External debt sustainability and policy rules in a small globalized economy

Gabriel Porcile a,*, Alexandre Goes da Silva b, Ricardo Viana c

a ECLAC (Economic Commission for Latin America and the Caribbean), Chile, Department of Economics of the UFPR (Federal University of Paraná) and CNPq, 80210-170 Curitiba, Paraná – PR, Brazil
b Central Bank, Brazil
c Department of Physics, UFPR (Federal University of Paraná), Brazil

A R T I C L E I N F O
Article history:
Received August 2010
Received in revised form January 2011
Accepted June 2011

JEL classification:
E12
ES8
F43

Keywords:
Post Keynesian macrodynamic models
External debt
Policy rules

A B S T R A C T
The paper develops a Post Keynesian macroeconomic model which discusses the conditions that lead to an external debt crisis in a small developing economy fully integrated to global goods and financial markets. The focus is on how policy rules affect the stability of the economy. Two kinds of policy rules are discussed, namely inflation target and real exchange rate target, implemented through an interest rate operation procedure (IROP). It is argued that in both cases the evolution of the real exchange rate should be closely monitored to avoid external instability. It is also suggested that a real exchange rate target may be more effective to stabilize the economy if there is a strong tendency towards the equality of the foreign and domestic real interest rates.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The objective of this paper is to discuss from a Post Keynesian (PK) perspective how different monetary policy rules affect growth and stability in a small developing economy fully integrated to the international goods and financial markets. A fully globalized economy is defined as one in which the uncovered interest parity condition (UIP) holds and the real exchange rate is stable in equilibrium. Although the empirical evidence is not conclusive for any of these assumptions, the key feature we intend to capture is a situation in which the room for maneuver of the monetary policy is critically reduced by international capital flows.1 We discuss the implications of two alternative monetary policies for the stability of the economy in this context. One alternative is to adopt a Taylor-rule with a view to achieving a certain desired level of inflation (an inflation target regime), while the real exchange rate endogenously adjusts. The other is that the govern-

1 For a Post Keynesian discussion of the real exchange rate and international monetary policies, see Harvey (2006) and Kam and Smithin (2004). It should be noted that the stability of the real exchange rate in the long run is assumed in the simplest version of one of the best known Keynesian growth models, that set forth by Thirlwall (1979) and McCombie and Thirlwall (1994). We prefer to assume the stability of the real exchange rate rather than purchasing power parity since the former does not imply the causality suggested by PPP (in particular the idea that prices are explained by the quantitative theory of money and then the nominal exchange rate adjusts to conform to PPP, while in our model we accept reverse causality, from the exchange rate to prices via the pass-through effect; see Section 2).
ment sets a real exchange rate target while the equilibrium inflation rate is endogenous.

The paper intends to contribute to the growing PK literature addressing the inter-relations between policy choices and stability when international flows of financial capital play a central role in the domestic macrodynamics, forcefully constraining the degrees of freedom of monetary policy. Such a focus is chiefly motivated by the Latin American experience. In the last three decades Latin America has become much more integrated to international trade and financial markets. This made it more complicated for the region to foster growth and stability at the same time, in spite of the alleged beneficial effects of financial openness. In many countries, like Argentina, Chile and Uruguay, financial liberalization and the appreciation of domestic currencies in the 1970s was a critical force leading to the devastating 1982 debt crisis, which opened the Latin American “lost decade”. The same combination can be found in the nineties contributing to explain the crises of Mexico (1994), Brazil (1999), Argentina and Uruguay (2002).

In the mid-2000s the external constraint was considerable eased in some Latin American countries due to the vigorous expansion of the world economy, along with improving terms of trade for several commodities. But the Latin American economic history and the 2008 world crisis suggest that external instability is by no means a matter of the past. In addition, several studies of PK persuasion have pointed out that widespread financial openness and capital mobility have tended to make the world economy more and not less unstable (see Arestis and Singh, 2010). Therefore, the concern with growth and the exchange rate would probably remain in the macroeconomic research agenda of Latin America for a long time to go.

The paper is organized in two sections besides this introduction and the concluding remarks. Section 1 presents the basic model giving particular attention to the dynamics of the external debt. Section 2 discusses the conditions for equilibrium in the external debt under two different monetary rules, namely inflation target and real exchange rate target. It is argued that in both cases the Central Bank should closely monitor the evolution of the real exchange rate in order to avoid the emergence of an explosive situation in the external front. In addition, it is stressed that the real exchange rate target seems to be more efficient to pursue stability in the extreme condition represented in the model by perfect foresight and the equality of the foreign and domestic real interest rates.

2. Macroeconomic dynamics

2.1. The goods market

We assume an open economy in which the role of the government is confined to define either an inflation target or a real exchange rate target, and then set the nominal interest rate compatible with this objective. Although the model admits the possibility of using fiscal policy (see below) we will not explore this avenue. We focus instead on an interest rate operation procedure (IROP) as the key instrument of macroeconomic policy (Setterfield, 2006). This is consistent with the main point addressed in the paper – the effects of monetary policy on the stability of a small open developing economy.

Taking as a point of departure the basic macroeconomic identities (1) and (2) below, and assuming that workers do not save, we obtain:

\[Y = C + I + NX \]
\[Y = W + P \]
\[C = W + (1 - s)P \]

These equations are investment, is total investment, NX are net exports, P are profits, W are wages and s (0 < s < 1) is the exogenous savings rate. All variables are defined in real terms.

The rate of growth of the capital stock (investment per unit of capital, \(g = I/K \)) is a function of the difference between the expected profit rate \((r^e) \) and the real interest rate \((i_r) \), plus an autonomous component \((g_0) \) which can be broadly seen as reflecting the Keynesian “animal spirit” (and which may also account for autonomous public expenditure)

\[g = g_0 + h(r^e - i_r), \quad 0 < h < s \]

Based on the Fisher equation, the real interest rate can be approximated by the difference between nominal interest rate \(i_n \) and the inflation rate \(\pi \):

\[i_r \approx i_n - \pi \]

Real net exports per unit of capital (\(b = NX/K \)) are a function of the real exchange rate, defined as \(q = e p^d/p \) (where \(p \) is the domestic price level, \(p^d \) foreign prices and \(e \) the nominal exchange rate), and the propensity to import \((m) \), according to the following equation:

\[b = -m + a q, \quad m > 0, \quad a > 0 \]

Combining Eqs. (1)–(6) allows for finding the equilibrium profit rate \(r \) (where \(r = P/K \)) and the equilibrium rate of capital accumulation \(g \) (where \(g = I/K \)) as functions of the
real exchange rate, the real interest rate and a set of positive exogenous parameters \((a, s, h, m, g_0)\):
\[
r = \frac{g_0 - h(i_n - \pi) + aq - m}{s - h}
\]
(7)

Rearranging terms in (7) and (4) gives:
\[
g = \frac{1}{s - h}[g_0s + h[aq - m - (i_n - \pi)s]]
\]
(8)

Eq. (8) can be written as an IS curve (Eq. (9)):
\[
g = A + B(aq - m) - C(i_n - \pi)
\]
(9)

where
\[
A \equiv \frac{g_0s}{s - h}, \quad B \equiv \frac{h}{s - h} \quad \text{and} \quad C \equiv \frac{hs}{s - h}
\]

Consistent with the PK approach adopted in the paper, Eq. (9) does not contain any reference a natural rate of unemployment (Lavoie, 2009). Moreover, the real exchange rate affects the growth rate of exports, not just its level.6

Equilibrium in the goods market may not be sustainable depending on the dynamics of the external sector. Our subject is an economy that has little room for maneuver in a system highly integrated in terms of trade and financing, which must be concerned with its foreign debt. This is the point addressed in the next section.

2.2. The debt to capital ratio

External equilibrium requires not only Balance-of-Payments equilibrium but also the stability of the debt to capital ratio of the economy (Moreno-Brid, 1998–1999; Blecker, 2009). We assume that the external debt is issued in the international markets in units of the foreign currency at the nominal international interest rate \(i^\ast\) plus a risk premium \(R\). There is an infinite capital supply at the interest rate \((i^\ast + R)\). In the rest of the paper we will also assume \(R=0\), which strongly simplifies the analysis and does not compromise the main objective of the paper, which is to discuss the relation that exists between policy rules, growth and stability. Domestic firms and consumers have no constraints on access to financial lending at the domestic interest rate.

The change in the total nominal debt in the domestic currency depends on net exports, the payment of interests on the accumulated debt and the effect of devaluation in the total nominal debt:
\[
\frac{d(Dp)}{dt} = -(aq - m)Kp + i^\ast Dp\pi + \hat{e}Dp
\]
(10)

In Eq. (10) \(p\) represents the domestic price level, \(p^\ast\) is the international price level and \(\hat{e}\) is the proportional rate of growth of the nominal exchange rate.

Following a well-known convention, we will indicate derivatives with respect to time with dots and proportional rates of growth with hats (v.g. \(dD/dt \equiv \dot{D}\) and \(\hat{e} \equiv \dot{e}/e\)). Note that \(d(Dp)/dt = Dp + pDp\) and hence \(d(Dp)/pdt = D + D\pi\)

(where the inflation rate is \(\pi = \hat{p}/p\)). Therefore the evolution of the real external debt \(D\) (expressed in units of the borrowing country product) may be written as follows:
\[
\dot{D} = -(aq - m)K + D(i^\ast q + \hat{e} - \pi)
\]
(11)

The real debt to the capital stock ratio is \(\delta = D/K\). The rate of growth of \(\delta (\dot{\delta} = (d\delta/dt)/\delta)\) is given by:
\[
\dot{\delta} = \dot{\delta} - g
\]
(12)

By dividing Eq. (11) by \(D\), and using (12), we obtain the equation of motion of the real external debt to capital ratio (in terms of the Home country product):
\[
\dot{\delta} = m - aq + \hat{e}(i^\ast q + \hat{e} - \pi - g)
\]
(13)

Recalling that \(g\) is a function of the real interest rate and \(q\) then the evolution of \(\delta\) depends too on these two variables, along with the devaluation and inflation rates.

2.3. UIP and the real exchange rate

In a world economy featuring highly liquid financial markets the uncovered interest parity (UIP) condition should hold in equilibrium. According to this condition the difference between the domestic and international nominal interest rates equals the expected rate of devaluation (i.e. the expected rise in the nominal exchange rate, \(\hat{e}^\ast\)):
\[
i_n = i^\ast + \hat{e}^\ast
\]
(14)

With backward-looking expectations,7 the expected rate of devaluation falls when the effective rate of devaluation rises. Assuming \(\hat{e}^\ast = (-1/j)e\) and using (14), then we can find the effective rate of devaluation as a function of the difference between the foreign and domestic interest rates:
\[
\hat{e} = j(i^\ast - i_n), \quad j > 0
\]
(15)

We assume that in the long run the real exchange rate tends to stabilize in our small globalized economy (\(\hat{q} = 0\). The model applies to a period long enough for this variable to reach its equilibrium level.8 The stability of the real exchange rate is achieved by both responses of the nominal exchange rate to differences in domestic and foreign inflation \((\pi - \pi^\ast)\), and responses of prices to changes in the nominal exchange rate (pass-through effect). By log-differentiating the real exchange rate \(q = p^\ast e/p\) we have the condition for the stability of the real exchange rate:
\[
\hat{q} = \pi^\ast + \hat{e} - \pi = 0
\]
(16)

Last but not least, we need an equation for the inflation rate. We will assume that it responds to two variables related to a key dimension in PK models, which is the role of the distributive conflict in inflation. From one hand, inflation is related to the real interest rate \(i_n\). A lower \(i_n\) favors

6 This rate effect is due to the specification of net exports in Eq. (6), as suggested by Basu (1984) and Blecker (2010).

7 We consider the case of forward looking expectations plus perfect foresight in the next section.

8 In the specific conditions of the economy portrayed in this paper, such a period can be expected to be fairly short. For a discussion of the time required to reach the equilibrium real exchange rate see Zussman (2003) and Taylor and Taylor (2004). These papers, however, assume PPP, which is not necessarily the case here.
the expansion of investment, consumption and employment, and this boosts wage demands.\footnote{The assumption is that a rise in the real interest rate is efficient in reducing output and labor demands, thereby curbing inflation. This does not always hold, as Lima and Setterfield (2008) have argued.} On the other hand, inflation also depends on the real exchange rate. A depreciation of the real exchange rate implies a rise in the price of imported inputs and consumption goods. If the mark-up is constant, more expensive inputs would lead to higher prices (“pass-through effect”). In addition, if some of the imported goods are part of the consumption basket of workers, then the latter will demand higher nominal wages with a view to avoiding real losses. Both effects fuel inflation (Blecker, 1999; Damill and Frenkel, 2009).

Thus, the inflation rate will be a function of the real interest rate and the real exchange rate, \(\pi = uq - \bar{v}l_{m} - \pi \) or:

\[
\pi = uq - v_{l}n, \quad v = \frac{\bar{v}}{1 - v} > 0 \quad \text{and} \quad u = \frac{\bar{u}}{1 - v} > 0 \quad (17)
\]

Using Eqs. (14), (15) and (17) in (16) we get:

\[
\dot{q} = \pi^{*} - j(l_{m} - \bar{r}) - uq + v_{l}n = 0 \quad (18)
\]

The equilibrium real exchange rate will be given by:

\[
q = \frac{Z - (\bar{v} - v)j_{m}}{u} \quad (19)
\]

where \(Z = \pi^{*} + ji^{*} \) and \(j > v \). Using (19) in (17) we get:

\[
\pi = Z - j_{m} \quad (20)
\]

The rate of economic growth (from Eqs. (9) and (19)) can be written as:

\[
g = \ddot{g} - \beta_{in} \quad (21)
\]

where

\[
\ddot{g} = A - Bm + Z \left[\frac{Ba + Cu}{u} \right] \quad \text{and} \quad \beta = (j - v)Ba^{-1}
\]

\(+ C(1 + j)\)

So far we have a differential equation for the evolution of the debt to capital ratio (Eq. (13)) and functions for the inflation rate (Eq. (20)) and the real exchange rate (Eq. (19)), along with a set of given parameters \((a, s, h, m, g_0, \pi^{*}, i^{*}, u, v, j, A, B \text{ and } C)\). But there is still one more endogenous variable whose behavior remains unspecified, namely the domestic nominal interest rate. We assume that the government defines the IROP procedure in accordance with two alternative policies: inflation target and real exchange rate target. The implications of these alternatives are the topic of the next sections.

3. Inflation target and real exchange target: implications for growth and stability

3.1. Price and external stability under inflation target

We will firstly assume that the government adopts a strict inflation target \((\bar{\pi})\) policy: the Central Bank takes decisions as regards the nominal interest rate according to a simple Taylor rule.\footnote{Clearly, other more complex monetary rules can be devised, but we have worked with the simplest one in order to focus on the interplay between price stability and external sustainability.} This assumption reflects the fact that inflation target combined with a fluctuating exchange rate regime has been increasingly adopted in many Latin American countries since the nineties.

\[
\frac{dn}{dt} = \alpha(\pi - \bar{\pi}), \quad a > 0 \quad (22)
\]

Eqs. (13) and (22) form a \(2 \times 2\) system of differential equations. Using (19)–(21) in (13), and (20) in (22), we can rewrite the system as follows:

\[
\dot{\delta} = m - aq(l_{m}) + \delta(i^{*}q(l_{m}) + \ddot{v}(l_{m}) - \pi(l_{m}) - g(l_{m})) \quad (23)
\]

\[
\frac{dn}{dt} = \alpha(z - j_{m} - \bar{\pi}) \quad (24)
\]

The Jacobian is given by:

\[
J = \begin{bmatrix}
 i^{*}q + \ddot{v} - \bar{\pi} - g - aq\ddot{v} + \delta(i^{*}q + \ddot{v} - \pi - g) \\
 0 \quad -\alpha j
\end{bmatrix} \quad (25)
\]

Therefore:

\[
SC = i^{*}q + \ddot{v} - \bar{\pi} - g < 0 \quad (26)
\]

The previous expression (computed at the equilibrium values) defines the stability condition (SC). A negative SC produces stability, while a positive SC implies a negative determinant and hence a saddle point equilibrium. In the latter case, except from the very special case in which the initial values of \(i \) and \(\delta \) are precisely on the stable path, neither inflation target nor a constant debt to capital ratio would be attained. It should also be observed that a constant debt to capital ratio implies a constant debt to net exports ratio. In effect, net exports are equal to \((aq - m)k\). Since \(a \) and \(m \) are constants, and \(q \) is constant in equilibrium, then the rate of growth of net exports necessarily equals the rate of growth of the capital stock of the economy.

In equilibrium the inflation rate is equal to the inflation target and therefore:

\[
\pi^{*} = Z - j_{m} \quad (27)
\]

From this we can find the nominal interest rate and (using Eq. (19)) the real exchange rate in equilibrium:

\[
i^{*} = Z - \frac{\pi^{*}}{j} \quad (28)
\]

and

\[
q^{*} = \frac{Z}{u} - \left(\frac{j - v}{uj} \right) (Z - \bar{\pi}) \quad (29)
\]

An interesting question is how the target set for the inflation rate affects the stability of the economy. Taking the derivative of the SC with respect to the inflation target renders:

\[
\frac{dSC}{d\bar{\pi}} = \frac{j - v}{uj} (i^{*} - Ba) - C \left(\frac{1}{j} + 1 \right) \quad (30)
\]
This expression will be negative if the response of investment to a lower interest rates and a higher real exchange rate are higher than the international interest rates. This should be the case in normal times – and hence a higher inflation target tends to reduce SC and increase the stability of the system. Conversely, if a conservative Central Bank independently pursues too low a rate of inflation, this may give rise to a sharp appreciation of the real exchange rate and to an explosive situation on the external front. In other words, in the specific conditions defined by a close integration to world markets, the Central Bank must keep an eye on the real exchange rate when it defines its inflation target. Otherwise the result would be growing instability and an ensuing debt crisis.

3.2. A special case: perfect foresight with inflation target

An interesting alternative scenario is when perfect foresight is assumed. This corresponds to the case in which \(j = -1 \) in Eq. (15), which implies that the expected rate of devaluation equals precisely the effective rate of devaluation. In this case, the foreign and domestic real interest rates are equal, and then it will be true that \(i = i^* - \pi^* + \pi \). This requires that the real exchange rate instantly “jumps” to its new equilibrium value \(q = (1/u)(1 + v)\pi_i - (i^* - \pi^*) \) in response to any difference in the real interest rates, thereby rendering a new system of differential equations:

\[
\dot{\pi}_n = m - aq_i(i_n + \delta)(i^*q_i(q_i + i_n - i^* - \pi(i_n) - g(i_n)) \quad (31)
\]

\[
\frac{d\pi}{dt} = \alpha(i_n - (i^* - \pi^* + \pi)) \quad (32)
\]

The equilibrium values of the new system are the following:

\[
i_n^F = i^* - \pi^* + \pi
\]

\[
\delta_n^F = \frac{aq_i}{(i^* - \pi^* - \pi)} \quad (33)
\]

\[
g_n^F = A + B(aq_i^F - m) - C(i^* - \pi^*) \quad (34)
\]

\[
e_n^F = \frac{v(i^* - \pi^*) + (1 + v)i}{u} \quad (35)
\]

To analyze the stability of the system we compute the Jacobian at the equilibrium values (which can be found by setting \(j = -1 \) in Eq. (25)):

\[
J = \begin{bmatrix}
i^*q + \delta - \pi - g & -aq_i + \delta(i^*q_i + \delta - \pi - g_i) \\
0 & \alpha
\end{bmatrix} \quad (37)
\]

The trace of the system is \((\alpha + i^*q^F + i_n - i^* - \pi - g)\) and the determinant is \(\alpha(i^*q^F + i_n - i^* - \pi - g)\). Note that if \((i^*q^F + i_n - i^* - \pi - g)\) is negative, then the determinant is negative as well and we have a saddle point equilibrium. If on the other hand this term is positive then the determinant is positive and the system unstable. Therefore in both cases the system will not reach a stable equilibrium.

The international economy is populated by two types of countries: some of them are in a virtuous path of growth with an increasingly lower debt to capital ratio, while others move towards explosive deficits in the external front. In none of the two cases the inflation target will be attained at the end of the day. Paradoxically, full integration to the financial markets plus rational expectations, which are usually considered as conditions for stability, makes the attainment of the inflation target an impossible task. This occurs because the IROP is ineffective as an instrument for channeling the economy towards its equilibrium path.

Although the previous case represents an extreme situation that it is unlikely to be found as such in the real world, it helps to understand the problems of small open economies (particularly in Latin America) that have been particularly vulnerable to large swings in international lending. As has been recently stressed by Ocampo et al. (2009, p. 105):

“counter-cyclical interest rates policy goes against the logic of pro-cyclical swings in parity interest rates. By trying to increase domestic interest rates during booms, when parity rates tend to fall, the central bank would generate a great inducement to additional capital inflows, which would reinforce the tendency of the exchange rate to appreciate”.

In our model, in the case of perfect foresight, real interest parity implies that IROP is no longer an efficient mechanism to stabilize the economy. For instance, if there is a fall in the international real interest rate, the government should either accept a higher domestic inflation rate or a lower interest rate. Any attempt at a counter-cyclical policy based on raising the interest rate would have an impact on the exchange rate such as to shift inflation away from the inflation target.

A similar conclusion has been reached in a recent study by ECLAC (2010):

“In the region’s experience, the real exchange rate—a fundamental macroeconomic price when it comes to making decisions relating to production and spending on tradable goods—behaves in an extremely procyclical manner. Its evolution has been strongly correlated with capital flows, which (…) are subject to cyclical variations.” There is a “marked correlation between the real exchange rate and net capital flows for Latin America in average terms in the years dominated by the Washington Consensus. The procyclical behaviour of these flows is transmitted to the real exchange rate insofar as a boom has often caused sharp currency appreciations, which have repeatedly led to current account disequilibria through over- or undershooting in times of crisis”.

As in the previous case, the management of the real exchange rate is critical to secure stability. In the next section we will argue that a real exchange rate target may represent a policy rule more conducive to promote stability than pure inflation targeting.

3.3. Real exchange rate target

We now assume a different institutional setting, in which the government pursues a real exchange rate target. A plausible rationale for this is that it follows an export-led growth strategy and therefore aims at avoiding any loss of international competitiveness derived from a fall in the real exchange rate. Such a strategy is very much in line with the insights provided by growth models based on the Kaldo-
rian tradition and on the Balance-of-Payments constraint (McCombie and Thirlwall, 1994; León-Ledesma, 2002). Germany, South Korea and Brazil in the sixties and early seventies, and more recently China and Argentina,11 are examples of countries which in different periods embraced policies that sought to keep the exchange rate competitive.

As in the previous case, the instrument to influence the exchange rate is an IROP: the government defines the nominal interest rate so as to make it compatible with the desired real exchange rate. In addition, the government acknowledges that in a globalization economy the domestic and the international real interest rates should be equal (real interest parity), i.e. \(\pi^r - \pi^* = \pi - \pi^* \). From (18) we know that \(\pi = \bar{u}q - \nu \bar{u}_n \), where \(\bar{q} \) is the real exchange rate target. This allows us to find the nominal interest rate target \((\bar{i}_n) \) that will produce the real exchange rate target \((\bar{q}) \) along with the equality of the foreign and domestic interest rates. Formally:

\[
\bar{i}_n = \frac{\bar{u}q + \pi^r - \pi^*}{1 + \nu}
\]

(38)

Note that in the previous section we used Eqs. (18) and (19) to find the real exchange rate compatible with UIP and a stable real exchange rate. In this section we use the equality of the real interest rates to find the nominal interest rate compatible with the target for the real exchange rate.12

Eq. (38) shows that if the real exchange rate is higher than the target \((\bar{q} > \bar{q}) \), so is the nominal interest rate \((\bar{i}_n > \bar{i}_n) \). Therefore the reaction function of the government – which is by assumption committed to achieve the target real exchange rate using an IROP – can be represented as follows (with \(\xi > 0 \)):

\[
\frac{di_n}{dt} = \xi[i_n - \bar{i}_n]
\]

(39)

And using equation (38) in (39):

\[
\frac{di_n}{dt} = \xi \left[\frac{\bar{u}q + \pi^r - \pi^*}{1 + \nu} - i_n \right]
\]

(40)

We now have a new system of differential equations with \(\delta \) and \(i_n \) as endogenous variables. One is Eq. (40), and the other is Eq. (41) below, which is a slightly modified equation for the dynamics of the debt to capital ratio (see also Eq. (13)):

\[
\delta = m - a\bar{q} + \bar{q}i^r + j(i^r - \bar{i}_n) - \pi(i_n) - g(i_n)
\]

(41)

In equilibrium it will be true that:

\[
\bar{i}_n = \frac{i^r - \pi^* + \bar{u}q}{1 + \nu}
\]

(42)

\[
\delta^E = \frac{a\bar{q} - m}{i^r + j(i^r - \bar{i}_n) - \pi^* - g^E}
\]

(43)

It is now easy to find the equilibrium growth and inflation rates:

\[
g^E = A + B(a\bar{q} - m) - C(i^r - \pi^*)
\]

(44)

\[
\pi^E = \frac{u\bar{q} - v(i^r - \pi^*)}{1 + \nu}
\]

(45)

The Jacobian of the system formed by Eqs. (4) and (41) is as follows:

\[
J = \begin{bmatrix}
\bar{i}^r + j(i^r - \bar{i}_n) - \pi - g & \delta - j + v + C(1 + v) \\
0 & -\zeta
\end{bmatrix}
\]

(46)

The stability condition (SC) defined by Eq. (26) can be rewritten as:

\[
SC = \bar{i}^r \bar{q} + j(i^r - \bar{i}_n) - \pi^* - g^E < 0
\]

(47)

The influence of an increase in the real exchange rate target on the stability of the system can be studied by taking the derivative of SC with respect to \(\bar{q} \) in equilibrium. If the derivative is negative, a real depreciation of the currency favors stability. In effect:

\[
\frac{\partial(i^r \bar{q} + j(i^r - \bar{i}_n) - \pi^* - g^E)}{\partial \bar{q}} = i^r - \frac{u(1+j)}{1+\nu} - Ba
\]

(48)

The rise in \(\bar{q} \) has two effects. One is to increase the burden of the debt in real terms: the country pays more interests on the external debt in terms of the domestic good for the same nominal international interest rate. The second effect is to foster competitiveness, leading to faster growth and hence to a lower debt to GDP ratio. If \(i^r - u(1+j)/(1+v) < Ba \), the second effect prevails and a higher real exchange rate makes the system more stable. We will assume that this condition holds.

An interesting result is that \(\bar{q} \) should be higher than a critical value for the system to be stable (i.e. for SC < 0). To find this critical value \(\bar{q}_c \), we use Eqs. (42)–(45) in the stability condition (47):

\[
\bar{i}^r \bar{q}_c < \frac{u\bar{q} - v(i^r - \pi^*)}{1 + \nu} - j \left(\frac{i^r - u\bar{q} + \pi^*}{1 + \nu} \right)
\]

\[+\]

\[A + B(a\bar{q} - m) - C(i^r - \pi^*)\]

(49)

And therefore:

\[
\bar{q}_c > \frac{[Bm + C(i^r - \pi^*) - A(1 + v) + (v - j)(i^r - \pi^*)]}{(Ba - v)(1 + v) + u(1 + j)}
\]

(50)

If the government sets the real exchange rate target below this critical value the system becomes unstable. As in the case of inflation target, in a small open economy fully integrated to the international financial markets the real exchange rate policy critically matters: a mistake in managing this variable may give rise to a cumulative process of indebtedness and instability.

Fig. 1 shows the critical real exchange rate value that defines the instability region (to the left of \(\bar{q}_c^1 \)). It can be seen that an international shock raising the real foreign interest rate (due, for instance, to a higher foreign nominal interest rate \(i^r \) due to turbulent times in the financial markets) will increase \(\bar{q}_c \) (from \(\bar{q}_c^1 \) to \(\bar{q}_c^2 \)). If the shock is strong

11 Damill and Frenkel (2009) observed that the same type of policy, with significant effects on the rates of growth and external equilibrium, was adopted in Argentina since 2003 (although they point out that such a policy lost consistency after 2007).

12 In terms of Eq. (15), perfect foresight implies \(j = -1 \) and \(q = \bar{q} \).
It is evident that the increase in real exchange rate can be a very effective way to enhance the competitiveness of the domestic economy. The increase in real exchange rate can be achieved by fiscal and monetary policies, such as increasing the interest rate or decreasing the money supply. However, these policies can have adverse effects on the real economy, such as reducing the growth rate of output and increasing the unemployment rate. Therefore, it is necessary to have a balanced approach to such policies.

4. Concluding remarks

In this paper we presented a dynamic model to identify the conditions that may lead to instability in a small open developing economy under different monetary rules. In recent years, many developing economies have become more integrated with the international markets, particularly financial markets. They have also adopted policy rules based on inflation target and a fluctuating exchange rate regime (especially in Latin America). Alternatively, other developing economies (particularly China) have chosen to keep the real exchange rate at a (high) competitive level. In this paper we discuss the implications of these different policy options for external debt stability.

We show that an inflation target regime may give rise to stability but there are serious risks in focusing exclusively on inflation. If the central bank uses its relative autonomy to pursue an ambitiously too low inflation target, with no regard to the effects it produces on the real exchange rate, the loss of competitiveness may bring about an external crisis. Moreover, in an extreme scenario featuring rational expectations and the equality of the domestic and foreign real interest rates, inflation target leads to instability. The alternative institutional scenario discussed in the paper is defined by a policy rule that sets the interest rate in accordance with a real exchange rate target. If the government sets the real exchange rate at a level higher than a critical value, then the economy will achieve stability, even in the extreme case in which the real interest rates (foreign and domestic) are equal in the short run.

In both cases, a close monitoring by the government of the evolution of the real exchange rate is necessary for avoiding a downward move below the critical level that compromises external stability. Moreover, policies in the technological front aimed at enhancing non-price competitiveness can be a useful instrument to reduce the impact of the distributive conflict on the inflation rate and the real exchange rate. In this sense concerns with short term stability should not neglect the need for long term

16 An interesting work offering historical evidence on this point for the small European economies is Katzenstein (1985). Razmi and Blecker (2008) suggest that changing the pattern of specialization may help to avoid the “fallacy of composition” – the impossibility that most countries could pursue at the same time an export-led growth strategy.

17 Prebisch (1961) offers a thought-provoking analysis of the role of active policies in reducing the negative impact of external crisis on growth and class conflict in the Latin American economies. The Latin American literature on the 1982 debt crisis and the ensuing inflationary process highlighted how real devaluations heightened the intensity of the distributive conflict. See also Porcile and Lima (2010).
policies for international competitiveness. On the contrary, the latter can be seen as a condition for the success of the former.

Last but not least, instability is the most likely outcome when we assume perfect foresight plus full integration to global financial markets. Although these assumptions are highly unrealistic, it has been frequently argued that economic policies should create an environment as close to them as possible to reap the benefits of international financing. This contention, however, is not confirmed by the model. Under these special assumptions, the real interest parity completely neutralizes the effectiveness of IROP as a stabilizing mechanism.

References

