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a b s t r a c t

Several neurological diseases (e.g. essential tremor and Parkinson’s disease) are related to pathologically
enhanced synchronization of bursting neurons. Suppression of these synchronized rhythms has potential
implications in electrical deep-brain stimulation research. We consider a simplified model of a neuronal
network where the local dynamics presents a bursting timescale, and the connection architecture
displays the scale-free property (power-law distribution of connectivity). The networks exhibit collective
oscillations in the form of synchronized bursting rhythms, without affecting the fast timescale dynamics.
We investigate the suppression of these synchronized oscillations using a feedback control in the
form of a time-delayed signal. We located domains of bursting synchronization suppression in terms
of perturbation strength and time delay, and present computational evidence that synchronization
suppression is easier in scale-free networks than in the more commonly studied global (mean-field)
networks.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks are found in many scientific and techno-
logical applications, and a great deal of effort has been spent on
studying such systems using tools derived from areas like statis-
tical mechanics, graph theory, and nonlinear dynamics (Borhnoldt
& Schuster, 2003). In these complex networks the nodes represent
individuals or organizations, the links standing for their mutual in-
teractions, according to a specified connection architecture (Albert
& Barabási, 2002; Dorogovtsev&Mendes, 2002). A class of complex
networks which has been intensively studied is the scale-free net-
work, for which the connectivity – the number of connections for
each node – presents a statistical power-law dependence (Barabási
& Albert, 1999). If P(k)dk denotes the probability of finding a node
with connectivity between k and k+ dk, for scale-free lattices one
has P(k) ∼ k−γ where γ > 1. As a consequence, in scale-free
networks a few nodes are connected with a large number of other
ones, whereas most of the nodes are connected with a small num-
ber of network units.
This power-law distribution of connectivities comes from

two mechanisms (Barabási & Albert, 1999): (i) networks expand
continuously by the addition of new nodes; (ii) new nodes
attach preferentially to already well-connected nodes. As those
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mechanisms are common tomany networks of physical, biological,
and social interest, it is not surprising that a large number of
networks have been found to exhibit a scale-free connectivity.
Some examples are the World Wide Web (Barabási, Albert, &
Jeong, 2000; Broder et al., 2000; Pastor-Satorras, Vázquez, &
Vespignani, 2001), earthquakes (Baiesi & Paczuski, 2004), large
computer programs (de Moura, Lai, & Motter, 2003), epidemic
spreading (Pastor-Satorras & Vespignani, 2001), human sexual
contacts (Lijeros, Edling, Amaral, Stanley, & Aberg, 2001), protein
domain distributions (Wuchty, 2001), cellular metabolic chains
(Barabási & Oltvai, 2004; Jeong, Tombor, Albert, Oltvai, & Barabási,
2000; Jeong, Mason, Barabási, & Oltvai, 2001), and human brain
functional networks (Equiluz, Chialvo, Cecchi, Buliki, & Apkarian,
2005).
Scale-free neural networks have attracted a lot of attention,

since the relative sparseness of their coupling architecture reduces
the memory needed to store a given amount of information, as
well as the computational effort needed to provide certain tasks
(Perotti, Tamarit, & Cannas, 2006; Stauffer, Aharony, da Fontoura
Costa, & Adler, 2003). Recently it has been found that, for stochastic
neural networks the large-scale behavior admits a description in
terms of a winner-take-all type dynamics, in such a way that the
graph of charge transfers has scale-free properties with a power-
law exponent γ = 2.0 (Piekniewski & Schreiber, 2008). Moreover,
recent experimental evidence suggests that some brain activities
can be assigned to scale-free networks, as revealed by functional
magnetic resonance imaging, where the scaling exponent γ has
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been found to take on values between 2.0 and 2.2, with an average
connectivity of 〈k〉 ≈ 4 (Chialvo, 2004; Equiluz et al., 2005;
Sporns, Chialvo, Kaiser, & Hilgetag, 2004). The connection between
the large-scale functional networks discussed in those works and
a small-scale structural network of coupled neurons has been
recently investigated by Hagmann et al. (2008) and Honey et al.
(2009).
Moreover, a recent study by van der Heuvel, Stam, Boersma,

and Hulshoff Pol (2008) using high-definition functional magnetic
resonance imaging suggests that connectivity graphs formed out
of all cortical and sub-cortical voxels have both small-world and
scale-free properties, the latter having a scaling exponent around
2.0. On the other hand, Achard, Salvador, Whitcher, Suckling, and
Bullmore (2006) have found that the human functional network
is dominated by a neocortical core of highly connected hub-
like neurons which do not obey properly a scale-free but rather
have an exponentially truncated power-law degree distribution.
Humphries, Gurney, and Prescott (2006), argue that the medial
reticular formation (RF) of the brainstem is characterized by
a neural network exhibiting small-world, but not scale-free
properties.
One of the collective phenomena which arise from the network

coupling is the synchronization of periodic, noisy, or even
chaotic oscillations taking place at each network unit (Pikovsky,
Rosenblum, & Kurths, 2003). Synchronization of oscillations are
an important feature of network-coupled physical and biological
systems, like arrays of coupled Josephson junctions (Wiesenfeld,
Colet, & Strogatz, 1996) lasers (Roy & Thornbert Jt, 1994), and
flashing fireflies (Mirollo & Strogatz, 1990). We shall be concerned
particularly with neuronal networks where each unit receives
excitatory inputs from a few thousands of other neurons (Bear,
Connors, & Paradiso, 2002). The transition from inactive to active
neural networks with scale-free architecture has been found to
be a global bifurcation (López-Ruiz, Moreno, Pacheco, Boccaletti,
& Hwang, 2007).
Neuronal activity (i.e., the evolution of the action potential)

in cortical circuits often presents two distinct timescales: (i) a
fast time scale characterized by repetitive spiking; and (ii) a slow
timescale with bursting activity, where neuron activity alternates
between a quiescent state and spiking trains (Belykh, de Lange,
& Hasler, 2005). A characteristic feature of cortical circuits is
that they produce synchronized bursting, while its individual
neurons, when isolated, show irregular bursts, in such a way that
synchronized bursting is a characteristic effect of the coupling
neural architecture (Thomson, 2000).
The presence of synchronized rhythmshas been experimentally

observed in electroencephalograph recordings of electrical activity
in the brain, in the form of an oscillatory behavior generated by
the correlated discharge of populations of neurons across cerebral
cortex. The behavioral state alters the amplitudes and frequencies
of these oscillations, such that high frequency and low amplitude
rhythms tend to occur during arousal and attention; whereas low
frequency and high amplitude activity occurs during slow-wave
sleep (Thomson, 2000).
Moreover, some types of synchronization of bursting neurons

are thought to play a key role in Parkinson’s disease, essential
tremor, and epilepsies (Milton & Jung, 2003). As an example, the
synchronous firing of neurons located in the thalamus and basal
ganglia appears to cause resting tremor in Parkinson’s disease, in
such a way that the firing frequency is in the same range (3–6 Hz)
of the tremor itself (Maistrenko, Popovych, & Tass, 2005). The
peripheral shaking results from the activation of cortical areas due
to the existence of a cluster of synchronously firing neurons that
acts as a pacemaker (Nini, Feingold, Slovin, & Bergman, 1995).
Hence a possible way to control pathological rhythms would
be to suppress the synchronized behavior. This can be obtained
through application of an external high frequency (>100 Hz)
electrical signal, and it constitutes the main goal of the deep-brain
stimulation technique (Benabid et al., 1991).
Deep-brain stimulation consists of the application of depth

electrodes implanted in target areas of the brain like the thalamic
ventralis intermedius nucleus or the subthalamic nucleus (Benabid
et al., 1991). The overall effects of deep-brain stimulations are
similar to those produced by tissue lesioning and have proved to
be effective in suppression of the activity of the pacemaker-like
cluster of synchronously firing neurons, so achieving a suppression
of the peripheral tremor (Blond et al., 1992). While most progress
in this field has come from empirical observations made during
stereotaxic neurosurgery, methods of nonlinear dynamics are
beginning to be applied to understand this suppression behavior.
Rosenblum and Pikowsky have proposed a feedback procedure
to control pathological brain rhythms through suppression of the
synchronized behavior by a delayed feedback signal (Rosenblum
& Pikowsky, 2004a). This strategy has been successfully applied
to globally coupled networks, in which each unit interacts with
all other neurons in a mean-field kind of coupling (Rosenblum &
Pikowsky, 2004b).
In this letter we analyze the control of collective synchronized

oscillations using a time-delayed feedback control signal in a scale-
free network of bursting neurons, whose individual dynamics
is governed by a two-dimensional dissipative map proposed
by Rulkov (2001), see also Rulkov, Timofeev, and Bazhenov
(2004). The latter describes the essentials of neuron bursting
activitywith some advantages overmore sophisticatedmodels like
Hindmarsh–Rose equations (Dayan & Abbott, 2001), such as the
use of less computer time, what makes it suitable for numerical
simulations using a large number of neurons. We investigated
the control parameter regimes for which there occurs bursting
synchronization, and the effect of varying coupling parameters.
We located domains of bursting synchronization suppression
in terms of perturbation strength and time delay, and present
computational evidence that synchronization suppression is easier
in scale-free networks than in the more commonly studied global
(mean-field) networks.
This paper is organized as follows: Section 2 deals with the

model we use to describe neural networks, using a discrete map to
simulate the local neuronal dynamics and a network architecture
displaying the scale-free property. Section 3 discusses the ideas
behind the stimulation technique using a delayed feedback signal,
and how it is able bursting synchronization in the network. Our
numerical results are shown in Section 4, as well as a discussion
of some issues related to the influence of the particular aspects
of the model we are using, as its parameters. Section 5 describes,
in a semi-quantitative setting, the transition to the bursting
synchronization, using the well-known Kuramoto model as a
paradigm. The last Section is devoted to our conclusions.

2. Network model

2.1. Local dynamics

In the neuron models we consider in this paper, the time
evolution of the action potential is supposed to exhibit two
timescales. The fast timescale is related to the spiking neuron
activity, whereas the slow timescale appears in the form of bursts
characterized by the repetition of spikes (Dhamala, Jirsa, & Ding,
2004). Mathematicalmodels of such bursting neuronsmay be built
upon systems of three or more ordinary differential equations, like
themodels proposed by Hodgkin and Huxley (1952) or Hindmarch
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Fig. 1. Time evolution of the (a) fast and (b) slow variables in the Rulkov map
(1)–(2) for θ = 4.1, σ = β = 0.001.

and Rose (1984); as well as the discrete-time processes with at
least two dimensions, like the map proposed by Rulkov (2001)

xn+1 =
θ

1+ x2n
+ yn, (1)

yn+1 = yn − σ xn − β, (2)

where xn is the fast and yn is the slow dynamical variable.
In the Rulkov map, the parameter θ affects directly the spiking

timescale, its values being chosen so as to produce chaotic behavior
for the evolution of the fast variable xn, characterized by an
irregular sequence of spikes. Since in neuronal assemblies the
neurons are likely to exhibit some diversity, we choose randomly
the values of θ within the interval [4.1, 4.4] according to a uniform
distribution. The parameters σ and β , on their hand, describe the
slow timescale represented by the bursts, and take on small values
so as to model the action of an external dc bias current and the
synaptic inputs on a given isolated neuron (Rulkov, 2002).
We choose the parameter θ so as to yield chaotic behavior for

the characteristic spiking of the fast variable xn [Fig. 1(a)]. The
bursting timescale, on the other hand, comes about the influence
of the slow variable yn. This can be understood by using a simple
argument: since, from Eq. (1), yn represents a small input on the
fast variable dynamics its effect can be approximated by a constant
value γ . The resulting one-dimensionalmap, xn+1 = [θ/(1+x2n)]+
γ , can have either one, two, or three fixed points x∗1,2,3, depending
on the value of the input γ . As the latter approaches a critical value
γSN the fixed points x∗1,2 (one stable and another unstable) undergo
a saddle–node bifurcation, such that, for γ & γsn, however, the
fixed points x∗1,2 disappear. For values of γ > γCR there is also a
chaotic attractor that, provided γCR < γ < γSN , coexists with the
stable fixed point attractor. Actually, at γ = γCR the chaotic at-
tractor collides with the unstable fixed point x∗1 and is destroyed
through a boundary crisis. The bursting regime then comes from
a hysteresis between the stable fixed point (quiescent evolution)
and the chaotic oscillations (fast sequence of spikes).

2.2. Scale-free coupling

The connection architecture of neuron networks is a subject
of intense investigation, having already a vast and ever-growing
literature (Bear et al., 2002). Even though realistic computer
simulations should include a three-dimensional model of coupled
neurons, good insights are expected to come from simpler one-
dimensional models, which can nevertheless retain some of the
general characteristics of higher-dimensional lattices.
It is from this point of view thatweuse one-dimensional lattices

with N neurons, whose bursting dynamics is governed by the map
(1)–(2):

x(i)n+1 =
α(i)

1+
(
x(i)n
)2 + y(i)n + C(i)n (x

(j)
n ), (3)

y(i)n+1 = y
(i)
n − σ x

(i)
n − β, (i = 1, 2, . . .N) (4)

where we consider that the coupling is performed only on the fast
time scale by means of the term C(i), the form of which depends
on the network topology chosen to describe the neural network. In
the following we use the values β = σ = 0.001 for all coupled
neurons.
A commonly investigated model of neuronal networks takes

into account the high connectivity of neurons and considers in the
coupling term the mean field produced by all the neurons

C(i)n (x
(i)
n ) =

ε

N

N∑
j=1

x(j)n . (5)

However, this model exhibits regular connections only and the
number of connections is the same for each neuron (〈k〉 = N).
Moreover, such a description does not take into account an ex-
pected dependence of the coupling on the distance between neu-
rons, such that it can only be considered a highly simplified model.
More realistic models of brain networks should be motivated

by empirical studies, at least in a conceptual sense, like the results
known for the worm C. elegans, for which N = 282 and 〈k〉 =
14 (Achacoso & Yamamoto, 1991). One usually works with data
from networks formed by neuron clusters (i.e., cortical regions),
detailed studies being available for the cortico-cortical network of
cats (Scannell & Young, 1993) andmacaques (Sporns, 2002). Recent
studies have considered the functional networks obtained through
functional magnetic resonance imaging in humans, where the
functional connections are defined from the correlation properties
of their time evolution, and for which N = 4891 and 〈k〉 = 4.12
(Chialvo, 2004; Equiluz et al., 2005; Sporns et al., 2004).
A common trait of such neuron networks is that the connectiv-

ity is non-uniform, presenting a small number of highly connected
neurons, while most of them remain poorly connected. In order
to quantify the connection properties of the lattices there are two
quantities of interest: (i) the shortest path length L, defined as the
minimum number of links necessary to connect two nodes; and
(ii) the clustering coefficient C , or the fraction of connections be-
tween the neighbors with respect to maximum possible. Regular
lattices connecting only near neighbors display a relatively large
amount of clustering C , but they fail to provide non-local interac-
tions, accounting for a large average distance L. Random graphs, on
the other hand, have a substantially smaller value for L due to the
randomly distributed non-local interactions, but they possess low
values of the clustering coefficient C due to the sparseness of the
connectivity among sites (Watts, 2000).
In the human functional network described by Chialvo (2004)

and his collaborators (Equiluz et al., 2005; Sporns et al., 2004), the
shortest path length was found to be L = 6.0, with a cluster co-
efficient of C = 0.15. If this network were to be treated as a ran-
domgraph, these quantitieswould take on the values Lrandom = 6.0
and Crandom = 0.00089. Hence a more realistic network topology
should be between the limiting cases of a regular (globally cou-
pled) and a random lattices. Such a network exhibits the so-called
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small-world property, for it has a small value of L (just like in a ran-
dom graph) while retaining a comparatively large clustering, as it
occurs for regular lattices. Both properties can be achieved simulta-
neously through introducing random shortcuts into an otherwise
purely regular lattice (Newman & Watts, 1999a, 1999b; Watts &
Strogatz, 1998).
Besides having the small-world property, the human functional

network is also characterized by a highly non-homogeneous distri-
bution characteristic of a scale-free network, for which the number
of connections per node presents a statistical power-law depen-
dence P(k) ∼ k−$ where the scaling exponent$ takes on a value
between 2.0 and 2.2 (Chialvo, 2004; Equiluz et al., 2005; Sporns
et al., 2004). By way of contrast, the macaque cortico-cortical net-
work fails to present the scale-free property, maybe due to the
smallness of the network size, a problem also observed for the cat
network (Zhou, Zemanová, Zamora, Hilgetag, & Kurths, 2006).
It is possible to build computationally a scale-free network out

of a coupled map lattice, in which we consider basically random
interactions between neurons, or shortcuts, added to the lattice so
as to yield a power-law distribution. We use the Barabási–Albert
coupling prescription, with the coupling term of the form

C(i)n (x
(i)
n ) =

ε

k(i)
∑
j∈I

x(j)n , (6)

where ε > 0 is the coupling strength and we assumed that each
site i is coupled with a set I comprising k(i) other sites randomly
chosen along the lattice.
We build the scale-free lattice by means of a sequence of steps

s = 0, 1, 2, . . . smax, starting from an initial lattice with N0 = 11
sites Fig. 2(a). At each step s a new site is inserted in the lattice of
size Ns, such that it is connected to ` ≥ 2 randomly chosen sites.
The connections occur preferentially with the more connected
sites, what can be accomplished by using a different probability
for each site P (i)s = k

(i)
s /Ns, where k

(i)
s is the number of connections

per site at the step s. The process is repeated until we achieve a
desired lattice size N = 230 (Batista et al., 2007a). After a number
smax of steps we have k(i) connections per site, corresponding
to a probability P (i) = k(i)/N . Fig. 2(b) shows a histogram for
the number of sites with connectivity k, obtained through this
procedure for N = 230 sites. The numerical approximation to
the (non-normalized) probability is shown to display the scale-free
signature of a power-law scaling k−$ with a slope $ = 2.08,
which agrees with the empirical results obtained by Sporns et al.
(2004) and Equiluz et al. (2005).
A scale-free coupled map lattice obtained from Eqs. (3)–(4) can

be written also in the form

x(i)n+1 =
α(i)

1+
(
x(i)n
)2 + y(i)n + ε

k(i)

N∑
j=1

gijx(j)n , (7)

y(i)n+1 = y
(i)
n − σ

(i)x(i)n − β
(i), (8)

where gij are the elements of a N × N connectivity matrix, where
gij = 1 if the sites i and j are connected, and zero otherwise. Since
the connectivity per site is different, each line of the matrix gij
has a different number of ones distributed through the columns,
the remaining elements being padded with zeroes. However, the
connectivity matrix is symmetric (gij = gji) due to the process of
construction of the scale-free lattice, i.e. the connectivity matrix
evolves through a finite number of steps conserving its symmetry.
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Fig. 2. (a) Scheme of the initial lattice with N0 = 11 sites used to build a scale-free
lattice. (b) Probability distribution for the connectivity of the final scale-free lattice
with N = 230 sites. The solid line is a least-squares fit.

3. Bursting synchronization and its control

In an assembly of bursting neurons, we do not expect
synchronization in the spiking timescale, but we may look for
a weaker form of synchronization in the bursting timescale.
This is actually possible by conveniently defining a phase for
the slow timescale: a burst begins when the slow variable yn,
which presents nearly regular saw-teeth oscillations, has a local
maximum, in well-defined instants of time we call nk [Fig. 1(b)]. A
phase can be thus defined as

ϕn = 2πk+ 2π
n− nk
nk+1 − nk

, (9)

and increases monotonically with time. However, due to the
chaotic evolution in the fast (spiking) timescale, it turns out that
the interval nk+1 − nk is different for each burst. Hence a bursting
frequency,

Ω = lim
n→∞

ϕn − ϕ0

n
, (10)

gives the time rate of the phase evolution.
The coupled system of Rulkov neurons, although not prone to

exhibit complete synchronization in the fast (spiking) timescale,
can present a non-trivial coherent behavior, since their bursting
phases can synchronize through the interaction provided by the
coupling term C(i). If we had just two coupled neurons, chaotic
phase synchronizationwould imply simply that their phases be ap-
proximately equal (|ϕ(1)−ϕ(2)| � 1). In the case of a large number
N of systems, however, other diagnostics of phase synchronization
need to be used like Kuramoto’s order parameter (Batista, Batista,
de Pontes, Viana, & Lopes, 2007b).
The coupled system of Rulkov neurons can present synchro-

nized bursting through the interaction provided by the coupling
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Fig. 3. Time evolution of the fast variable for Rulkov neurons with (a) θ (1) = 4.1 and (c) θ (2) = 4.2 for a scale-free network of N = 230 Rulkov neurons with coupling
strength ε = 0.08 and no feedback signal. (b) and (d) are the respective situations for a time-delayed differential feedback signal with εf = 0.08 and τ = 140.
term C(i). One useful diagnostic of synchronization is the mean
field of the lattice. For scale-free networks this mean field only
takes into account those neurons present in the coupling term (6):

Xn =
ε

k(i)
∑
j∈I

x(j)n . (11)

If the neurons are weakly coupled, they burst at different
times in a non-coherent fashion, the mean field fluctuates
irregularly with small amplitudes. Alternatively, if the neurons
burst synchronously this yields a nonzero mean field is formed
such that Xn presents regular oscillations of comparatively large
amplitude. Only the slow time scale dynamics becomes coherent
as the neurons burst synchronously, and the fast time scale spiking
remains incoherent and do not contribute to the mean-field
dynamics, which is kept close to a periodic regime (Ivanchenko,
Osipov, Shalfeev, & Kurths, 2004).
An example of synchronized bursting in the scale-free network

given by Eq. (3)–(4) with coupling (6), we depict in Fig. 3 the
time evolution of the fast variable of two selected neurons, with
α(1) = 4.1 [Fig. 3(a)] and α(2) = 4.2 [Fig. 3(c)], showing a near
coincidence between the times atwhich the neurons start bursting.
Notice that the coupling does not destroy the characteristic
irregular (chaotic) spiking of the individual neurons, but only
synchronizes their bursting activity. The mean-field equation (11)
corresponding to this situation presents indeed large-amplitude
periodic oscillations [Fig. 4(a)].

4. Delayed feedback control

Once the neuronal network exhibits bursting synchronization,
we consider the possibility of controlling such (often undesirable)
rhythms by means of a time-delayed feedback signal, according to
the procedure put forward by Rosenblum and Pikowsky (2004a,
2004b). The lattice coupling (in our case, a scale-free type rather
than a global one) is represented by a term εXn, which includes
the mean field Xn given by Eq. (11). This control is being applied
only at the variable representing the fast (spiking) dynamics of
each neuron, since the slow (bursting) variable plays the role of
modulating the chaotic activity of the fast variable, generating the
train of repeated spikes. For this to occur even when the neurons
are coupled, it is necessary that the inputs of the slow variables be
comparatively small, a condition that cannot be warranted if the
coupling is made to occur also in these variables.
In the following, we will consider two procedures of feedback

control, with respect to their dependences on the mean field,
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Fig. 5. Variance of the mean field versus the coupling strength ε for a scale-free
lattice of N = 230 Rulkov neurons with (a) differential and (b) direct feedback
control with εf = 0 (circles), εf = 0.02 (squares), and εf = 0.04 (triangles), and a
common time delay τ = 140. In (b) we have ε′ = εf .

the point of view of practical implementation of such a control in
neuroscience.
Since a state of synchronized bursting is characterized by large-

amplitude oscillations of amacroscopicmean field, whereas small-
amplitude fluctuations mark the absence of synchronization, a
quantitative measure of synchronization is the variance of mean-
field oscillations σ 2 = Var(X). In Fig. 5 we depict the values of this
variance versus the coupling strength ε for three different values
of the control strength εf . When there is no control (i.e. εf = 0,
open circles in Fig. 5) bursting synchronization is achieved only if
the coupling strength ε is larger than a critical value εc .
For globally coupled lattices this fact is explained through the

properties of the Kuramoto model of limit-cycle oscillators, for
which the mean-field variance plays the role of an order param-
eter (Acebrón, Bonilla, Vicente, Ritort, & Spigler, 2005; Kuramoto,
1984). Indeed, if ε < εC the coupling is not strong enough to yield
synchronized behavior, and the mean field experiences irregular
oscillations of small amplitude (depending as 1/N with the num-
ber N of oscillators). As can be seen in Fig. 5, in the vicinity of the
transition ε = εC the growth of σ 2 is approximately linear, sug-
gesting that such a transition stems from a Hopf bifurcation.
As the control scheme is switched on (open squares and

triangles in Fig. 5, corresponding to εf equal to 0.02 and 0.04,
respectively) the overall features of the synchronization transition
are maintained. However, the critical value for this transition to
occur, εC , shifts rightwards with increasing control amplitude.
This means that, keeping the same coupling constant to a value
less than εc , the application of control means the suppression of
synchronized behavior. If ε is slightly greater than εc the feedback
control, though not able to eliminate synchronization, can reduce
the oscillations of the mean field, meaning a deterioration of
synchronized bursting, when it exists before the control. For ε-
values too far from εc , however, the control is practically not
effective in suppressing or even reducing synchronization.
The effectiveness of the control procedure on reducing or

suppressing synchronization can be measured by the suppression
coefficient (Rosenblum & Pikowsky, 2004a, 2004b)

S =

√
Var(X)
Var(Xf )

, (14)
Fig. 4. Time evolution of the mean field for a scale-free lattice of N = 230 Rulkov
neurons with ε = 0.08, (a) εf = 0; (b) εf = 0.08. (c) Time evolution of the time-
delayed differential feedback signal Xn−τ with τ = 140.

described by

x(i)n+1 =
θ (i)

1+
(
x(i)n
)2 + y(i)n + εXn + εf Xn−τ − ε′Xn, (12)

y(i)n+1 = y
(i)
n − σ x

(i)
n − β, (i = 1, 2, . . .N) (13)

such that we have: (i) direct feedback, which takes into account
the current mean field and its value τ iterations before, Xn−τ , with
coupling intensity εf , in such a way that ε′ = 0; (ii) differential
feedback, for which the controlling term is the difference between
the current and the time-delayed mean fields, with ε′ = εf . There
are noteworthy differences between these two control schemes,
when one considers their efficiency to move the system out of a
bursting-synchronized state.
As a representative example for controlling the bursting-

synchronized rhythms we plotted in Fig. 3(b)–(d) the time
evolution of the fast variables of two selected neurons of the scale-
free network (3)–(4)–(6) with a differential feedback signal with
intensity εf = ε = 0.08 and time delay τ = 140, applied at the
instant n = 51 000. The formerly observed correlations between
the instants at which bursting begin for the selected neurons
are no longer exhibited by the controlled network. As a matter
of fact, the corresponding mean field (denoted as Xf ) presents
small-amplitude noisy fluctuations [Fig. 4(b)] indicating that the
neurons are not bursting in phase. The time-delayed feedback
signal, depicted in Fig. 4(c) has always amplitudes considerably
smaller than the mean-field oscillations, since the feedback signal
is an externally applied voltage which must be kept small enough
so as not to damage the neurons.
Moreover, the differential coupling scheme has the advantage

of going to zero when the synchronized state is achieved for a
very large number of neurons (the small-amplitude fluctuations
are a finite size effect). This limits the application of the feedback
signal to the short period of time before the suppression of
synchronization is achieved, in such a way that the feedback
control here described is non-invasive, a desirable feature from












