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Coupled map lattices are spatially extended systems in which both space and time are discrete but allow-
ing a continuous state variable. They have been intensively studied since they present a rich spatiotem-
poral dynamics, including intermittency, chimeras, and turbulence. Nonlocally coupled lattices occur in
many problems of physical and biological interest, like the interaction among cells mediated by the dif-

fusion of some chemical. In this work we investigate general features of the nonlocal coupling among
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maps in a regular lattice, focusing on the Lyapunov spectrum of coupled chaotic maps. This knowledge
is useful for determining the stability of completely synchronized states. One of the types of nonlocal
coupling investigated in this work is a smoothed finite range coupling, for which chimeras are exhibited
and characterized using quantitative measures.
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1. Introduction

Coupled map lattices have been used for a long time as mathe-
matical models of spatially extended dynamical systems, for which
both space and time are discrete, but allowing a continuous state
variable [1]. One way to derive such spatially extended systems is
to consider a diffusion-reaction system (partial differential equa-
tion) with a pulsed reaction term [2], what provides a natural way
to discretize the time evolution. In this case coupling is generated
by discretizing the second spatial derivative contained in the dif-
fusion term, resulting in a lattice where each site is coupled to
its nearest neighbors. Such locally coupled lattices were studied by
Kaneko since the early 1980’s, with a wealth of numerical results
available [3,4].

One of the outstanding dynamical phenomena presented by
such system is the capability of synchronize complicated motions
due to the coupling effect. The phenomenon of collective syn-
chronization of flashing fireflies has brought into attention another
form of coupling, in which each oscillator is coupled to the mean
field produced by all other sites [5]. This kind of global coupling
was popularized by the Kuramoto model of coupled oscillator [6],
and adapted to coupled map lattices by Kaneko, who investigated
many properties of this type of nonlocal coupling [7,8].
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The general characteristic of nonlocal couplings is the interac-
tion among a given site with all its neighbors. Kuramoto has pro-
vided an interesting physical setting where such coupling arise
naturally: an assembly of oscillator (“cells”) is such that their cou-
pling is mediated by the diffusion of some chemical [9]. This
chemical is released by each oscillator with a rate dependent of
its own dynamics, and the latter is affected by the local concen-
tration of that chemical [10]. If the diffusion time is so short that
the chemical concentration relaxes immediately to its equilibrium
value, it has been shown that the coupling intensity decays ex-
ponentially with the lattice distance, in the one-dimensional case
[11]. The dynamical properties of such lattices have been recently
investigated, such as bursting synchronization [12], frequency syn-
chronization [13] and complete synchronization of chaos [14].

One of the outstanding biological problems which can be
modeled using a type of nonlocal coupling, where the coupling
strength depends in some way on the individual dynamics of the
cells is the synchronization among cells of the suprachiasmatic nu-
cleus (SCN) in the brain hypothalamus [15,16]. The SCN is an as-
sembly of clock cells whose synchronized dynamics is responsible
for the circadian rhythm in mammals [17,18]. The coupling among
SCN cells is thought to be mediated by the release and absorption
of a neurotransmitter like GABA or VIP [19-23].

A related kind of nonlocal coupling consists in considering the
coupling strength as decreasing with the lattice distance as a
power-law, instead of an exponential function [24]. Another form
of nonlocal coupling consists on taking only a finite number of
neighbors of a given site (finite range), and has been often used to
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investigate complicated spatiotemporal patterns like chimeras [25-
27]. Trigonometric forms for the nonlocal dependence have been
given much attention [28-30]. A current line of investigation in-
volves the design of coupling functions capable of yielding desired
responses, like synchronization and oscillator death [31,32].

In this work we propose a general approach to coupled map lat-
tices with nonlocal coupling represented by a range function which
has a small number of mathematical requirements. The known ex-
pressions for coupling show up as particular choices of the range
function. We explore some dynamical properties of such coupled
lattices, like the Lyapunov spectrum for a lattice of coupled piece-
wise linear chaotic maps, where analytical results can be obtained
[33,34]. This knowledge is useful to determine the transversal sta-
bility properties of the completely synchronized state [35]. Exam-
ples are given for a smoothed finite range coupling, which can be
used to investigate differences among smooth and piecewise lin-
ear range functions. Moreover, we consider also the formation of
chimera in lattices of coupled chaotic maps with smoothed finite
range coupling, and applied some numerical diagnostics of spatial
coherence. One of these diagnostics is a local version of the well-
known Kuramoto order parameter [25,26], which is able to distin-
guish spatially coherent from incoherent patterns. We count the
plateaus of the local order parameter according to a measure of
local coherence (average plateau size) [36].

This paper is organized as follows. Section 2 presents a gen-
eral framework to describe long-range coupling, by introducing a
range function. The Lyapunov spectrum of a coupled map lattice
with a general range function is obtained in Section 3 for the case
of coupled piecewise-linear chaotic maps. Section 4 contains an
application of the Lyapunov spectrum to the transversal stability
properties of a lattice of coupled chaotic maps. Numerical results
on chimera formation and characterization for a smoothed finite-
range coupling are shown in Section 5. The last Section contains
our conclusions.

2. General long-range coupling

Most investigations of the spatiotemporal dynamics in discrete
time use the so-called local coupling, in which each map x — f(x)
is coupled to its nearest neighbors, in the form

Xl = =) () + 5 [10") + 1(4)] (1)

where x(') is the state variable at discrete time n and belonging to
a chain of N identical systems, such that i=1,2,...,N; & stand-
ing for the coupling strength. This type of coupling is also called
laplacian since it represents the discretization of a second deriva-
tive with respect to the position along a one-dimensional lattice
[3]. It is straightforwardly generalized to a higher-dimensional lat-
tice.

By way of contrast, in a globally coupled map lattice, each map
is coupled to the “mean field” generated by all other sites, irre-
spective of their relative position [7]

N

X = =) + gy 3 1), @)

J=1.j#

In the following we will consider periodic boundary conditions:
x,(liiN) = x,ﬁi) and appropriate initial conditions x(()i), fori=1,...N.
This type of coupling is nonlocal, in the sense that it consid-
ers the coupling with other neighbors than the nearest ones. Many
different nonlocal couplings have been proposed since then. The
finite-range coupling is an immediate generalization of the local
coupling, but it takes into account the P nearest neighbors of a
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Fig. 1. Range function for some kinds of nonlocal coupling prescription: (a) finite

range coupling (dashed line), smoothed finite-range coupling (full line); (b) expo-
nential decay (full line), power-law decay (dashed line).
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given site in a lattice of N sites [dashed line in Fig. 1(a)] [25]:

P
»n4lmmw+%§wmﬂ+mww (3)

where P <N = (N —-1)/2 is the coupling radius, which can vary
between P =1 (local coupling) to P= (N — 1)/2 (global coupling).
Similarly we can define a normalized coupling radius r = P/N. This
coupling has been extensively used in numerical investigations of
chimeras for coupled chaotic maps [26,27].

Another type of nonlocal coupling arises in models of pointlike
dynamical systems (hereafter represented by maps) whose inter-
action is mediated by the fast diffusion of some chemical into the
medium in which the systems are embedded [9]. In this case each
system (like a biological cell) releases a chemical with a rate de-
pending on its own dynamics. The dynamics of other maps is af-
fected by the local concentration of this chemical. Kuramoto has
shown that, provided the diffusion is fast enough, the coupling in
one spatial dimension is nonlocal, the relative coupling strength
decreasing exponentially with the lattice position with a decay rate
o [full line in Fig. 1(b)] [10,11]:

.
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where N'=(N-1)/2 and the normalization factor is n(x) =
22?’;1 e~ It is easy to show that, if &« — 0 we obtain the glob-
ally coupled lattice (2), whereas o — oo gives the local coupling (1).
Hence we may consider « a variable range parameter.

A related model considers the relative coupling strength as de-
creasing with the lattice position in a power-law fashion with ex-
ponent « [dashed line in Fig. 1(a)] [24]:

= =) o ) <) O

where the normalization factor is n(x) = 22’}’;1 j~%. The limit-
ing behavior as « varies from zero to infinity is the same as be-
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fore. This model has been used in various studies on the influ-
ence of coupling nonlocality in dynamical properties like synchro-
nization [37-39], bubbling bifurcation [35], decay of spatial corre-
lations [40], short-time memories [41], and collective behavior in
neuronal networks [42].

These models can be treated as particular cases of a general
long-range coupling given by

Xy = (=) f () + n(a)2¢a<1>[(<' D)+ Fea)]
(6)

where the range function ¢(j) is a monotonically decreasing func-
tion of the lattice distance j. In the cases of our immediate inter-
est, we have a monotonically decreasing function of j, such that
®a(s)— 0 for large j. However, this is not a mathematical require-
ment, and some range functions that have been used in the lit-
erature do not satisfy it, as trigonometric functions like ¢q (j) =
[1+ acos(mj)]/2 for example [28-30].

Apart from those cases, for the chemical coupling (4) we have a
range function ¢, (j) = exp(—aj), whereas for the power-law cou-
pling (5) ¢o(j) = j~%, both monotonically decreasing with j. The
finite range coupling (3) is such that « =1+ [(2P + 1)/N] and the
range function is ¢4 (j) =1 — H(j — P), where H(x) is the Heaviside
unit step function. In all those cases the normalization factor reads

N
() =23 ¢a (). (7)
j=1

Note that, as o—0 we have 7n(e) > N-1 and thus
limy_0 @« (j) = 1. On the other hand, if @ - co we have n(a)— 2
and thus limy.(j) = 8;;, which vanishes provided j#1. Since
the finite-range coupling is characterized by a piecewise continu-
ous range function, it is interesting also to investigate the case of
a smoothed finite range [full line in Fig. 1(b)]:

¢a(j) =

where  is a smoothing parameter and the range parameter o =
1+ [(2P + 1)/N] like in the finite-range coupling.

21— tanh [ (j — P)]) ®)

3. Lyapunov spectrum

The general coupling in Eq. (6) can be written in a compact way

as
Xni1 = F(Xn), 9)
M T ; ;
where x;, = (x;,;’,...x; ') and F is the corresponding vector field.
T
We consider the tangent vector &, = ((Sx,(f), . .6x,(1N)) , whose time

evolution is given by linearizing the vector field of the coupled
map lattice:

£n+] :Tngn’ (10)

where T, = DF(x;) is the Jacobian matrix.
We form the time-ordered product T, =T,_1..
corresponding matrix

~ . 1/2
A = Jim (ryea) an

.T;Tp and the

with eigenvalues {Ai}f': 1. The Lyapunov exponents are thus
A =1In Ay, (k=1,2,...,N). (12)

Changing the summation indices in (6) it is straightforward to
show that the Jacobian matrix elements are

T = (1- s)f/(X,(f))Slk n(a)(f’a(ru)f/(xigk))(l —9; )’ (13)

where the primes denote differentiation with respect to the argu-
ment.

Let us consider as an example the Bernoulli map, for which
x€[0, 1) and the map is piecewise linear, f(x) = ax (mod 1), with
constant slope f'(x) =a. If a>1 the dynamics is strongly chaotic
for almost all initial conditions (i.e., up to a measure zero set of
eventually periodic points), with Lyapunov exponent Ina > 0. Since
we are working with periodic boundary conditions the correspond-
ing Jacobian is a circulant matrix, whose eigenvalues are given by
trigonometric sums, such that the Lyapunov exponents are given

by
T](O() ’ T ’

M=Ina+In|1

where

7 jk
bk—2;¢a<1)cos< N ) (15)
It is possible to obtain exact analytical expressions for the lat-
ter coefficients in the nonlocal types of coupling mentioned in
the previous Section. In the cases of power-law and exponentially-
decaying couplings the corresponding Lyapunov exponents were
obtained in Refs. [33,34] and [14], respectively. For the finite-range
coupling (3), for example, we have

P 27Tjk sin [(P+ )an]
by 2§cos< N ) 1+ sin ()
where we used Lagrange’s trigonometric identity. The Lyapunov
spectrum is obtained plugging (16) into (14) and using n(«) = 2P.

Let us examine the limiting cases of the resulting expression.
For a global coupling 2P =N — 1 and we obtain immediately the
well-known expression

(16)

N
Ak:{lna+ln’l—8N1‘ for k #N (17)

Ina, for k=N

On the other hand, for local coupling we set P = 1 and obtain, after
some elementary algebra,

mk
1—2¢sin® (N)

Finally let us explore the case of a smoothed finite-range coupling,
for which the range function is given by (8), with two variable pa-
rameters: the smoothness parameter w and the normalized cou-
pling radius r = P/N. For w = 0 we recover the abovementioned fi-
nite range coupling. The Lyapunov spectrum of a coupled map lat-
tice built upon this prescription is shown in Fig. 2 for some values
of w and r. The spectrum is symmetric with respect to k = N/2.
Most exponents take on values near 0.537. According to (17) the
Lyapunov spectrum for a global coupling, which corresponds to a
finite range coupling with maximum coupling radius r = 0.5, ex-
hibits a (N — 1)-fold degeneracy. This degeneracy is partially lifted
for smaller coupling radius and is further modified by smoothing
effects, as illustrated in Fig. 2(a): the Lyapunov exponents present
“damped oscillations” around a constant value reminiscent of the
degeneracy of the global case. In fact, for higher w this effect is
more pronounced, and the “damping” lasts longer (Fig. 2(b)).

A =Ina+In (18)

4. Complete synchronization

Another instance where the knowledge of a closed-form ex-
pression for the Lyapunov exponent is useful is the analysis of the
transversal stability of a completely synchronized state. For a cou-
pled map lattice of the general form (6) with some map f(x) it
turns out that the completely synchronized state

D =x@ = xV =xx (19)
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Fig. 2. (a) Lyapunov spectrum of the smoothed finite range coupling, (b) magnification of a selected region of (a).

is actually a solution since it implies that x} = f(x;;) for all times.
A major question is, in this case, if this synchronization state is
stable under general transversal perturbations.

Answering this question is equivalent to determine the eigen-
values of the matrix A(x*) computed in the completely synchro-
nized state (19). One of the Lyapunov exponents is obviously along
the synchronization manifold defined by (19). A similar calculation
gives, for the N — 1 remaining transversal Lyapunov exponents,

b
1—8(]— 77(“))

where Ay is the Lyapunov exponent of each map. For example, the
Ulam map f(x) =4x(1 —x), with x<[0, 1), is topologically conju-
gate to the Bernoulli map with a =2 and thus has Ay =1In2, and
so is strongly chaotic (transitive).

For the completely synchronized state to be transversely unsta-
ble it is sufficient to show that the maximal exponent is positive,
ie. A3 > 0. It turns out that the synchronized state is transversely
stable provided e. <& <¢&’¢, where

b -1
Ec= (1 - e)hu)<1 - T]((l)l)) s (21)

Ai=hy+In . (k=1,2,....N—-1), (20)

-1
ge=(1-e) <1 - n%)) : (22)
and, following (15),
N’ .
bi=2" ¢ (j) cos <2N’”> (23)
j=1
N .
by=2" ¢ (j) cos <”(NN_1)J> (24)
j=1

This condition leads to accurate predictions of the loss of transver-
sal stability of the completely synchronized state.

The loss of transversal stability of the completely synchronized
state can also be numerically determined by computing the order
parameter of the coupled map lattice (6), defined as [43,44]

. 1 L
Zn =R = & 3 e, (25)
=1

The quantities R, and ¢, €[0, 277) are respectively the amplitude
and angle of a rotating vector equal to the vector sum of phasors
for each state variable in a one-dimensional lattice with periodic
boundary conditions. For a completely synchronized state the or-
der parameter magnitude is R, =1 for all time n. On the other
hand, in a completely non-synchronized state, for which the phase
angles are uniformly distributed over [0, 27 ), R;~0. The case

0.39

w
0.375

03 ‘ \ \ \
0.005 0.01 0.015 0.02

(0]

Fig. 3. Parameter values for which the completely synchronized state of the cou-
pled map lattice (6) loses transversal stability, for different lattice sizes. The full
lines represent the theoretical prediction based on the Lyapunov spectrum, whereas
points represent numerical estimates based on the order parameter (25).

0 <R, <1 represents a partially synchronized state. We can numer-
ically verify that the totally synchronized state has lost transversal
stability if R, (for a given time n so large that the transients have
died out) becomes less than a specified threshold, namely 0.97
(small variations in this value do not produce substantial changes
in our results).

In Fig. 3 we plot, in the parameter plane ¢ versus w, the points
for which the completely synchronized state has lost transver-
sal stability, for different lattice sizes N. The full lines represent
the theoretical values predicted by Eqgs. (21)-(22), showing a good
agreement with numerical values.

5. Chimeras for a smoothed finite-range coupling

A great deal of the current research involving chimeras is fo-
cused on non-locally coupled dynamical systems, from partial dif-
ferential equations (like complex Ginzburg-Landau equation), to or-
dinary differential equations (like Rdssler equations) and coupled
map lattices. However, it should be remarked that the nonlocality
of the coupling is not an essential condition for the existence of
chimeras [45].

As for the latter, one of the most used non-local coupling pre-
scriptions is the finite range (3). One outstanding feature of the
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results obtained for this system is that there are chimeras which
last during a large timespan. Up to some maximum value used in
numerical simulations, one can say that those chimeras are perma-
nent.

Other nonlocal coupling prescriptions, like power-law and
chemical ones, however, typically show transient chimeras with
quite small timespan. A fundamental difference between these
forms and the finite range coupling is that the latter is piecewise
continuous, whereas the former are smoothly decaying range func-
tions. Hence the question arises whether or not the timespan of
the chimeras could be related to the smoothness of the range func-
tion.

In the following we shall consider a nonlocally coupled lattice
as given by (6), with the smoothed finite range coupling given by
(8). The latter has a smoothing parameter ¥ which can be varied
so as to investigate the transition between a piecewise continuous
and a smooth nonlocal coupling prescription. The local dynamics is
given by the logistic map f(x) = ax(1 —x), with a = 3.8, such that
the uncoupled maps display chaotic behavior.

The numerical simulations we present in this Section were per-
formed with a lattice of N sites, periodic boundary conditions:
x,ﬁiiN) = x,(li) and initial condition profiles xg) representing interpo-
lations of periodic functions. Fig. 4 shows snapshots of the spa-
tial pattern for N = 501 maps with coupling radius r = 0.32, which
corresponds to P=rN =160 neighbors at each side of a given
map, and to a range parameter of o =1+ [(2P+1)/N]=1.64.
The smoothness parameter w is kept fixed at 0.006, and varying
coupling strength e. Periodic initial conditions profile were used
throughout.

For &€ = 0.39 (Fig. 4(a)) a snapshot of the spatial pattern reveals
a unique coherent pattern, which breaks down as ¢ is decreased
(Fig. 4(c)) and results in a chimera with further decrease (Fig. 4(e)).

0.675— @ 1 - (b)
0.66 051~ B
I——t—— o ——

[ — e ! @
08| . H H

0 ‘ 0 \
0 250 500 0 250 500

1

Fig. 4. Snapshots of the spatial pattern for N =501 coupled chaotic logistic maps
(a=0.38) in the form (8), with normalized coupling radius r =0.32 (P = 160),
smoothness parameter @ = 0.006 and coupling strength € = (a) 0.39; (c) 0.33, (e)
0.29, and (g) 0.0. (b), (d), (f) and (g) show the local order parameter corresponding
to the snapshots at the lefthandside.

This chimera eventually disappears into a completely incoherent
state as we switch off the coupling (Fig. 4(g)).

We can describe the transition from a completely ordered to a
completely disordered pattern by using the local order parameter
proposed in Refs. [25,26]. Denoting by max ;{x!)} and min ;{x()} the
maximum and minimum values of x in a snapshot spatial pattern,
respectively, we can define a geometrical phase for the jth map as
[26]

2x0) — max;{x} — min;{x}
siny; = a d R i=1,2,....N
iny; max;{x(} — min;{x(} U )

(26)

in such a way that a spatial half-cycle is mapped onto the phase
interval [-7 /2, 7w /2]. Note that this phase definition is slightly dif-
ferent from that used in Eq. (25), where we were interested on the
loss of transversal stability of the completely synchronized state.
Here we have to adapt this definition so as to deal with spatially
coherent states, which do not need to be synchronized states.

The corresponding local order parameter magnitude is

i 1 i _
R"‘;&T&Tm)ge i, (k=1,2,....N) (27)

where the summation is restricted to the interval of j-values such
that

J_i

C:NN

<38(N), (28)

where §(N)— 0 for N— oco.

Basically the local order parameter quantifies the spatial order
in the neighborhood of a given site, for it takes on values near the
unity within coherent domains, and lesser values within incoher-
ent domains in a chimera. In fact, the local order parameter is uni-
formly equal to the unity for the coherent pattern (Fig. 4(b)). Parts

= —(a) E (b)
0.75 — = [

0.5 =

0.75

0.75
0.5

(h)

1~ —(@

0.75 | i

0.5 = - = |

0 250 500 0 250 500
1 1

Fig. 5. Snapshots of the spatial pattern for N =501 coupled chaotic logistic maps
(a =0.38) in the form (8), with normalized coupling radius r = 0.32 (P = 160), cou-
pling strength & = 0.19 and smoothness parameter « and (a) 0.0020; (c) 0.0014, (e)
0.011, and (g) 0.0. (b), (d), (f) and (g) show the local order parameter corresponding
to the snapshots at the lefthandside.




6 CA.S. Batista and R.L. Viana/Chaos, Solitons and Fractals 131 (2020) 109501
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Fig. 6. (a) Degree of coherence as a function of w for fixed ¢ = 0.19; (b) as a func-
tion of the coupling strength ¢ for a smoothness parameter @ = 0.006. In both cases
we considered a smoothed finite range coupling with normalized coupling radius
r=0.32 (P = 160).

of the spatial pattern outside coherent regions are marked by val-
ues of R; between 0.0 and 1.0 (Fig. 4(d), (f) and (h)).

A similar analysis can be performed fixing the coupling strength
(at € =0.19) and varying the smoothness parameter w in order to
investigate its effect on the nature of the chimeras. The sequence
of spatial pattern snapshots is shown in Fig. 5 starting from w =
0.0020, for which there is practically no chimera (Figs. 5(a)-(b))
to a state of a nascent chimera (Fig. 5(c)-(d)) to a larger chimera
(Fig. 5 (e)-(f)) and finally no chimera at all when the coupling is
pure finite range (no smoothing) (Fig. 5(g)-(h)). We conclude that
it is possible to generate chimeras by smoothing the finite range
coupling.

With help of the local order parameter, and the fact that co-
herent regions in the snapshot patterns correspond to plateaus of
R; = 1.0, we can quantify the coherent content in a given chimera
pattern by defining a quantity (degree of coherence) p by the rel-
ative mean plateau size [37]. Let N; be the length of the ith co-
herence plateau, and N, the total number of such plateaus. The
mean plateau size is N = (1/Np) 2?2’1 N;, such that the coherence
degree is p = N/N. If the snapshot exhibits a single coherent region
[e.g., in Fig. 4(a)] there is just one plateau and N = N, hence p = 1.
On the other hand, if the snapshot pattern is completely incoher-
ent [e.g., as in Fig. 5(h)], we have Ny~N, N~ 1 and p~1/N— 0 as
N — cc.

The degree of coherence is plotted in Fig. 6(a) as a function of
the coupling strength for a finite range coupling with smoothness
parameter w = 0.006, and in Fig. 6(b) as a function of w for fixed
& =0.19. In both cases we have observed a transition from total
incoherent to coherent behavior, as illustrated in Figs. 4 and 5. The
sharpest transition here is obtained by varying w, exhibiting a crit-
ical w:~0.001 (which turns out to be dependent of ¢) (Fig. 6(b)).
Fig. 6(a) also shows such a transition, for varying ¢, but the transi-
tion is interrupted and resumed for ¢ <0.25.

Actually both diagrams are cross-sections of the more com-
plete phase diagram depicted in Fig. 7, which shows the degree
of coherence (in color scale) versus both parameters, ¢ and w. It
is apparent that the changes in the smoothness parameter w are
more conspicuous when the coupling strength is either not very
small or not very large, corresponding to a strip 0.2 <¢ <0.35.
Within this range the smoothing effect is complicated and depends
on details of the spatio-temporal dynamics of the coupled map
lattice.

We finish this Section by presenting results for different val-
ues of the normalized coupling radius, what brings about the
possibility of multiple chimeras at non-symmetric positions along
the lattice. In Fig. 8 we show snapshots of spatial patterns for
coupling strength & = 0.29 and smoothness parameter w = 0.006,
with three different values of the coupling radius. The varia-
tion of the degree of coherence with w and ¢ are depicted
in Fig. 9(a) and (b), respectively, for two values of the cou-
pling radius. These results suggest that the present diagnostic of
spatial coherence is useful in situations with multiple chimera
states.

0 0.002

0.004

®

0.006 0.008 0.01

Fig. 7. Degree of coherence (in colorscale) as a function of the coupling strength & and smoothness parameter w, for a smoothed finite range coupling with normalized

coupling radius r = 0.32 (P = 160).
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Fig. 8. Snapshots of the spatial pattern for N = 501 coupled chaotic logistic maps

(a=0.38) in the form (8), with coupling strength & = 0.29, smoothness parameter
w = 0.006 and coupling radius (a) P = 30, (b) 60, and (c) 120.
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Fig. 9. (a) Degree of coherence as a function of the smoothness parameter w, for
fixed ¢ =0.18; (b) as a function of the coupling strength ¢ for fixed w = 0.004.
In both cases we considered a smoothed finite range coupling with two different
coupling radius, namely P = 60 and 120.

6. Conclusions

In this work we present a generalized formulation of coupled
map lattices, where the coupling among maps is non-local, for it
considers not only the nearest neighbors but virtually all the lattice
sites as well. The coupling strength, in this case, was supposed to
depend on the lattice distance through a range function which may
take on different forms, bringing about some known prescriptions
like global, finite-range, power-law and exponential decay. In par-

ticular, we introduce a new non-local coupling prescription, which
is a smoothed version of the finite-range type.

Analytical results were given for the Lyapunov spectrum of
coupled Bernoulli (piecewise-linear chaotic) maps in terms of
the range function, with application to the specific case of the
smoothed finite-range prescription. The knowledge of the Lya-
punov spectrum is also useful to discuss the transversal stabil-
ity of the completely synchronized state of coupled chaotic maps.
The synchronization manifold is transversely unstable if the sec-
ond largest Lyapunov exponent is greater than zero. The analyti-
cal results we obtained for the completely synchronized state of a
chaotic logistic (Ulam) map are in agreement with numerical esti-
mates using a complex order parameter.

In the sequence we consider snapshots of spatial patterns gen-
erated by coupled map lattices with a smoothed finite-range. We
obtained situations in which there is a transition from a coher-
ent (yet not completely synchronized) to a completely incoherent
state as both the coupling strength or the coupling range are var-
ied. Using a suitable numerical diagnostic, based on the local or-
der parameter and the counting of coherent plateaus, we analyzed
how the degree of coherence varies with both the coupling range
and strength. In particular, transitions from coherent to incoherent
were observed as those parameters were varied.

Our results open the possibility of treating in an equal foot
many different types of nonlocal couplings, and even of compar-
ing them using similar tools. This is specially important in cases
where some properties are thought to depend on the kind of non-
local range function, like the question of permanent versus tran-
sient chimeras. We expect future developments along this and
other lines of research.
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