other hand, the decrease of the order

parameter magnitude for increasing g and D (Fig. 4a,

b, respectively), may seem paradoxical since it is

sometimes assumed that the coupling constant is

proportional to the diffusion coefficient. In our model,

however, the roles of the coupling constant K and

diffusion coefficient D are clearly different: The latter

enters into the coefficient cn which increases with the

(a) (b) (c)

Fig. 2 Phase distribution for the coupled oscillator system described by (33)–(34), withN ¼ 100,K ¼ 10:0 and aD ¼ 1:0; g ¼ 12:0; b
D ¼ 4:0 and g ¼ 1:0 and c D ¼ g ¼ 1:0

(a) (b)

Fig. 3 Perturbed frequency distribution for the coupled oscillator system described by (33)–(34), with N ¼ 100;K ¼ 10:0 and various
values of a D, for g ¼ 1:0 and b g, for D ¼ 1:0
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diffusion coefficient D. In this case, the interaction

term (34) decreases its value, such that, for D ! 1, it

vanishes. Hence, the coupling effect (in terms of the

phase synchronization) actually decreases with

increasing D, which is just the result observed in

Fig. 4b for the order parameter magnitude.

The degradation parameter g plays a similar role as

the diffusion coefficient, since both enter into the

interaction term (34) through the coefficient cn. As g
increases, meaning that the chemical mediating the

coupling is becoming scarce, the interaction term

decreases its magnitude and the synchronization

properties are affected in a way similar to the diffusion

coefficient D (Fig. 4a). This explains also why the

order parameter magnitude decreases with increasing

g, for fixed D and K.

5 Conclusions

We considered in this paper the dynamics of pointlike

nonlinear oscillators with coupling mediated by the

diffusion of some chemical in the inter-oscillator

medium. This coupling occurs because the rate of both

secretion and absorption of that chemical depends on

the oscillator dynamics. For example, if the phase

oscillator has a characteristic frequency, one can

assume that the secretion rate is proportional to that

frequency and, conversely, that the absorption of the

chemical influences the oscillator frequency like a

perturbation.

Previous attempts to model this problem have

considered the limit in which the diffusion is so fast

(compared with the characteristic oscillator timescale,

or inverse frequency) that the chemical concentration

attains immediately its equilibrium value. If the

diffusion timescale is comparable with the oscillator

period, however, this approximation is no longer valid

and one has to solve a Dirichlet problem for the

diffusion equation with pointlike sources. In doing so,

we obtained an integro-differential equation which

can be approximately solved by using a technique

similar to the Born approximation in quantum

mechanics: We consider as a zeroth-order approxi-

mation the uncoupled motion and use it to solve the

integral in the coupling term, obtaining a first-order

solution.

If the intensity of the perturbation due to the

coupling is not too strong, it is reasonable to assume

that this relaxation method converges after a few

iterations. In order to use this method, we have to

consider a dynamical system sufficiently simple to

allow a exact solution in zeroth order. Such a system is

found in a uniform phase oscillator, for example, in

which each oscillator is endowed with a characteristic

frequency randomly chosen according to a given

probability distribution. The corresponding first-order

solution can be analytically obtained, provided the

Green’s function of the diffusion equation is known.

The simplest example of an assembly of phase

oscillators consists of a bounded one-dimensional

domain, where the oscillators are located at random

positions. Using the corresponding Green’s function,

we were able to obtain a closed form for the coupling

term, which has some similarity with the classical

Kuramoto model. However, in our treatment the

coupling term is time dependent and also takes into

(a)

(b)

(c)

Fig. 4 Order parameter magnitude versus a diffusion coeffi-

cient D, for K ¼ 10:0 and g ¼ 1:0; b degradation coefficient g,
for K ¼ 10:0 and D ¼ 1:0 and c coupling constant K, for

g ¼ D ¼ 1:0. Different numbers of oscillators were considered

in each case
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account the effect of the spatial distance between pairs

of oscillators.

The three basic parameters influencing the coupling

properties are the coupling strength, the diffusion

coefficient and the degradation coefficient of the

chemical mediating the coupling. Phase and frequency

synchronization can be observed to depend on these

coupling parameters. The dependence on the coupling

strength turns to be qualitatively similar to the familiar

Kuramoto model of globally coupled oscillators: The

order parameter magnitude increases with the cou-

pling strength, displaying a transition from non-

synchronized to a partially synchronized regime.

The other two coupling parameters (diffusion and

degradation coefficients) play a similar role in the

synchronization properties, since they appear in the

coupling term in the same foot. The increase of both

causes the order parameter to decrease, so destroying a

partial phase synchronization. Since the degradation

coefficient is related to the loss of the chemical

mediating the coupling, it is quite expected that its

increase is harmful to synchronization. That the

increase of diffusion coefficient provokes the same

effect may seem surprising at first, since it is

commonly assumed that the coupling strength depends

on the diffusion coefficient (for example, see the

discussion in Ref. [35], connecting a pulsed reaction–

diffusion equation to a locally coupled map lattice). In

our model, however, the coupling strength is distinct

from the diffusion coefficient, in such a way that the

increase in the latter is not related to an enhancement

of the coupling term.

The numerical example considered in this paper

was limited to the simplest case of a one-dimensional

finite domain. Our discussion, however, is not limited

to this case, and we provide formulas for other

geometries, in two and three dimensions, for which

Green’s functions are known. The difficulties related

to this extension are chiefly of computational effort

needed to compute the various terms related to the

influence of each and every oscillator, which needs to

be updated during the execution time. Moreover, we

have used an approximate first-order solution to the

integro-differential equation, which limits the appli-

cation to simple cases where the zeroth-order solution

can be analytically obtained. This limits the applica-

tions to more complicated non-systems like Rössler,

Van der Pol and other systems. In those cases, one will

be forced to resort to powerful numerical methods to

fully solve the integro-differential equation for the full

dynamical problem.

Another interesting, but even more complicated

situation, is that of chemotaxis of oscillators, i.e., the

possibility of adding the motion of the oscillators to

the dynamical system of equations [36]. In this case,

we assume that the pointlike oscillators are no longer

static but can move through the spatial medium

influenced by a chemotactic force which may depend

on the local gradient of the chemical mediating the

coupling [37]. Due to their motion, the distance

among the various oscillators must be likewise

updated in each time instant of the numerical solution.

The interesting fact here is that the coupling involves

three timescales: the oscillator period, the diffusion

time and also the timescale characteristic of the

motion. Such systems would be important to model the

dynamical behavior of moving bacteria and other cell

assemblies, with immediate biological applications.
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Appendix: Fast diffusion limit of the interaction

kernels

It is instructive to verify that the Green functions we

have obtained for the diffusion process reduce to the

expressions already obtained by Kuramoto and

coworkers in the case of very fast diffusion, for which

the concentration of the chemical mediator achieves

immediately its stationary state.

From the Green function of the specific geometry in

which the system is defined, the corresponding

interaction kernel is

rðrj; rk; tÞ ¼
Z t

0

dt0 G rj; t; rk; t
0� �
: ð38Þ

Using the Green’s function of the d ¼ 1-dimensional

case in free space given by (10), the interaction kernel

reads
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rðxj; xk; tÞ ¼
Z t

0

dt0
e�gðt�t0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDðt � t0Þ

p exp

� ðxj � xkÞ2

4Dðt � t0Þ

" #
;

ð39Þ

which, after a change of variables, reads

rðxj; xk; tÞ ¼
xj � xk
4D

ffiffiffi
p

p
Z 1

u1

du

u3=2
exp �u� a1

u

� �
; ð40Þ

where

a1 ¼ gðxj � xkÞ2

4D
¼ cðxj � xkÞ

2

	 
2

;

u1 ¼ ðxj � xkÞ2

4Dt
;

ð41Þ

and we have defined a coupling length

c ¼
ffiffiffiffi
g
D

r
: ð42Þ

In fast diffusion case is equivalent to take the t ! 1
limit for the interaction kernel, for which u1 ! 0.

Taking this limit we have

rðxj; xkÞ ¼ lim
t!1

rðxj; xk; tÞ

¼ c
2g

exp �cðxj � xkÞ
� �

;
ð43Þ

which coincides with the earlier results of Kuramoto

and coworkers [17, 19], in their analysis of the fast-

relaxation case.

For the two-dimensional case (d ¼ 2) in free space,

we use the Green function (11), and the interaction

kernel becomes

rðrj; rk; tÞ ¼
1

4pD

Z 1

u1

du

u
exp �u� a2

u

� �
; ð44Þ

where

a2 ¼ g½ðxj � xkÞ2 þ ðyj � ykÞ2�
4D

¼ cðrj � rkÞ
2

����

����
2

;

u1 ¼ jrj � rkj2

4Dt
;

ð45Þ

which, in the t ! 1 limit, reduces to the result

already found by Nakao [19]:

rðrj; rkÞ ¼ lim
t!1

rðrj; rk; tÞ ¼
1

2pD
K0 cjr� rkjð Þ;

ð46Þ

where K0 is the modified Bessel function of the second

kind and zeroth order.

Finally, for the three-dimensional free-space case

(d ¼ 3) we use the Green function (11) to obtain the

corresponding the interaction kernel

rðrj; rk; tÞ ¼ � 1

4Dp3=2
1

jrj � rkj

�
Z 1

u1

duffiffiffi
u

p exp �u� a3
u

� �
;

ð47Þ

where

a3 ¼
g
4D

jrj � rkj2; u1 ¼
jrj � rkj2

4Dt
; ð48Þ

which, in the limit t ! 1, becomes

rðrj; rkÞ ¼ lim
t!1

rðrj; rk; tÞ

¼ 1

4Dp
1

jrj � rkj
exp �cjrj � rkj
� �

;
ð49Þ

in accordance with the result previously found by

Nakao [19].
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