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a b s t r a c t 

Coupled map lattices are spatially extended systems in which both space and time are discrete but allow- 

ing a continuous state variable. They have been intensively studied since they present a rich spatiotem- 

poral dynamics, including intermittency, chimeras, and turbulence. Nonlocally coupled lattices occur in 

many problems of physical and biological interest, like the interaction among cells mediated by the dif- 

fusion of some chemical. In this work we investigate general features of the nonlocal coupling among 

maps in a regular lattice, focusing on the Lyapunov spectrum of coupled chaotic maps. This knowledge 

is useful for determining the stability of completely synchronized states. One of the types of nonlocal 

coupling investigated in this work is a smoothed finite range coupling, for which chimeras are exhibited 

and characterized using quantitative measures. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Coupled map lattices have been used for a long time as mathe-

atical models of spatially extended dynamical systems, for which

oth space and time are discrete, but allowing a continuous state

ariable [1] . One way to derive such spatially extended systems is

o consider a diffusion-reaction system (partial differential equa-

ion) with a pulsed reaction term [2] , what provides a natural way

o discretize the time evolution. In this case coupling is generated

y discretizing the second spatial derivative contained in the dif-

usion term, resulting in a lattice where each site is coupled to

ts nearest neighbors. Such locally coupled lattices were studied by

aneko since the early 1980’s, with a wealth of numerical results

vailable [3,4] . 

One of the outstanding dynamical phenomena presented by

uch system is the capability of synchronize complicated motions

ue to the coupling effect. The phenomenon of collective syn-

hronization of flashing fireflies has brought into attention another

orm of coupling, in which each oscillator is coupled to the mean

eld produced by all other sites [5] . This kind of global coupling

as popularized by the Kuramoto model of coupled oscillator [6] ,

nd adapted to coupled map lattices by Kaneko, who investigated

any properties of this type of nonlocal coupling [7,8] . 
∗ Corresponding author. 
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The general characteristic of nonlocal couplings is the interac-

ion among a given site with all its neighbors. Kuramoto has pro-

ided an interesting physical setting where such coupling arise

aturally: an assembly of oscillator (“cells”) is such that their cou-

ling is mediated by the diffusion of some chemical [9] . This

hemical is released by each oscillator with a rate dependent of

ts own dynamics, and the latter is affected by the local concen-

ration of that chemical [10] . If the diffusion time is so short that

he chemical concentration relaxes immediately to its equilibrium

alue, it has been shown that the coupling intensity decays ex-

onentially with the lattice distance, in the one-dimensional case

11] . The dynamical properties of such lattices have been recently

nvestigated, such as bursting synchronization [12] , frequency syn-

hronization [13] and complete synchronization of chaos [14] . 

One of the outstanding biological problems which can be

odeled using a type of nonlocal coupling, where the coupling

trength depends in some way on the individual dynamics of the

ells is the synchronization among cells of the suprachiasmatic nu-

leus (SCN) in the brain hypothalamus [15,16] . The SCN is an as-

embly of clock cells whose synchronized dynamics is responsible

or the circadian rhythm in mammals [17,18] . The coupling among

CN cells is thought to be mediated by the release and absorption

f a neurotransmitter like GABA or VIP [19–23] . 

A related kind of nonlocal coupling consists in considering the

oupling strength as decreasing with the lattice distance as a

ower-law, instead of an exponential function [24] . Another form

f nonlocal coupling consists on taking only a finite number of

eighbors of a given site (finite range), and has been often used to

https://doi.org/10.1016/j.chaos.2019.109501
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
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Fig. 1. Range function for some kinds of nonlocal coupling prescription: (a) finite 

range coupling (dashed line), smoothed finite-range coupling (full line); (b) expo- 

nential decay (full line), power-law decay (dashed line). 
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investigate complicated spatiotemporal patterns like chimeras [25–

27] . Trigonometric forms for the nonlocal dependence have been

given much attention [28–30] . A current line of investigation in-

volves the design of coupling functions capable of yielding desired

responses, like synchronization and oscillator death [31,32] . 

In this work we propose a general approach to coupled map lat-

tices with nonlocal coupling represented by a range function which

has a small number of mathematical requirements. The known ex-

pressions for coupling show up as particular choices of the range

function. We explore some dynamical properties of such coupled

lattices, like the Lyapunov spectrum for a lattice of coupled piece-

wise linear chaotic maps, where analytical results can be obtained

[33,34] . This knowledge is useful to determine the transversal sta-

bility properties of the completely synchronized state [35] . Exam-

ples are given for a smoothed finite range coupling, which can be

used to investigate differences among smooth and piecewise lin-

ear range functions. Moreover, we consider also the formation of

chimera in lattices of coupled chaotic maps with smoothed finite

range coupling, and applied some numerical diagnostics of spatial

coherence. One of these diagnostics is a local version of the well-

known Kuramoto order parameter [25,26] , which is able to distin-

guish spatially coherent from incoherent patterns. We count the

plateaus of the local order parameter according to a measure of

local coherence (average plateau size) [36] . 

This paper is organized as follows. Section 2 presents a gen-

eral framework to describe long-range coupling, by introducing a

range function. The Lyapunov spectrum of a coupled map lattice

with a general range function is obtained in Section 3 for the case

of coupled piecewise-linear chaotic maps. Section 4 contains an

application of the Lyapunov spectrum to the transversal stability

properties of a lattice of coupled chaotic maps. Numerical results

on chimera formation and characterization for a smoothed finite-

range coupling are shown in Section 5 . The last Section contains

our conclusions. 

2. General long-range coupling 

Most investigations of the spatiotemporal dynamics in discrete

time use the so-called local coupling, in which each map x → f ( x )

is coupled to its nearest neighbors, in the form 

x (i ) 
n +1 

= (1 − ε) f 
(
x (i ) 

n 

)
+ 

ε 

2 

[
f 
(
x (i −1) 

n 

)
+ f 

(
x (i +1) 

n 

)]
, (1)

where x (i ) 
n is the state variable at discrete time n and belonging to

a chain of N identical systems, such that i = 1 , 2 , . . . , N; ε stand-

ing for the coupling strength. This type of coupling is also called

laplacian since it represents the discretization of a second deriva-

tive with respect to the position along a one-dimensional lattice

[3] . It is straightforwardly generalized to a higher-dimensional lat-

tice. 

By way of contrast, in a globally coupled map lattice, each map

is coupled to the “mean field” generated by all other sites, irre-

spective of their relative position [7] 

x (i ) 
n +1 

= (1 − ε) f 
(
x (i ) 

n 

)
+ 

ε 

N − 1 

N ∑ 

j =1 , j � = i 
f 
(
x ( j) 

n 

)
, (2)

In the following we will consider periodic boundary conditions:

x (i ±N) 
n = x (i ) 

n and appropriate initial conditions x (i ) 
0 

, for i = 1 , . . . N. 

This type of coupling is nonlocal, in the sense that it consid-

ers the coupling with other neighbors than the nearest ones. Many

different nonlocal couplings have been proposed since then. The

finite-range coupling is an immediate generalization of the local

coupling, but it takes into account the P nearest neighbors of a
iven site in a lattice of N sites [dashed line in Fig. 1 (a)] [25] : 

 

(i ) 
n +1 

= (1 − ε) f 
(
x (i ) 

n 

)
+ 

ε 

2 P 

P ∑ 

j=1 

[
f 
(
x (i − j) 

n 

)
+ f 

(
x (i + j) 

n 

)]
, (3)

here P ≤ N 

′ = (N − 1) / 2 is the coupling radius, which can vary

etween P = 1 (local coupling) to P = (N − 1) / 2 (global coupling).

imilarly we can define a normalized coupling radius r = P/N. This

oupling has been extensively used in numerical investigations of

himeras for coupled chaotic maps [26,27] . 

Another type of nonlocal coupling arises in models of pointlike

ynamical systems (hereafter represented by maps) whose inter-

ction is mediated by the fast diffusion of some chemical into the

edium in which the systems are embedded [9] . In this case each

ystem (like a biological cell) releases a chemical with a rate de-

ending on its own dynamics. The dynamics of other maps is af-

ected by the local concentration of this chemical. Kuramoto has

hown that, provided the diffusion is fast enough, the coupling in

ne spatial dimension is nonlocal, the relative coupling strength

ecreasing exponentially with the lattice position with a decay rate

[full line in Fig. 1 (b)] [10,11] : 

 

(i ) 
n +1 

= (1 − ε) f 
(
x (i ) 

n 

)
+ 

ε 

η(α) 

N ′ ∑ 

j=1 

e −α j 
[

f 
(
x (i − j) 

n 

)
+ f 

(
x (i + j) 

n 

)]
, (4)

here N 

′ = (N − 1) / 2 and the normalization factor is η(α) =
 

∑ N ′ 
j=1 e 

−α j . It is easy to show that, if α → 0 we obtain the glob-

lly coupled lattice (2) , whereas α → ∞ gives the local coupling (1) .

ence we may consider α a variable range parameter. 

A related model considers the relative coupling strength as de-

reasing with the lattice position in a power-law fashion with ex-

onent α [dashed line in Fig. 1 (a)] [24] : 

 

(i ) 
n +1 

= (1 − ε) f 
(
x (i ) 

n 

)
+ 

ε 

η(α) 

N ′ ∑ 

j=1 

j −α
[

f 
(
x (i − j) 

n 

)
+ f 

(
x (i + j) 

n 

)]
, (5)

here the normalization factor is η(α) = 2 
∑ N ′ 

j=1 j 
−α . The limit-

ng behavior as α varies from zero to infinity is the same as be-
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ore. This model has been used in various studies on the influ-

nce of coupling nonlocality in dynamical properties like synchro-

ization [37–39] , bubbling bifurcation [35] , decay of spatial corre-

ations [40] , short-time memories [41] , and collective behavior in

euronal networks [42] . 

These models can be treated as particular cases of a general

ong-range coupling given by 

 

(i ) 
n +1 

= (1 − ε) f 
(
x (i ) 

n 

)
+ 

ε 

η(α) 

N ′ ∑ 

j=1 

φα( j) 
[

f 
(
x (i − j) 

n 

)
+ f 

(
x (i + j) 

n 

)]
, 

(6) 

here the range function φα( j ) is a monotonically decreasing func-

ion of the lattice distance j . In the cases of our immediate inter-

st, we have a monotonically decreasing function of j , such that

α( s ) → 0 for large j . However, this is not a mathematical require-

ent, and some range functions that have been used in the lit-

rature do not satisfy it, as trigonometric functions like φα( j) =
1 + α cos (π j)] / 2 for example [28–30] . 

Apart from those cases, for the chemical coupling (4) we have a

ange function φα( j) = exp (−α j) , whereas for the power-law cou-

ling (5) φα( j) = j −α, both monotonically decreasing with j . The

nite range coupling (3) is such that α = 1 + [(2 P + 1) /N] and the

ange function is φα( j) = 1 − H( j − P ) , where H ( x ) is the Heaviside

nit step function. In all those cases the normalization factor reads

(α) = 2 

N ′ ∑ 

j=1 

φα( j) . (7)

Note that, as α → 0 we have η(α) → N − 1 and thus

im α→ 0 φα( j) = 1 . On the other hand, if α → ∞ we have η( α) → 2

nd thus lim α→∞ 

( j) = δ j1 , which vanishes provided j � = 1. Since

he finite-range coupling is characterized by a piecewise continu-

us range function, it is interesting also to investigate the case of

 smoothed finite range [full line in Fig. 1 (b)]: 

α( j) = 

1 

2 

{ 1 − tanh [ ω( j − P ) ] } , (8) 

here ω is a smoothing parameter and the range parameter α =
 + [(2 P + 1) /N] like in the finite-range coupling. 

. Lyapunov spectrum 

The general coupling in Eq. (6) can be written in a compact way

s 

 n +1 = F (x n ) , (9)

here x n = (x (1) 
n , . . . x (N) 

n ) 
T 

and F is the corresponding vector field.

e consider the tangent vector ξn = (δx (1) 
n , . . . δx (N) 

n ) 
T 
, whose time

volution is given by linearizing the vector field of the coupled

ap lattice: 

n +1 = T n ξn , (10) 

here T n = DF (x n ) is the Jacobian matrix. 

We form the time-ordered product τn = T n −1 . . . T 1 T 0 and the

orresponding matrix 

ˆ = lim 

n →∞ 

(
τT 

n τn 

)1 / 2 n 
, (11) 

ith eigenvalues { 	i } N i =1 . The Lyapunov exponents are thus 

k = ln 	k , (k = 1 , 2 , . . . , N) . (12)

hanging the summation indices in (6) it is straightforward to

how that the Jacobian matrix elements are 

 

(ik ) 
n = (1 − ε) f ′ 

(
x (i ) 

n 

)
δik + 

ε 

η(α) 
φα(r i j ) f 

′ (x (k ) 
n 

)(
1 − δ jk 

)
, (13)
here the primes denote differentiation with respect to the argu-

ent. 

Let us consider as an example the Bernoulli map, for which

 ∈ [0, 1) and the map is piecewise linear, f (x ) = ax (mod 1), with

onstant slope f ′ (x ) = a . If a > 1 the dynamics is strongly chaotic

or almost all initial conditions (i.e., up to a measure zero set of

ventually periodic points), with Lyapunov exponent ln a > 0. Since

e are working with periodic boundary conditions the correspond-

ng Jacobian is a circulant matrix, whose eigenvalues are given by

rigonometric sums, such that the Lyapunov exponents are given

y 

k = ln a + ln 

∣∣∣∣1 − ε 

(
1 − b k 

η(α) 

)∣∣∣∣, (k = 1 , 2 , . . . , N) , (14)

here 

 k = 2 

N ′ ∑ 

j=1 

φα( j ) cos 

(
2 π j k 

N 

)
. (15)

t is possible to obtain exact analytical expressions for the lat-

er coefficients in the nonlocal types of coupling mentioned in

he previous Section. In the cases of power-law and exponentially-

ecaying couplings the corresponding Lyapunov exponents were

btained in Refs. [33,34] and [14] , respectively. For the finite-range

oupling (3) , for example, we have 

 k = 2 

P ∑ 

j=1 

cos 

(
2 π jk 

N 

)
= −1 + 

sin 

[(
P + 

1 
2 

)
2 πk 

N 

]
sin 

(
πk 
N 

) (16)

here we used Lagrange’s trigonometric identity. The Lyapunov

pectrum is obtained plugging (16) into (14) and using η(α) = 2 P . 

Let us examine the limiting cases of the resulting expression.

or a global coupling 2 P = N − 1 and we obtain immediately the

ell-known expression 

k = 

{
ln a + ln 

∣∣1 − ε N 
N−1 

∣∣ for k � = N 

ln a, for k = N 

(17) 

n the other hand, for local coupling we set P = 1 and obtain, after

ome elementary algebra, 

k = ln a + ln 

∣∣∣∣1 − 2 ε sin 

2 

(
πk 

N 

)∣∣∣∣ (18) 

inally let us explore the case of a smoothed finite-range coupling,

or which the range function is given by (8) , with two variable pa-

ameters: the smoothness parameter ω and the normalized cou-

ling radius r = P/N. For ω = 0 we recover the abovementioned fi-

ite range coupling. The Lyapunov spectrum of a coupled map lat-

ice built upon this prescription is shown in Fig. 2 for some values

f ω and r . The spectrum is symmetric with respect to k = N/ 2 .

ost exponents take on values near 0.537. According to (17) the

yapunov spectrum for a global coupling, which corresponds to a

nite range coupling with maximum coupling radius r = 0 . 5 , ex-

ibits a (N − 1) -fold degeneracy. This degeneracy is partially lifted

or smaller coupling radius and is further modified by smoothing

ffects, as illustrated in Fig. 2 (a): the Lyapunov exponents present

damped oscillations” around a constant value reminiscent of the

egeneracy of the global case. In fact, for higher ω this effect is

ore pronounced, and the “damping” lasts longer ( Fig. 2 (b)). 

. Complete synchronization 

Another instance where the knowledge of a closed-form ex-

ression for the Lyapunov exponent is useful is the analysis of the

ransversal stability of a completely synchronized state. For a cou-

led map lattice of the general form (6) with some map f ( x ) it

urns out that the completely synchronized state 

 

(1) 
n = x (2) 

n = . . . x (N) 
n ≡ x ∗n (19)
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Fig. 2. (a) Lyapunov spectrum of the smoothed finite range coupling, (b) magnification of a selected region of (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Parameter values for which the completely synchronized state of the cou- 

pled map lattice (6) loses transversal stability, for different lattice sizes. The full 

lines represent the theoretical prediction based on the Lyapunov spectrum, whereas 

points represent numerical estimates based on the order parameter (25) . 
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is actually a solution since it implies that x ∗n = f (x ∗n ) for all times.

A major question is, in this case, if this synchronization state is

stable under general transversal perturbations. 

Answering this question is equivalent to determine the eigen-

values of the matrix ˆ �(x ∗) computed in the completely synchro-

nized state (19) . One of the Lyapunov exponents is obviously along

the synchronization manifold defined by (19) . A similar calculation

gives, for the N − 1 remaining transversal Lyapunov exponents, 

λ∗
k = λU + ln 

∣∣∣∣1 − ε 

(
1 − b k 

η(α) 

)∣∣∣∣, (k = 1 , 2 , . . . , N − 1) , (20)

where λU is the Lyapunov exponent of each map. For example, the

Ulam map f (x ) = 4 x (1 − x ) , with x ∈ [0, 1), is topologically conju-

gate to the Bernoulli map with a = 2 and thus has λU = ln 2 , and

so is strongly chaotic (transitive). 

For the completely synchronized state to be transversely unsta-

ble it is sufficient to show that the maximal exponent is positive,

i.e. λ∗
2 > 0 . It turns out that the synchronized state is transversely

stable provided ε c ≤ ε ≤ ε ′ c , where 

ε c = 

(
1 − e −λU 

)(
1 − b 1 

η(α) 

)−1 

, (21)

ε ′ c = 

(
1 − e −λU 

)(
1 − b N ′ 

η(α) 

)−1 

, (22)

and, following (15) , 

b 1 = 2 

N ′ ∑ 

j=1 

φα( j) cos 

(
2 π j 

N 

)
, (23)

b N ′ = 2 

N ′ ∑ 

j=1 

φα( j) cos 

(
π(N − 1) j 

N 

)
, (24)

This condition leads to accurate predictions of the loss of transver-

sal stability of the completely synchronized state. 

The loss of transversal stability of the completely synchronized

state can also be numerically determined by computing the order

parameter of the coupled map lattice (6) , defined as [43,44] 

z n = R n e 
iϕ n = 

1 

N 

N ∑ 

j=1 

e 2 π ix ( j) 
n . (25)

The quantities R n and ϕn ∈ [0, 2 π ) are respectively the amplitude

and angle of a rotating vector equal to the vector sum of phasors

for each state variable in a one-dimensional lattice with periodic

boundary conditions. For a completely synchronized state the or-

der parameter magnitude is R n = 1 for all time n . On the other

hand, in a completely non-synchronized state, for which the phase

angles are uniformly distributed over [0, 2 π ), R n ≈ 0. The case
 < R n < 1 represents a partially synchronized state. We can numer-

cally verify that the totally synchronized state has lost transversal

tability if R n (for a given time n so large that the transients have

ied out) becomes less than a specified threshold, namely 0.97

small variations in this value do not produce substantial changes

n our results). 

In Fig. 3 we plot, in the parameter plane ε versus ω, the points

or which the completely synchronized state has lost transver-

al stability, for different lattice sizes N . The full lines represent

he theoretical values predicted by Eqs. (21) –(22) , showing a good

greement with numerical values. 

. Chimeras for a smoothed finite-range coupling 

A great deal of the current research involving chimeras is fo-

used on non-locally coupled dynamical systems, from partial dif-

erential equations (like complex Ginzburg-Landau equation), to or-

inary differential equations (like Rössler equations) and coupled

ap lattices. However, it should be remarked that the nonlocality

f the coupling is not an essential condition for the existence of

himeras [45] . 

As for the latter, one of the most used non-local coupling pre-

criptions is the finite range (3) . One outstanding feature of the
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esults obtained for this system is that there are chimeras which

ast during a large timespan. Up to some maximum value used in

umerical simulations, one can say that those chimeras are perma-

ent. 

Other nonlocal coupling prescriptions, like power-law and

hemical ones, however, typically show transient chimeras with

uite small timespan. A fundamental difference between these

orms and the finite range coupling is that the latter is piecewise

ontinuous, whereas the former are smoothly decaying range func-

ions. Hence the question arises whether or not the timespan of

he chimeras could be related to the smoothness of the range func-

ion. 

In the following we shall consider a nonlocally coupled lattice

s given by (6) , with the smoothed finite range coupling given by

8) . The latter has a smoothing parameter γ which can be varied

o as to investigate the transition between a piecewise continuous

nd a smooth nonlocal coupling prescription. The local dynamics is

iven by the logistic map f (x ) = ax (1 − x ) , with a = 3 . 8 , such that

he uncoupled maps display chaotic behavior. 

The numerical simulations we present in this Section were per-

ormed with a lattice of N sites, periodic boundary conditions:

 

(i ±N) 
n = x (i ) 

n and initial condition profiles x (i ) 
0 

representing interpo-

ations of periodic functions. Fig. 4 shows snapshots of the spa-

ial pattern for N = 501 maps with coupling radius r = 0 . 32 , which

orresponds to P = rN = 160 neighbors at each side of a given

ap, and to a range parameter of α = 1 + [(2 P + 1) /N] = 1 . 64 .

he smoothness parameter ω is kept fixed at 0.006, and varying

oupling strength ε. Periodic initial conditions profile were used

hroughout. 

For ε = 0 . 39 ( Fig. 4 (a)) a snapshot of the spatial pattern reveals

 unique coherent pattern, which breaks down as ε is decreased

 Fig. 4 (c)) and results in a chimera with further decrease ( Fig. 4 (e)).
ig. 4. Snapshots of the spatial pattern for N = 501 coupled chaotic logistic maps 

 a = 0 . 38 ) in the form (8) , with normalized coupling radius r = 0 . 32 ( P = 160 ), 

moothness parameter ω = 0 . 006 and coupling strength ε = (a) 0.39; (c) 0.33, (e) 

.29, and (g) 0.0. (b), (d), (f) and (g) show the local order parameter corresponding 

o the snapshots at the lefthandside. 

u  

e  

f  

F

(

p

0

t

his chimera eventually disappears into a completely incoherent

tate as we switch off the coupling ( Fig. 4 (g)). 

We can describe the transition from a completely ordered to a

ompletely disordered pattern by using the local order parameter

roposed in Refs. [25,26] . Denoting by max j { x 
( j ) } and min j { x 

( j ) } the

aximum and minimum values of x in a snapshot spatial pattern,

espectively, we can define a geometrical phase for the j th map as

26] 

in ψ j = 

2 x ( j) − max j { x ( j) } − min j { x ( j) } 
max j { x ( j) } − min j { x ( j) } , ( j = 1 , 2 , . . . , N) 

(26) 

n such a way that a spatial half-cycle is mapped onto the phase

nterval [ −π/ 2 , π/ 2] . Note that this phase definition is slightly dif-

erent from that used in Eq. (25) , where we were interested on the

oss of transversal stability of the completely synchronized state.

ere we have to adapt this definition so as to deal with spatially

oherent states, which do not need to be synchronized states. 

The corresponding local order parameter magnitude is 

 k = lim 

N→∞ 

1 

2 δ(N) 

∣∣∣∣∣
∑ 

j∈ C 
e iψ j 

∣∣∣∣∣, (k = 1 , 2 , . . . , N) (27)

here the summation is restricted to the interval of j -values such

hat 

 : 

∣∣∣∣ j 

N 

− i 

N 

∣∣∣∣ ≤ δ(N) , (28) 

here δ( N ) → 0 for N → ∞ . 

Basically the local order parameter quantifies the spatial order

n the neighborhood of a given site, for it takes on values near the

nity within coherent domains, and lesser values within incoher-

nt domains in a chimera. In fact, the local order parameter is uni-

ormly equal to the unity for the coherent pattern ( Fig. 4 (b)). Parts
ig. 5. Snapshots of the spatial pattern for N = 501 coupled chaotic logistic maps 

 a = 0 . 38 ) in the form (8) , with normalized coupling radius r = 0 . 32 ( P = 160 ), cou- 

ling strength ε = 0 . 19 and smoothness parameter ω and (a) 0.0020; (c) 0.0014, (e) 

.011, and (g) 0.0. (b), (d), (f) and (g) show the local order parameter corresponding 

o the snapshots at the lefthandside. 
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Fig. 6. (a) Degree of coherence as a function of ω for fixed ε = 0 . 19 ; (b) as a func- 

tion of the coupling strength ε for a smoothness parameter ω = 0 . 006 . In both cases 

we considered a smoothed finite range coupling with normalized coupling radius 

r = 0 . 32 ( P = 160 ). 
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states. 
of the spatial pattern outside coherent regions are marked by val-

ues of R i between 0.0 and 1.0 ( Fig. 4 (d), (f) and (h)). 

A similar analysis can be performed fixing the coupling strength

(at ε = 0 . 19 ) and varying the smoothness parameter ω in order to

investigate its effect on the nature of the chimeras. The sequence

of spatial pattern snapshots is shown in Fig. 5 starting from ω =
0 . 0020 , for which there is practically no chimera ( Figs. 5 (a)-(b))

to a state of a nascent chimera ( Fig. 5 (c)-(d)) to a larger chimera

( Fig. 5 (e)-(f)) and finally no chimera at all when the coupling is

pure finite range (no smoothing) ( Fig. 5 (g)-(h)). We conclude that

it is possible to generate chimeras by smoothing the finite range

coupling. 
Fig. 7. Degree of coherence (in colorscale) as a function of the coupling strength ε and

coupling radius r = 0 . 32 ( P = 160 ). 
With help of the local order parameter, and the fact that co-

erent regions in the snapshot patterns correspond to plateaus of

 i = 1 . 0 , we can quantify the coherent content in a given chimera

attern by defining a quantity (degree of coherence) p by the rel-

tive mean plateau size [37] . Let N i be the length of the i th co-

erence plateau, and N p the total number of such plateaus. The

ean plateau size is ˜ N = (1 /N p ) 
∑ N p 

i =1 
N i , such that the coherence

egree is p = 

˜ N /N. If the snapshot exhibits a single coherent region

e.g., in Fig. 4 (a)] there is just one plateau and 

˜ N = N, hence p = 1 .

n the other hand, if the snapshot pattern is completely incoher-

nt [e.g., as in Fig. 5 (h)], we have N p ≈ N , ˜ N ≈ 1 and p ≈ 1/ N → 0 as

 → ∞ . 

The degree of coherence is plotted in Fig. 6 (a) as a function of

he coupling strength for a finite range coupling with smoothness

arameter ω = 0 . 006 , and in Fig. 6 (b) as a function of ω for fixed

 = 0 . 19 . In both cases we have observed a transition from total

ncoherent to coherent behavior, as illustrated in Figs. 4 and 5 . The

harpest transition here is obtained by varying ω, exhibiting a crit-

cal ω c ≈ 0.001 (which turns out to be dependent of ε) ( Fig. 6 (b)).

ig. 6 (a) also shows such a transition, for varying ε, but the transi-

ion is interrupted and resumed for ε � 0.25. 

Actually both diagrams are cross-sections of the more com-

lete phase diagram depicted in Fig. 7 , which shows the degree

f coherence (in color scale) versus both parameters, ε and ω. It

s apparent that the changes in the smoothness parameter ω are

ore conspicuous when the coupling strength is either not very

mall or not very large, corresponding to a strip 0.2 � ε � 0.35.

ithin this range the smoothing effect is complicated and depends

n details of the spatio-temporal dynamics of the coupled map

attice. 

We finish this Section by presenting results for different val-

es of the normalized coupling radius, what brings about the

ossibility of multiple chimeras at non-symmetric positions along

he lattice. In Fig. 8 we show snapshots of spatial patterns for

oupling strength ε = 0 . 29 and smoothness parameter ω = 0 . 006 ,

ith three different values of the coupling radius. The varia-

ion of the degree of coherence with ω and ε are depicted

n Fig. 9 (a) and (b), respectively, for two values of the cou-

ling radius. These results suggest that the present diagnostic of

patial coherence is useful in situations with multiple chimera
 smoothness parameter ω, for a smoothed finite range coupling with normalized 
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Fig. 8. Snapshots of the spatial pattern for N = 501 coupled chaotic logistic maps 

( a = 0 . 38 ) in the form (8) , with coupling strength ε = 0 . 29 , smoothness parameter 

ω = 0 . 006 and coupling radius (a) P = 30 , (b) 60, and (c) 120. 

Fig. 9. (a) Degree of coherence as a function of the smoothness parameter ω, for 

fixed ε = 0 . 18 ; (b) as a function of the coupling strength ε for fixed ω = 0 . 004 . 

In both cases we considered a smoothed finite range coupling with two different 

coupling radius, namely P = 60 and 120. 
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. Conclusions 

In this work we present a generalized formulation of coupled

ap lattices, where the coupling among maps is non-local, for it

onsiders not only the nearest neighbors but virtually all the lattice

ites as well. The coupling strength, in this case, was supposed to

epend on the lattice distance through a range function which may

ake on different forms, bringing about some known prescriptions

ike global, finite-range, power-law and exponential decay. In par-
icular, we introduce a new non-local coupling prescription, which

s a smoothed version of the finite-range type. 

Analytical results were given for the Lyapunov spectrum of

oupled Bernoulli (piecewise-linear chaotic) maps in terms of

he range function, with application to the specific case of the

moothed finite-range prescription. The knowledge of the Lya-

unov spectrum is also useful to discuss the transversal stabil-

ty of the completely synchronized state of coupled chaotic maps.

he synchronization manifold is transversely unstable if the sec-

nd largest Lyapunov exponent is greater than zero. The analyti-

al results we obtained for the completely synchronized state of a

haotic logistic (Ulam) map are in agreement with numerical esti-

ates using a complex order parameter. 

In the sequence we consider snapshots of spatial patterns gen-

rated by coupled map lattices with a smoothed finite-range. We

btained situations in which there is a transition from a coher-

nt (yet not completely synchronized) to a completely incoherent

tate as both the coupling strength or the coupling range are var-

ed. Using a suitable numerical diagnostic, based on the local or-

er parameter and the counting of coherent plateaus, we analyzed

ow the degree of coherence varies with both the coupling range

nd strength. In particular, transitions from coherent to incoherent

ere observed as those parameters were varied. 

Our results open the possibility of treating in an equal foot

any different types of nonlocal couplings, and even of compar-

ng them using similar tools. This is specially important in cases

here some properties are thought to depend on the kind of non-

ocal range function, like the question of permanent versus tran-

ient chimeras. We expect future developments along this and

ther lines of research. 
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