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Abstract. Transport barriers have been observed in tokamak experiments involving negative magnetic
shear. The use of non-twist maps has been proposed in order to explain the underlying dynamical mechanism
of such barriers. In this work we derive an area-preserving analytical map to describe the formation of a
transport barrier in a chaotic field line region of a tokamak with an ergodic magnetic limiter. The map so
obtained is used to investigate the radial diffusion of field lines in such a configuration.

1. Introduction
The existence of closed magnetic surfaces is a necessary condition for plasma confinement in fusion
schemes [1, 2, 3]. Magnetic flux surfaces with the topology of nested tori exist whenever the system
possesses a spatial symmetry and, accordingly, such surfaces may be partially or entirely destroyed as
this symmetry is broken by some means [4, 5, 6]. Particle confinement in fusion plasma is related in
a non-trivial way with the determination of magnetic surfaces. Classical and neoclassical transport in
directions perpendicular to these surfaces, for example, is not sufficient to explain the experimental data
[7, 8]. The observed anomalous transport is one of the most studied themes in fusion plasma theory [9].

There are two general points of view on anomalous diffusion: (i) the existence of magnetic surfaces
is assumed, but the transport properties are due to complex particle motions which are disregarded in
traditional theories [2, 3]; (ii) the particle orbits are taken as essentially simple, but the magnetic surfaces
themselves may not exist [10, 11]. We shall assume the latter view, and consider that the existence
of a layer of chaotic, volume-filling magnetic field lines should be found as a result of the destruction
of equilibrium flux surfaces by means of various mechanisms, as error fields, internal instabilities, or
externally applied resonant fields [4].

However, it is generally not true that chaotic layers of magnetic field lines lead necessarily to a uniform
spread of particle and energy fluxes in radial directions. The underlying structure of chaotic motion,
represented by a complex tapestry of homoclinic and heteroclinic intersections of invariant manifolds of
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unstable periodic orbits, may lead to observable consequences on the transport properties of the magnetic
field lines. One of such effects is the creation of transport barriers which reduce radial diffusion in a given
chaotic magnetic field region, yielding a diminishing particle and energy escape at the plasma edge.

Transport barriers have been observed in advanced tokamak scenarios characterized by a negative
magnetic shear region within the plasma column [12, 13]. Such regions can be created by means of a
non-peaked plasma current density, leading to a non-monotonic radial profile for the safety factor [14].
Area-preserving Poincaré maps of magnetic field lines in situations with negative shear configurations
are described by non-twist maps, for which the non-degeneracy condition for the Kolmogorov-Arnold-
Moser (KAM) theorem to be valid is not generally fulfilled [4, 15]. Non-twist maps present some
peculiar features, with respect to traditionally used twist maps [16, 17]. For example, it may happen
that two neighbor island chains approach each other without having been destroyed and coalesce through
a (non-resistive) reconnection process [18]. The transport barrier arises from a combination of typical
features of non-twist maps: reconnection and bifurcation, occurring in the reversed shear region, which
have been considered to explain some features of anomalous diffusion observed in tokamak advanced
scenarios [19, 20, 21].

In this paper we present a derivation of an analytical non-twist map to describe the formation of a
transport barrier in a tokamak. The external field responsible for the required destruction of equilibrium
flux surfaces will be generated by an ergodic magnetic limiter [22, 23, 24, 25]. This perturbing field
will be superposed to the tokamak equilibrium field with a negative shear region due to a non-peaked
plasma current [21]. The map derived in this work can be used to numerically evidence the formation of
a transport barrier due to a reconnection-bifurcation mechanism, and its effect on the plasma transport
can be inferred from the study of field line diffusion. The paper is organized as follows: in section II
we present the equilibrium and perturbing fields. Section III shows the area-preserving non-twist map
obtained for two resonant perturbations. Section IV deals with the transport barrier resulting from the
magnetic field line structure. Our conclusions are left to the last section.

2. Theoretical model
In the following we choose to work with a polar-toroidal coordinate system in the tokamak: (rt, θt, ϕt),
given by [26]

rt =
R′

0
cosh ξ − cos ω

, θt = π − ω, ϕt = Φ, (1)

in terms of the more familiar toroidal coordinates (ξ, ω,Φ) which, on their hand, are defined from the
circular-cylindrical coordinates (R, ϕ, Z) by

R =
R′

0 sinh ξ

cosh ξ − cos ω
, Z =

R′
0 sin ω

cosh ξ − cos ω
, (2)

where R′
0 is the major radius of the circular centre (i.e., the magnetic axis radius). In this coordinate

system ω has the meaning of a poloidal angle, and ξ is related to the distance from the circular centre.
The polar-toroidal coordinates (1) can also be given by their expression in terms of the local tokamak
coordinates (r, θ, ϕ):

rt = r

[
1 − r

R′
0

cos θ +
(

r

2R′
0

)2
]1/2

, (3)

sin θt = sin θ

[
1 − r

R′
0

cos θ +
(

r

2R′
0

)2
]−1/2

, (4)

such that, in the large aspect ratio limit (rt � R′
0), rt and θt become r and θ, respectively.
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The model equilibrium field B0 is calculated from the poloidal flux and current functions, Ψp(rt, θt)
and I(rt, θt) respectively, by

B0
1 = − 1

R′
0rt

∂Ψp

∂θt
, (5)

B0
2 =

1
R′

0rt

∂Ψp

∂rt
, (6)

B0
3 = −µ0I

R2 , (7)

where

R2 = R′
0
2

[
1 − 2

rt

R′
0

cos θt −
(

rt

R′
0

)2

sin2 θt

]
. (8)

and Ψp is obtained from an approximated analytical solution of the Grad-Schlüter-Shafranov equation in
these coordinates [26]:

1
rt

∂

∂rt

(
rt

∂Ψp

∂rt

)
+

1
r2
t

∂2Ψp

∂θ2
t

= µ0J3(Ψp) + µ0R
′
0
2 dp

dΨp

(
2

rt

R′
0

cos θt +
r2
t

R′
0
2 sin2 θt

)
+

+
rt

R′
0

[
cos θt

(
2
∂2Ψp

∂r2
t

+
1
rt

∂Ψp

∂rt

)
+ sin θt

(
1
r2
t

∂Ψp

∂θt
− 2

rt

∂2Ψp

∂θt∂rt

)]
, (9)

where J3 is the toroidal current density, given by

J3(Ψp) = −R′
0
2 dp

dΨp
− d

dΨp

(
1
2
µ0I

2
)

, (10)

in terms of the pressure p.
The approximate solution of Eq. (9) is written as

Ψp(rt, θt) = Ψp0(rt) + δΨp(rt, θt), (11)

with |δΨp(rt, θt)| � |Ψp0(rt)|, and where Ψp0 is obtained by considering a reversed shear equilibrium
characterized by a toroidal current density profile with a central hole [27], in such a way that

dΨp0(rt)
drt

=
µ0IpR

′
0

2πrt

[
1 −

(
1 + β′ r

2
t

a2

) (
1 − r2

t

a2

)γ+1
]

, (12)

with a as the plasma radius, determined by a material limiter, and β′ ≡ β(γ + 1)/(β + γ + 2), where
β and γ are positive parameters. We normalize the minor tokamak radius bt, and the plasma radius a to
the major (magnetic axis) radius R′

0, such that a/R′
0 = 0.25 and b/R′

0 = 0.33 [24]. We also choose
q(a) = 4.04 and q(0) = 3.50, corresponding to the safety factors at the plasma edge and magnetic axis,
respectively, as observed in typical discharges with negative magnetic shear, for which β = 3.0 and
γ = 1.0. Some equilibrium flux surfaces are depicted in Figure 1.

An important consequence of adopting such a hollow plasma profile is that the safety factor of the
magnetic surfaces [24]

q(rt) =
1
2π

∫ 2π

0

B0
ϕt

(rt, θt)
B0

θt
(rt)

dθt, (13)

has a non-monotonic profile. For some values of the safety factor there are two magnetic surfaces with
different radii r1 and r2. The shearless radius rs is defined by (dq/dr)(rs) = 0, such that r1 < rs < r2.
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Figure 1. Equilibrium flux surfaces.

Figure 2. Scheme of an ergodic magnetic limiter.
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As is well-known from Hamiltonian dynamics, a general magnetostatic perturbation of the equilibrium
will create a multitude of pendular islands of various widths at every rational surface (namely, where the
safety factor is the ratio of two coprime integers) [4]. However, if the perturbation is resonant with
some rational flux surface, the islands are more pronounced at the position of the resonant surface. Non-
monotonic safety profiles are thus likely to present two neighbor island chains near the shearless radius.

An example of magnetostatic perturbation of considerable theoretical and experimental interest is
that provided by an ergodic magnetic limiter, which consists of Nr current rings of length 
 located
symmetrically along the toroidal direction of the tokamak [Figure 2]. These current rings may be regarded
as slices of a pair of external helical windings located at rt = bt, conducting a current Ih in opposite
senses for adjacent conductors, and satisfying a winding law [24] ut = m0θt − n0ϕt = constant. We
choose Nr = 4 rings with mode numbers (m0, n0) = (3, 1).

The perturbing magnetic field B1 produced by such a configuration has been calculated elsewhere
[24], and reads

B1
L = − 1

R′
0rt

∂AL3

∂θt
, (14)

B2
L =

1
R′

0rt

∂AL3

∂rt
, (15)

where

AL3(rt, θt, ϕt) = −µ0IhR′
0

π

(
rt

bt

)m0

exp {i [(m0) θt − n0ϕt]} , (16)

The magnetic field line equations

(B0 + B1) × d
 = 0 (17)

can be written in a Hamiltonian form [28]

dI
dt

= −∂H
∂ϑ

,
dϑ

dt
=

∂H
∂I , (18)

where (I, ϑ) are the action-angle variables of a Hamiltonian H, and the azimuthal angle, ϕt = t, has
been set as a time-like variable. The Hamiltonian for the system can be splited, as usual, as the sum of
an integrable and a perturbing term

H(I, ϑ, t) = H0(I) +



R′
0
H1(I, ϑ, t)

+∞∑
k=−∞

δ

(
t − k

2π

Na

)
, (19)

The perturbing Hamiltonian is often a periodic function in both ϑ and t variables, such that it can be
Fourier-expanded to give

H(I, ϑ, t) = H0(I) + ε

2m0∑
m=0

H∗
m(I) cos(mϑ − n0t)

+∞∑
k=−∞

δ

(
t − k

2π

Na

)
, (20)

where H∗
m are Fourier coefficients, whose detailed forms can be found in Ref. [21], and the perturbation

strength is expressed by the parameter

ε = −2
(




2πR′
0

) (
Ih

I

)
, (21)

which is usually small, since in experiments we have 
 � 2πR′
0 and Ih � Ie, where Ie is the coil current

producing the toroidal equilibrium field.
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Figure 3. Poincaré maps (in action-angle variables) obtained through numerical integration of magnetic
field line equations. The limiter current is (a) 0.70% and (b) 5.83% of the plasma current.

We integrated numerically the magnetic field line equations (18) and constructed Poincaré maps by
sampling the field lines originating from many initial conditions when they cross the surface of section at
ϕ = 0. For the sake of clarity we represented the Poincaré sections in rectangular plots of the action I and
angle ϑ variables. Representative examples of exact Poincaré maps are shown in Figure 3 for different
values of the limiter current.

For small perturbation amplitudes (low limiter currents), we observe two twin island chains near the
shearless radius, with the resonant mode numbers (3, 1) of the perturbation [Figure 3(a)]. Other islands
are also visible corresponding to rational flux surfaces disturbed by the external magnetic field. Stronger
perturbations can destroy some of these island chains, but not all of them, since the Hamiltonian system
does not obeys KAM theorem (due to the non-monotonicity). For example, it is possible for the twin chains
to approach each other without being destructed, as in usual stochasticity scenarios. The twin islands near
the shearless radius first coalesce through a reconnection process and, secondly, undergo a saddle-center
bifurcation which makes one of the twins to vanish, leaving in its place a highly complex chaotic region
[Figure 3(b)]. This process has been thoroughly discussed in previous papers [16, 20, 21, 27].

3. Map for two resonant modes
Although the exact numerical integration of the magnetic field line equation yields Poincaré maps which
reflects in a rather precise way the dynamics of the reconnecting and bifurcating islands in a negative
shear equilibrium, it is a very time-consuming computational task. Many studies of long-term behavior
of this system, as analyzes of diffusion, escape or loss of field lines would require a computationally fast
and reliable scheme of numerical integration.

Instead of obtaining numerically the Poincaré maps, we can resort to the impulsive nature of the
perturbation in (19) to obtain a local analytical approximation of the exact mapping [29]. The basic idea
is to make an expansion of the canonical equations in the vicinity of the twin islands generated by the
perturbation near the shearless radius rs corresponding to mode number m0.

Let us call I∗
1 and I∗

2 the action values corresponding to the two resonant radii r1 and r2, respectively,
near the shearless radius. The equilibrium frequency at each rational surface is

ω0(I∗
1 ) = ω0(I∗

2 ) =
∂H
∂I =

n0

m0
(22)

where (m0, n0) are the mode numbers of the perturbation. Picking up from the model Hamiltonian (20)
the resonant term corresponding to the frequency n0/m0 we get

H(I, ϑ, t) = H0(I) + εH∗
m0

(I) cos(m0ϑ − n0t)
+∞∑

k=−∞
δ

(
t − k

2π

Na

)
, (23)
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We obtained a local approximation near the resonant modes m0 by expanding (19) in the vicinity of
the corresponding resonant radius I∗ in powers of ∆I = I −I∗. After dropping the constant terms there
results

H(I, ϑ, t) = ω0(I∗)∆I +
1
2

dω0

dI

∣∣∣∣
I=I∗

(∆I)2 +
1
6

d2ω0

dI2

∣∣∣∣
I=I∗

(∆I)3 + · · · (24)

+εH∗
m0

(I∗
1,2) cos(m0ϑ − n0t)

+∞∑
k=−∞

δ

(
t − k

2π

Na

)
,

which can be further simplified by performing a canonical transformation to new action-angle variables
(I ′, ϑ′) to eliminate the explicit time-dependence, through the generating function S(I ′, ϑ, t) =(
ϑ − n0

m0
t
)

I ′, resulting in

H′(I ′, ϑ′) =
M
2

I ′2 − W
3

I ′3 + K cos(m0ϑ
′)

+∞∑
k=−∞

δ

(
t − k

2π

Na

)
, (25)

where

M(I∗) ≡ dω0

dI

∣∣∣∣
I=I∗

, W(I∗) ≡ 1
2

d2ω0

dI2

∣∣∣∣
I=I∗

, K(I∗) ≡ εH∗
m0

(I∗
1,2) (26)

Rescaling (25) by dividing by M,

H(I ′, ϑ′) =
1
2
I ′2 − α

3
I ′3 + κ cos(m0ϑ

′)
+∞∑

k=−∞
δ

(
t − k

2π

Na

)
, (27)

where α = W/M and κ = K/M. For notational convenience we denote κ = κ0Ih, where Ih is the
limiter current.

However, taking only one resonant term from (19) is not enough to form a large chaotic region inside
the tokamak plasma. Hence we also take into account a second resonant mode, namely (m0 + 1, n0),
from the infinite number of possible Fourier harmonics in (19). Consideration of additional resonances
would improve our description of the chaotic region, but they are not necessary to study the transport
barrier in the shearless region, as aimed in the present work.

The derivation is similar for this additional mode, resulting on the addition of a perturbing term
cos[(m0 + 1)ϑ′] with strength κ̃ = κ1Ih, κ1 being the amplitude of the second resonant mode. The
Hamilton equations for the local approximations read

dI
dt

=
{
m0κ sin(m0ϑ

′) + (m0 + 1)κ̃ sin[(m0 + 1)ϑ′]
} +∞∑

k=−∞
δ

(
t − k

2π

Na

)
, (28)

dϑ′

dt
= I ′(1 − αI ′). (29)

The presence of a summation of periodic delta function enables one to integrate equations (28) and
(29) by considering I ′

k and ϑ′
k as the action and angle variables, respectively, just after the k-th kick,

which occurs at time tk = Nrm0. This result in a discrete map

I ′
k+1 = I ′

k + m0κ sin(m0ϑ
′
k+1) + (m0 + 1)κ̃ sin

[
(m0 + 1)ϑ′

k+1
]
, (30)

ϑ′
k+1 = ϑ′

k +
2π

Nr
I ′

k(1 − αI ′
k) (mod2π) (31)

tk+1 = tk +
2π

Nr
, (32)
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Figure 4. Phase portraits for the two-resonance mapping with (a) κ0 = 8.44 × 10−6, κ1 = 3.88 × 10−6;
(b) κ0 = 1.48 × 10−4, κ1 = 6.80 × 10−5; (c) κ0 = 1.69 × 10−4, κ1 = 7.77 × 10−5.

4. Transport barrier
The numerical integration of the map obtained in the previous section is faster than of the exact Hamilton
equations. Figure 4 shows typical phase portraits (using, as before, rectangular plots for the surfaces of
section) obtained by means of the local map near two resonances.

The phase portrait depicted in Figure 4(a) shows a typical situation for small perturbation strengths
of the two resonances, respectively given by κ = κ0Ih and κ̃ = κ1Ih. The first resonant mode m0 = 3
generates two twin island chains near the shearless radius. For the chosen value of κ the islands are on the
verge of mutually coalesce, the corresponding separatrices being practically reconnected. At the same
time we observe the second twin island chain, corresponding to the resonant mode m0 + 1 = 4. Due
to the details of the safety factor profile, we still have two resonant radii, roughly symmetrically placed
around the shearless radius. For a given limiter current, however, we have that κ̃ � κ, so that the second
mode has a width smaller than the first mode. The region in-between these two resonant modes is filled
up with invariant tori of irrational flux surfaces which survive to the perturbation (note, however, that
KAM theorem does not apply here, hence caution is needed to mathematically interpret these features).

In Fig. 4(a) the chaotic regions resulting from the non-integrability of the system are restricted to the
vicinity of islands’ separatrices and are too tiny to be visible due the a insufficient graphical resolution
of the picture. However, as both perturbation strengths increase, such chaotic regions are enlarged and
progressively engulf the invariant tori between resonances. The different resonances at each side of the
shearless radius develop a global chaotic layer [Fig. 4(b)]. On the other hand, the two twin island chains
nearer to the shearless radius undergo a reconnection process and, even for high perturbation strengths,
have some invariant surfaces, a barrier, between the chaotic regions at each side of the shearless radius.

With a slightly higher perturbation these surviving surfaces eventually disappear, and a large chaotic
region results comprising the entire region spanned by the two resonant modes sets in [Fig. 4(c)]. A
detailed observation would show that the distribution of orbits in this chaotic region is far from being
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Figure 5. Average square displacement of the initial conditions within the small white depicted in Figure
4(c).

uniform, though. In Fig. 4(c) we picked up a small box (in white) from the core of the chaotic region and
iterate the initial conditions therein a very large number of times. The density of points of the chaotic
orbit can be roughly estimated from the concentration of pixels in the picture: the black (gray) regions
are highly (poorly) visited. It turns out that the highly visited region is just the original chaotic region
inside the shearless radius before the other chaotic regions have been reached.

We can interpret this result with one eye on the transport properties associated with chaotic motion.
Since the trajectories become trapped for a long time before escaping to the other side of the shearless
radius, we can regard the highly visited region as an effective transport barrier, since it hampers diffusion
along this region. In order to give a quantitative verification of this statement, we take, in a phase
portrait such as from Figure 4(c), a large number Nϑ of initial conditions uniformly spread within a small
box picked up from the core of the chaotic region. For each initial condition we compute the square
displacement of the action variable and take an average over all the initial conditions:

< σ2(n) >≡ < (δIn)2 >i =
1

Nϑ

Nϑ∑
i=1

(Ini − I0i)
2, (33)

If the actions were not restricted to a limited domain of the phase portrait, the average square
displacement would depend with time as nµ, where µ is positive exponent. Anomalous diffusion is
characterized by µ �= 1, which we call sub or super-diffusive as µ < 1 or µ > 1, respectively. A uniform
chaotic region is related to Gaussian diffusion, for which µ = 1 [30, 31]. A time series of the average
square displacement of the action is plotted in Figure 5, for Nϑ = 104 initial conditions chosen within
the small white box in Figure 4(c).

Due to the existence of many invariant tori surrounding the chaotic region at both sides of the shearless
curve, the maximal variation of the action variable is roughly 0.04. As far as we are analyzing the
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behavior of the trajectories inside this region, we observe that the transport is initially super-diffusive,
with σ2

n growing with time roughly as n2.9. After less than a dozen iterations, however, the transport
becomes sub-diffusive. In fact, the exponent is so small that for the ensuing ∼ 103 iterations the average
displacement does not change appreciably with time, indicating the presence of an effective transport
barrier, as it could be guessed from Fig. 4(c). Iterating further the map equations, the average displacement
resumes growing sub-diffusively with time, indicating that chaotic trajectories have escaped out of the
broken transport barrier.

5. Conclusions
The formation of transport barriers in tokamaks with negative shear equilibria can be qualitatively
explained by the non-twist nature of the resulting field line maps, when a chaotic region is formed inside
the plasma column. The interpretation we give in this work to the mechanism underlying the appearance
of an effective transport barrier is a trapping effect caused by the dynamical behavior of twin island chains
appearing close to the shearless point. Such twin chains initially coalesce through a reconnective process
and, as they interact with other neighbor islands, there appears a region of mostly chaotic behavior.

As a theoretical approach to reproduce this effect in numerical simulations, we derived in this paper an
area-preserving analytical map for the field line flow. This map is non-twist thanks to the assumption of a
non-monotonic profile for the safety factor of the equilibrium part of the model field. In order to generate
the required chaotic layer inside the plasma column we have used an externally applied magnetic field due
to an ergodic magnetic limiter. Our two-resonance map is thus capable to exhibit an effective transport
barrier close to the shearless radius, even for high amplitude perturbations that destroy the barrier. With
this map we can estimate the time required for a chaotic orbit to escape from this effective barrier. This
barrier is relevant provided the duration of a typical tokamak plasma discharge is less than the average
escape time.
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