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Abstract
When subjected to a strong magnetic field, plasmas can exhibit anisotropy in the directions parallel and perpendicular to the
field. The magnetohydrodynamics (MHD) equilibrium equation under the hypothesis of Chew, Goldberger, and Low of an
anisotropic pressure tensor is solved analytically, using a previously known solution of the isotropic case in oblate spheroidal
coordinates. The effects of the anisotropy on the magnetic fields and on the current density are investigated, and the radial
profiles of the pressures along and across the magnetic field are studied.
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1 Introduction

One of the basic hypotheses of magnetohydrodynamics
(MHD) is that collisions among plasma particles are so
frequent that it is possible to use a fluid description, i.e.,
the mean collision time should be very low, compared to a
characteristic time of the plasma discharge [1]. However, if
the plasma is immersed in a strong magnetic field, as it is
often the case in fusion applications, particle gyration with
a small Larmor radius can justify a fluid approach, even if
the collisionality is not so high as usually required [2].

In this case, the particle motion is quite different along in
directions parallel and perpendicular to the strong magnetic
field: whereas in the parallel direction we have the fast
guiding center motion, in the perpendicular direction the
dominant motion is the E × B drift. Since the latter has
the same velocity for both electrons and positive ions, the
average kinetic energy will be different in these directions.

This anisotropy under a strong magnetic field has been
described by Chew, Goldberger, and Low (CGL) in the form
of a diagonal pressure tensor with different components in
directions parallel and perpendicular to the field [3]. Using an
approximation scheme to solve the corresponding Boltzmann
equation, different energy equations have been derived
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81531-990, Curitiba, Paraná, Brazil

along parallel and perpendicular directions, the so-called
double-adiabatic equations [4]. This approach has been
used for a long time in the description of fusion plasmas
subjected to heating through neutral-beam injection (NBI),
ion cyclotron resonance heating (ICRH), and electron
cyclotron resonance heating (ECRH) [5, 6], and also applied
to space plasmas, like in the study of the interaction between
solar wind and Earth’s magnetosheath [7].

The starting point in magnetic confinement theory lies in
obtaining physically acceptable ideal MHD equilibria [8]. In
the case of asymmetric toroidal configurations, this usually
means solving the Grad-Shafranov-Schlüter (GSS) equation
in the case of isotropic plasmas [9–11]. The corresponding
problem for anisotropic plasmas was first addressed by
Mercier and Cotsaftis, who derived a MHD equilibrium
equation using the CGL form of the pressure tensor, also
studying the MHD stability of the resulting equilibrium
configurations [12]. The Mercier-Cotsaftis equation reduces
to GSS equation as the plasma becomes isotropic [13].

The Mercier-Cotsaftis equation has been investigated for
deriving anisotropic toroidal equilibria both numerically
[14–16] and using analytical approximations [17–19]. In
1993, Clemente introduced an integral transform on the
flux function which enables us to rewrite the anisotropic
Mercier-Cotsaftis equation in the form of a GSS equation
[20]. If one knows a solution of the latter, for specified
current and pressure profiles, it is formally possible to invert
the transformation and obtain a corresponding solution
for the anisotropic case. In the same paper, Clemente
has obtained a solution for the anisotropic equation for
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cylindrical coordinates starting from a known analytical
solution for the isotropic case [21, 22]. Recently, we
generalized Clemente’s approach for an arbitrary curvilinear
coordinate system and applied the formalism to solutions in
cylindrical and spherical geometries [23].

Compact toroid configurations, like spheromaks, are
an alternative to the tokamak in magnetic confinement
research, having the main advantage of not needing
external toroidal coils or a toroidal vessel [24]. The oblate
configuration (oblimak), of which the spheromak is a
limiting case, has been shown to be stable in the MHD limit
[25]. For these reasons, the study of the MHD equilibrium in
spheroidal-oblate (and closely related prolate) coordinates
is of relevance as well as the effects of anisotropy in the
magnetic field and current density [26, 27].

Our work can be of interest also for the description
of field-reversed configurations (FRC) like the C-2U and
C-2W experiments at Tri Alpha Energy, the latter being
currently the world’s largest FRC device in operation
[28, 29]. Such configurations have high beta values (ca
0.9), with poloidal axisymmetric magnetic field, with
practically no toroidal component. These machines require
only solenoidal coils placed outside a simply connected
vacuum vessel, and the edge layer outside of the FRC
separatrix provides a natural divertor for magnetic field line
exhaustion [28]. The combination of geometry simplicity
and high magnetic efficiency makes FRCs interesting
configurations for future fusion reactors. In particular, the
issue of anisotropic equilibria arises in this context, since
the FRC plasma in C-2W is produced by neutral beam
injection [29].

In this work, we write down the anisotropic equilibrium
equation in spheroidal oblate coordinates by considering
suitable representations for quantities like the transversal
flux function and current function. We then use the method
introduced by Clemente [20] to show how anisotropic
solutions can be obtained from a transformation of the
isotropic solution, whenever the latter is previously known.
With the anisotropic solution, we calculate the radial
profiles of the parallel and perpendicular pressures with
respect to the local magnetic field direction, and study the
effect of anisotropy in the magnetic field and current density
of the plasma.

This paper is organized as follows: In Section 2, we
present the basic equations of the present model and
their form in spheroidal coordinates. Section 3 considers
a solution of the isotropic case and its adaptation for
anisotropic equilibria through application of the Clemente
transform. The properties of the corresponding solution are
displayed in Section 4, and the last section is devoted to our
conclusions.

2 Basic Equations

When subjected to a strong magnetic field, the motion
of plasma particles has distinct features along distances
parallel and perpendicular to the field. The resulting
anisotropy can be characterized by different pressures along
parallel and perpendicular directions, denoted by p‖ and
p⊥, respectively [3]. The corresponding pressure tensor
reads

T = p⊥I + (p‖ − p⊥)
BB
B2

, (1)

where B is the magnetic field and I is the unit tensor, such
that the ideal MHD equation of motion (conservation of
linear momentum) reads [30]

ρ

[
∂V
∂t

+ (V · ∇)V
]

= −∇
(

p⊥ + B2

2μ0

)

+(B · ∇)

[
B
μ0

− p‖ − p⊥
B2

B
]

, (2)

where ρ is the mass density, V is the fluid velocity, and
μ0 is the vacuum magnetic permeability (MKSA units are
used). The parallel and perpendicular pressures satisfy the
so-called double-adiabatic equations [4]

d

dt

(
p‖B2

ρ3

)
= 0, (3)

d

dt

(
p⊥
ρB

)
= 0, (4)

which play the role of energy conservation equations in the
CGL theory.

The set of ideal MHD equations describing static
equilibria are thus the V = 0 limit of the equation of motion
(2) as well as Ampère’s law and the magnetic Gauss’ law:

∇ · T = J × B, (5)

∇ × B = μ0J, (6)

∇ · B = 0, (7)

where J is the current density. In the presence of
gravitational and stationary rotation, it would be necessary
to include also the double adiabatic (3)–(4), situations which
are not considered in the present paper, but which have been
already investigated [31–33].

From these equations, there follows that

∇p⊥+ 1

μ0
B(B·∇σ−)+ 1

μ0
σ(B·∇)B = 1

μ0
(∇×B)×B, (8)

where we defined the anisotropy factor

σ− = p‖ − p⊥
|B|2/μ0

. (9)
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It will be convenient to introduce the quantity

p̄ = 1

2
(p‖ + p⊥), (10)

which should not be confused with the usual average
pressure which, in the anisotropic case, is [20]

〈p〉 = 1

3
Tr T = 1

3
(2p⊥ + p‖). (11)

Axisymmetric anisotropic MHD equilibria can be
described in a general framework using curvilinear coordi-
nates, which enables us to readily adapt the equations to a
convenient coordinate system, depending on the boundary
conditions required. Let us consider contravariant coordi-
nates (x1, x2, x3) for a system described by the contravari-
ant metric tensor gij = êi · êj , where êi = ∇xi are
contravariant basis vectors. We suppose the existence of an
ignorable coordinate 0 ≤ x3 ≤ L, such that physical quan-
tities like pressure and magnetic field do not depend on x3

in axisymmetric configurations.
Considering a coordinate surface x2 = const. and the

annulus S2 bounded by the magnetic axis and a coordinate
curve x3, the transversal flux function can be defined as the
magnetic flux through S2 per unit length in the x3 direction
[34]

�(x1, x2) = 1

L

∫ x1

a

dx′1
∫ L

0
dx3√gB2, (12)

where g = det(gij ) and x1 = a denote the magnetic axes.
Similarly, we define a transverse current flux in terms of the
total electric current flowing through the surface S2 per unit
length

I (x1, x2) = Iaxis + 1

L

∫ x1

a

dx′1
∫ L

0
dx3√gJ 2, (13)

where Iaxis = I (x1 = a, x2). In terms of these quantities,
the magnetic field and current density can be written as [36]

B = ê3

g33
× ∇� − μ0I

ê3

g33
, (14)

J = ê3

g33
× ∇I + J3

ê3

g33
. (15)

Taking the dot product of (14) with ∇�, we have B ·
∇� = 0; i.e., �(x1, x2) is a surface function. There
follows that any surface function f is of the general form
f (�(x1, x2)). Calculating the right side of (5) and taking
the dot product with B yields B · ∇I = 0; i.e., I = I (�) is
also a surface quantity, hence

J × B = − 1

g33

[
1

μ0
�∗� − ID + 1

2
μ0(I

2)
′
]

∇�. (16)

where the prime denotes differentiation with respect to �

and in which we defined the Shafranov operator [34]

�∗� = g33√
g

{
∂

∂x1

[√
g

g33

(
g11 ∂�

∂x1
+ g12 ∂�

∂x2

)]

+ ∂

∂x2

[√
g

g33

(
g12 ∂�

∂x1
+ g22 ∂�

∂x2

)]}
, (17)

and

D = g33√
g

[
∂

∂x1

(
g23

g33

)
− ∂

∂x2

(
g13

g33

)]
. (18)

which vanishes identically for orthogonal coordinate
systems.

Mercier and Cotsaftis assumed that both σ− and p̄ should
be surface functions, i.e. [12]

p̄ = p̄(�) ⇒ ∇p̄ = p̄′ ∇�, (19)

σ− = σ−(�) ⇒ ∇σ− = σ−′ ∇�, (20)

where the primes denote differentiation with respect to �.
Note that 〈p〉, given by (11) is not a surface function.
Moreover, (19) may be the only possibility compatible with
configurations in which the boundary surface is a rigid and
conducting wall [20]. Using this information in (8), we have(

p̄′ − B2

2μ0
σ−′

)
∇� = (1 − σ−)J × B. (21)

Now substituting (16) for the Lorentz force into the above
equation, there results an anisotropic equilibrium equation
written in terms of surface quantities only

�∗� − μ0ID − σ−′

2(1 − σ−)
|∇�|2

= − 1

2(1 − σ−)
[μ2

0I
2(1 − σ−)]′ − μ0g33p̄

′

1 − σ−
, (22)

In the isotropic limit, we have p‖ = p⊥ = p, such that
σ = 0 and p̄ = p, and we recover the usual Grad-
Schlüter-Shafranov equation in curvilinear coordinates [34]

�∗� − μ0ID = −1

2
μ2

0(I
2)

′ − μ0g33p
′. (23)

It is possible to map the anisotropic (22) to a
corresponding isotropic (23) by a convenient integral
transform introduced by Clemente [20]. Hence, once an
equilibrium solution is known for the latter, we can
obtain an infinite number of solutions for the anisotropic
equation by inverting this transformation. This method was
used in cylindrical and spherical coordinates to generate
axisymmetric anisotropic equilibria for different profiles of
the appropriate surface quantities [20, 23]. The Clemente
transformation consists on defining the function

U(�) =
∫ �

0
d�

√
1 − σ−(�), (24)
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such that it is necessary that σ− < 1 which, incidentally,
also satisfies one of the local necessary stability criteria
derived by Mercier and Cotsaftis [12]. Moreover, in order
to avoid other instabilities, it is necessary that σ > −1
[20, 37], such that our choices must be so as to respect the
condition |σ−| < 1.

Let us define the new function

I = I
√

1 − σ−, (25)

such that (22), combined with (24), yields [23]

�∗U − μ0ID = −1

2
μ2

0
dI2

dU
− μ0g33

dp̄

dU
, (26)

which is formally identical to (23), provided that U → �

and I → I . The corresponding solution can be found for
the anisotropic case by inverting the integral transformation
(24), what can only be performed if we make some a
priori assumption on the dependence of σ− with �. This
is equivalent to assume a profile for the surface function
σ−(�), in the same way as we do with I(�) and p̄(�) to
solve (22).

In this work, we will use two different choices, namely

σ−1 = σ0�1, (27)

σ−2 = tanh2 (σ0�2), (28)

where σ0 is a positive constant subjected to the constraints
|σ−1,2| < 1. Inserting (27) and (28) into (24), a direct
integration yields

�1 = 1

σ0

[
1 −

(
1 − 3σ0

2
U

)2/3
]

, (29)

�2 = 2

σ0
tanh−1

[
tan

(
σ0U

2

)]
. (30)

The procedure for deriving axisymmetric anisotropic
equilibria is thus as follows: initially, we specify the profiles
for the surface functions I(U) and p̄(U). With them, we
write the equilibrium (26) in a given coordinate system, with
the appropriate boundary conditions, if any. After solving
this equation, we obtain U(x1, x2) and, using (29) or (30)
for example, we obtain the desired equilibrium �(x1, x2).

Once we have �, the current function is obtained from
(25) as well as the “average” pressure p̄ = p̄(U(�)). Both
are used to determine |B|2 using

|B|2 = 1

g33

(
|∇�|2 + μ2

0I
2
)

. (31)

Finally, combining (9) and (10), we have the system

p‖ − p⊥ = 1

μ0
|B|2σ−(�), (32)

p‖ + p⊥ = 2p̄(�), (33)

whose solution yields the profiles of p‖ and p⊥.

3 Anisotropic Equilibria in Spheroidal
Coordinates

A number of configurations of magnetically confined
plasmas of the compact torus type, like spheromaks, can
be described by prolate spheroids. In the astrophysical
context, the equilibrium of fluid masses can be conveniently
analyzed by using oblate spheroids. Both coordinate
systems are closely related and we first give the necessary
formulae for oblate coordinates.

We considered the symmetric axis of the plasma as the
z-axis, such that the oblate spheroidal coordinates (x1 =
ξ, x2 = η, x3 = φ) are defined by

x = c cosh ξ sin η cos φ, (34)

y = c cosh ξ sin η sin φ, (35)

z = c cosh ξ cos η. (36)

where (0 ≤ ξ ≤ ∞, 0 ≤ η ≤ π, 0 ≤ φ ≤ 2π) and 2c is the
distance between the two foci. Then

√
g = c3(sinh2 ξ + cos2 η) cosh ξ sin η, (37)

and the covariant tensor component is g33 =
c2 cosh2 η sin2 η. Since the nondiagonal elements are
zero, this is an orthogonal system, such that D = 0. It
is straightforward to consider prolate spheroidal coordi-
nates by making the transformations i cosh(x) → sinh(x),
i sinh(x) → cosh(x) and −ic → c [35].

We assume that the plasma boundary is represented by
a spheroid ξ = ξ0. The semimajor and semiminor axes are
denoted by a = c cosh ξ0 and b = c sinh ξ0 respectively.
Since the axisymmetric surface quantities do not depend
on φ, the equilibrium equation for the auxiliary function
U(ξ, η) is, according to (22) [36]

∂

∂ξ

(
1

cosh ξ sin η

∂U

∂ξ

)
+ ∂

∂η

(
1

cosh ξ sin η

∂U

∂η

)

= −c2(sinh2 ξ + cos2 η)

cosh ξ sin η

[
μ2

0

2
(I2)′+μ0c

2 cosh2 ξ sin2 ηp̄′
]

.

(38)

In order to solve this equation, we need to specify profiles
for I and p̄ as functions of U . Let us consider the following
profiles

p̄ = p0 + αU

μ0c4
, (39)

I = I0 = const. (40)
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where p0 and α are positive constants. The solution of the
corresponding equilibrium equation has been obtained by
Kaneko, Chiyoda, and Hirota and reads [26]

U(ξ, η) = −8αU0

15

P ′
3(i sinh ξ0) cosh2 ξ sin2 η

cosh2 ξ0 sinh2 ξ0[
1− cosh ξ

cosh ξ0
+ P ′

3(cos η)

6

(
cosh ξ

cosh ξ0
− P ′

3(i sinh ξ)

P ′
3(i sinh ξ0)

)]

(41)

where ξ0 = tanh−1 (b/a), U0 is the value of U(ξ, η) at the
magnetic axis, P3(x) stands for the Legendre polynomial
of order 3, and the primes denote differentiation with
respect to the argument. A similar solution was considered
by Kaneko, Kamitani, and Takimoto to investigate MHD
equilibrium and stability of a spheromak with a spheroidal
plasma-vacuum interface [27].

With the aid of (29) and (30), and by choosing σ0 =
1/(2U0α), it is possible to invert the Clemente transform
so as to obtain the corresponding anisotropic solutions. In
Fig. 1, we display the flux contours corresponding to u =
const. solutions (dashed curve), ψ1 = const. (dot-dashed
curve) and ψ2 = const. (solid curve), where u = σ0U ,
ψ1 = σ0�1 and ψ2 = σ0�2. Since U = U(�), the
magnetic axis position

raxis = cosh ξ0√
2

, zaxis = 0

is the same for both isotropic and anisotropic solutions,
hence there are no expected magnetic axis shifts nor
bifurcations. The two anisotropic solutions derived from
U have similar characteristics, the corresponding values
being the same at the plasma boundary, which has an oblate

Fig. 1 (color online) Constant flux contours corresponding to the
isotropic solution (black dashed curve), and two anisotropic solutions
obtained from it, with σ−1 (red dot-dashed curve) and σ−2 (blue solid
curve). The plasma boundary is an oblate spheroid with b/a = 1/2

spheroidal shape as required. The quantitative differences
between the two solutions are most pronounced near the
magnetic axis.

Using the anisotropic solution �, we solved (32)–(33)
in order to obtain p‖ and p⊥, whose radial profiles (in
the equatorial plane η = π/2) are shown in Fig. 2 for
the two choices of σ− used to invert Clemente transform
(the subscripts 1 and 2 denote the solutions (29) and (30),
respectively). We normalize both pressures using p0 =
α2U0/μ0c

4.
For both choices of σ−, it turns out that the parallel

pressure is always larger than the perpendicular pressure,
except at the separatrix (plasma boundary) and the magnetic
axis, where they are equal. This difference is due to the
anisotropy caused by an intense magnetic field, for which
the motion along field lines is unbounded, whereas the
perpendicular motion is strongly constrained, what favors
the parallel direction. The different choices of σ− yield
different anisotropic equilibria but with similar qualitative
properties.

From (14) and (15), we calculated the magnetic field
and current density, respectively. The radial components
Bξ and Jξ are both zero at the equatorial plane (η =
π/2). In Fig. 3a, we show the radial profile of the poloidal
field Bη at the equatorial plane, normalized to the quantity
B0 = αU0/c

2 = μ0I0/c. As in Fig. 1, we use dashed
lines to indicate the isotropic solution, whereas full and
dot-dashed lines are used for anisotropic solutions using
the two different choices for σ−. In both cases, there is
a field reversal at the magnetic axis position, the solution
(30) being closer to the isotropic solution, but with the
same essential features. The toroidal field Bφ is depicted
in Fig. 3b, showing no sign reversals and approaching

Fig. 2 (color online) Radial profile of the normalized parallel (solid
and dashed) and perpendicular (dot-dashed) pressures, for the two
choices of σ− and b/a = 1/2
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Fig. 3 (color online) Radial
profiles (in the equatorial plane)
for a poloidal field, b toroidal
field, c poloidal current, and d
toroidal current. Dashed lines
are used for the isotropic case,
and dot-dashed and full lines for
the two anisotropic solutions
obtained

zero at the plasma boundary. We see again that (30)
provides a solution closer to the isotropic case, whereas
(29) shows slight differences for r/c between 0.4 and 1.1,
approximately.

The radial profiles of the corresponding poloidal and
toroidal current densities are depicted in Fig. 3c and d,
respectively, normalized by J0 = I0/c

2. In this case, the
anisotropy creates a poloidal current which does not exist in
the isotropic case, presenting a sign reversal at the magnetic
axis, which leads to a similar change for the corresponding
magnetic field. The toroidal current density component has
a curious behavior: in the isotropic case, it is monotonically
decreasing towards the plasma boundary in a practically
linear fashion. The anisotropic solutions, on the other hand,
exhibit a nonmonotonic behavior, especially in the vicinity
of the magnetic axis. In particular, one of the solutions
increases near the boundary, whereas the other decreases
like its isotropic counterpart.

4 Conclusions

Anisotropic effects are expected in both fusion and astro-
physical plasmas when strong magnetic fields are present.
The existence of ideal MHD equilibria with axisymmetry

and anisotropic effects (using CGL pressure tensor) has
been long recognized, but the corresponding equation is rel-
atively difficult to solve. When the hypotheses (19)–(20)
are satisfied, it is possible to introduce an integral trans-
form which maps the anisotropic equilibrium equation into
an isotropic one. If a solution of the latter is known, it is pos-
sible to obtain an infinite number of anisotropic solutions
by inverting this transformation, what requires an additional
hypothesis.

In the isotropic version of the MHD equilibrium equation
(Grad-Schlüter-Shafranov), it is necessary to specify the
pressure profile p(�). The anisotropic version of the
equilibrium equation, according to the CGL pressure tensor,
introduces two different pressures, namely p⊥ and p‖,
which doubles the number of profiles needed. Instead
of specifying profiles for them, in (19)–(20), we rather
specify profiles for σ− and p̄, which are actually linear
combinations of p⊥ and p‖.

In this paper, we applied this methodology to axisym-
metric toroidal equilibria described by oblate spheroidal
coordinates. We start from an analytical solution derived
by Kaneko et al. [26, 27] and used two different func-
tions to invert the integral transform, obtaining two differ-
ent anisotropic equilibria with oblate spheroidal boundary.
A simple transformation enables one to consider prolate
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spheroids as well. We also consider the latter possibility, but
the results were essentially the same as for oblate spheroids.

Our two choices for the anisotropic equilibria produce
similar results: the pressure in the direction parallel to the
magnetic field is always larger than that in the perpendicular
direction, except at the plasma boundary and magnetic axis.
This is a natural consequence of the different behaviors of
gyrating particles in both directions: strong magnetic fields
lead to small Larmor radii, which constrains perpendicular
motion, whereas the parallel motion is unbounded. There is
no magnetic axis shift due to anisotropy as well. Our results
are in accordance with previous solutions by Clemente [20]
and ourselves [23]. The magnetic field components are
slightly changed when passing from isotropic to anisotropic
solutions, but the poloidal current density exhibits a
signal reversal in the anisotropic case (for both solutions
considered) which is absent in the isotropic case.

It would be possible, for example, to make a modelling
of FRCs using the type of solutions developed in this work.
For example, Clemente [20] has used a Hill vortex model in
order to describe a FRC plasma with ellipsoidal separatrix
with semi-axes a and b [38]. Our solution, on the other way,
has just one parameter, namely ξ0 = tanh−1 (b/a), which
fits the axis ratio.

The efforts to obtain analytical solutions of anisotropic
equilibria are worth from two points of view. Firstly
these solutions can be used for benchmarking computer
codes to solve equilibrium equation. Moreover, analytical
solutions are always helpful for parametric studies of MHD
stability and transport. The relative freedom in choosing the
anisotropic equilibrium makes this method a powerful tool
to generate such analytical solutions.
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