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Abstract

Complex dynamical systems with many degrees of freedom may exhibit a wealth of collective phenomena related to high-
dimensional chaos. This paper focuses on a lattice of coupled logistic maps to investigate the relationship between the loss
of chaos synchronization and the onset of shadowing breakdown via unstable dimension variability in complex systems. In
the neighborhood of the critical transition to strongly non-hyperbolic behavior, the system undergoes on–off intermittency with
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espect to the synchronization manifold. This has been confirmed by numerical diagnostics of synchronization and non-
ehavior, the latter using the statistical properties of finite-time Lyapunov exponents.
2005 Elsevier B.V. All rights reserved.
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. Introduction

The study of collective spatio-temporal behavior in
omplex system has received a great deal of attention
ver the last 20 years or so. It is widely agreed
hat a complex system should fulfill the following
roperties: (i) they are composed of many parts
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interrelated in a nontrivial manner; (ii) they can exh
both ordered and random behaviors; and (iii) t
display a hierarchy of structures over a wide ra
of lengths[1]. Spatially extended systems built fro
coupled chaotic maps or flows typically belong
the category of complex systems, for different p
of the lattice can exhibit different dynamics, s
regular and chaotic, forming structures where cohe
and incoherent behavior coexist[2]. There are man
quantitative ways to characterize the complexity
given system, more effectively being a mix of sun
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numerical diagnostics like the Lyapunov spectrum, the
Kolmogorov–Sinai entropy, the Fisher information,
and so on[3]. In addition, there are also several
non-traditional measures of complexity, based on
symbolic dynamics and a renormalized entropy[4].

Synchronization has been one of the collective
phenomena most intensively studied, mainly after
the discovery that chaotic systems, in spite of their
natural instability, can synchronize their trajectories
[5,6]. While a considerable amount of research has
focused on small assemblies of coupled systems,
the question of how and why complex systems with
many degrees of freedom synchronize still presents
challenging questions[7]. Synchronization results in
a system as the outcome of the competition between
two antagonistic factors: the intrinsic disorder caused
by the nonlinear behavior of each system unit and the
diffusive effect provoked by their coupling[8,9]. When
the latter dominates the former, as in many global
coupling schemes, the entire system (or portions of it)
can synchronize, meaning that the state variables for
neighbor units share a common value[9]. On the other
hand, local couplings are such that the diffusive effect
typically is not able to surpass the intrinsic randomness
and, as a result, synchronization is not achieved[10].

There is considerable evidence that synchroniza-
tion occurs as a well-defined transition for a given
strength of the coupling effect[8]. The vicinity of the
critical point for transition to chaos synchronization
is characterized by an intermittent behavior, in which
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the breakdown of the continuous splitting between
stable and unstable manifolds, because the dimension
of the unstable and stable eigenspaces vary along
the chaotic invariant set[18]. The consequences of
unstable dimension variability are disastrous from the
point of view of the shadowing of the numerically
generated chaotic trajectories[19–22].

The relation between loss of synchronization and
the properties of the Lyapunov spectrum has been pre-
viously investigated in a lattice of coupled maps[11].
In this paper, we extend this approach to put into evi-
dence the connection between the collective phenom-
ena and the chaotic bursting which leads to shadowing
breakdown. The key point we wish to convey is that
the transition to synchronization in the coupled map
lattice is accompanied by the loss of transversal sta-
bility of the synchronization manifold, and the conse-
quent shadowing breakdown of chaotic trajectories by
means of unstable dimension variability. Moreover, as
a result of unstable dimension variability, there appears
a chaotic bursting in the vicinity of the synchronization
transition which is in fact a case of on–off intermittency
[23]. These claims are supported by strong numerical
evidence which uses diagnostics of nonhyperbolicity
and synchronization for the loss of hyperbolicity via
unstable dimension variability. While the topics treated
in this paper, like shadowing breakdown, loss of syn-
chronization, and on–off intermittency, have been in-
tensively studied for their own, this work aims to clarify
links between them, focusing on different numerical
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he synchronized dynamics is interrupted by cha
ursts. This fact has been previously reported for
ices of coupled piecewise linear chaotic maps[11].
he chaotic bursting accompanying the synchron

ion transition is an example of the so-called on–
ntermittency[12].

The rationale for explaining the presence of on
ntermittency lies in the transversal dynamics to
ynchronization manifold whenever it exists in
igh-dimensional phase space of the coupled sy

13]. When this manifold becomes transvers
nstable, there are consequences in terms o
ynchronized properties of chaotic trajectories[14].
here is also a profound change in the dynamic

he synchronization manifold after it loses transve
tability, since the synchronized dynamics beco
on-hyperbolic via a mechanism called unsta
imension variability[15–17]. It is characterized b
echniques employed to identify their occurrence
ynamical system.

The structure of this paper is as follows. In Sec
we present the paradigmatic spatially extended

em to be studied, and the characterization of cha
ynamics for it. Section3 considers the existence
ompletely synchronized states for the lattice. Sec
analyzes chaotic bursting accompanying the los

ynchronization as an on–off intermittent situation,
eals with the definition and characterization of ph
ynchronization for the system. The synchroniza
roblem, analyzed from the point of view of shado

ng breakdown, is considered in Section5, which also
tudies the evolution of unstable dimension variab
s a system parameter is varied. Numerical eviden
nstable dimension variability is provided by comp

ng finite-time exponents. Our conclusions are lef
he final section.
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2. Logistic map lattice with a power-law
coupling

Coupled map lattices are widely reckoned as simple
but paradigmatic models for complex systems like neu-
ral networks, excitable media, oscillator chains, etc.[2].
They present both space and time as discrete variables,
while retaining a continuous state variable that is capa-
ble to undergo a smooth nonlinear dynamics. We exam-
ine, in particular, a one-dimensional chain ofN coupled
logistic maps at outer crisisx �→ f (x) = 4x(1 − x),
wherex(i)

n ∈ [0,1] represents the state variable for the
site i (i = 1,2, . . . , N) at timen. Our results, though,
should not be quantitatively very different if we had
chosen the logistic map parameter to be below the outer
crisis value.

In this paper we use a variable range coupling in
which the interaction strength between sites decays in
a power-law fashion with the lattice distance[24–26]

x
(i)
n+1 = (1 − ε)f (x(i)

n ) + ε

η(α)

N ′∑
j=1

1

jα
[f (x(i+j)

n )

+f (x(i−j)
n )], (1)

where ε > 0 and α > 0 are the coupling strength
and range, respectively, andη(α) = 2

∑N ′
j=1 j

−α, with
N ′ = (N − 1)/2 forN odd. We use periodic boundary
conditions for the lattice, orx(i)

n = x
(i±N)
n .
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Laplacian-type coupling[33]

x
(i)
n+1 = (1 − ε)f (x(i)

n ) + ε

2
[f (x(i+1)

n ) + f (x(i−1)
n )],

(2)

obtained whenα → ∞, to a global mean-field coupling
[35,9]

x
(i)
n+1 = (1 − ε)f (x(i)

n ) + ε

N − 1

N∑
j=1,j �=i

f (x(j)
n ), (3)

when α = 0. Hence, asα increases, we shorten the
effective coupling range and can investigate any phe-
nomenon which depends on this effect. Such an exam-
ple is chaos synchronization in coupled map lattices[8].
Short range (nearest-neighbor or diffusive) couplings
do not favor synchronization, since the coupling effect
is typically too weak to overcome the disorder caused
by the extended map dynamics[33,34]. On the other
hand, nonlocal couplings tend to facilitate synchroniza-
tion, since the coupling effect extends throughout the
lattice, as in globally coupled map lattices, where each
site interacts with the mean field produced by all the
other ones[35,36].

The uncoupled logistic maps, at outer crisis, have
the Lyapunov exponentλU = ln 2 for almost all ini-
tial conditionsx0 (except for a Lebesgue measure zero
set of points). On the other hand, the coupled map lat-
tice (1) exhibits a Lyapunov spectrum consisting of
N ordered exponentsλ1 = λmax ≥ λ2 ≥ · · · λN . Since
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The coupling prescription used in Eq.(1) is nonlo-
al since it connects maps from distant parts of the
ice. Such couplings are used in neural network a
ectures with local production of information[27,28],
nd they also result from discretization of some

ial integro-differential equations modeling physi
hemical reactions[29]. Further applications are fou

n assemblies of biological cells with oscillatory a
ivity, whose interaction is mediated by some rap
iffusing chemical substance[30], and in systems o
iffusive coupling in nucleation kinetics with elimin

ion of the rapidly diffusing components[31]. Nonlo-
al prescriptions such as(1), for which the coupling
ntensity decays with the distance along the lattice
ower-law, have been used in models of some bio

cal neural networks[32].
The virtue of the coupling prescription in Eq.(1)

s that it allows one to pass continuously from a lo
e expect that many of these exponents be positi
uantity of interest is the density of the Kolmogoro
inai entropy. We depict inFig. 1 its dependence wit

he parameters characterizing the coupling intens
ts strengthε and rangeα – for the dynamical mode
iven by Eq.(1). For a global coupling (α = 0), the
ean value of the entropy density is close to zero

trong coupling (largeε) and, beyond a given critic
alueα ≈ 0.2, it grows monotonically until it reach
maximum value, achieved for vanishing coupl
hich turns out to be just the Lyapunov exponent
ncoupled mapsλU ≈ 0.69.

As the effective rangeα further increases, we st
ave such a transition, but it becomes delayed an
o sharp, with the presence of an oscillatory behavi
ncreasing amplitude asε decreases. Asε goes to zero
t eventually has the same steep and monotonic inc
haracteristic of global couplings. Whenα is large, the
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Fig. 1. Kolmogorov–Sinai entropy of the coupled map lattice(1) vs.
coupling strength and range, forN = 21.

coupling between maps becomes effectively noticeable
only with the nearest neighbors, and even a strong cou-
pling is not able to change the global chaotic dynamics
of the orbits, although the number of positive Lyapunov
exponents diminishes as the coupling strength grows.
The numerical features we have observed agree with
analytical expressions for the Lyapunov spectrum of
power-law lattices such as Eq.(1) [37].

When bothα and ε have large values, i.e. for
strong and essentially local coupling, the entropy is
low (Fig. 1) which may be explained as a result of a
chaos suppression mechanism by pattern selection.Fig.
2(a) shows, forα = 3.0 (the upper limit of the range
depicted inFig. 1), an overlap of 30 lattice patterns,
after we have waited 10,000 transient iterations. The
resulting zig-zag pattern is dominant over the lattice,
with exception of a defect, where the dynamics is ap-
parently chaotic. The resulting entropy is nonzero, yet
very small. In general, for a frozen random pattern,
there is a decrease of the entropy with increasing non-
linearity[38]. For slightly higherε (Fig. 2(b)), however,
there is complete selection of a period-2 pattern with
zero entropy, for there is no positive Lyapunov expo-
nent. This is in accordance with the conjecture that a
pattern selection occurs with smaller Lyapunov expo-
nent. Patterns with higher Lyapunov exponents, like the
ones exhibiting defects such as inFig. 2(a), tend to col-
lapse under the influence of their neighbors to a pattern

Fig. 2. Overlap of 30 lattice patterns forN = 21 coupled maps with
α = 3.0 and (a)ε = 0.165; (b)ε = 0.950.

with smaller Lyapunov exponent (thezig-zagpatterns)
[38].

The coupled map lattice treated herewith has the
characteristics necessary to be classified as a bona fide
complex system[1,3] since: (a) it is composed by many
parts, represented by the coupled maps, which interact
according to a well-defined prescription; (b) there is
coexistence among ordered and random behaviors, as
illustrated byFig. 2(a); and (c) we can devise a hi-
erarchy among coexistent structures. The latter issue
will be clarified later on in this work, when we clas-
sify patterns related to synchronized behavior and find
a power-law distribution for the corresponding typical
lengths.

3. Chaos synchronization in the coupled map
lattice

Synchronization of chaotic dynamics in coupled
systems became, in the past decade, the convergence
point of many analytical and numerical techniques of
analysis[7]. Besides its own interest, as a collective
spatio-temporal phenomenon, synchronization in cou-
pled maps and oscillators have applications in arrays
of Josephson junctions[39–41], assemblies of flashing
fireflies[42], chaotic laser arrays[43], and physiolog-
ical systems[44], among others.

Complete synchronization of a coupled map lat-
tice means the existence of identical sites with
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same values for the state variables at a given time

n: x(i)
n = x

(i+1)
n = x

(i+2)
n = · · · x(i+Nj)

n . If Nj = N, the
entire lattice is synchronized. Otherwise one has a syn-
chronization cluster of lengthNj. The phase-space is
N-dimensional, but a completely synchronized state
lies in a one-dimensional synchronization manifold
S. All the N − 1 remaining directions are referred to
as transversal directions. If the synchronized state is
chaotic it follows thatλmax > 0, and the stability of
the synchronization manifold is thus determined by the
N − 1 remaining transversal Lyapunov exponents. If
λ2 > 0 (the second exponent) thenS is transversally
unstable, and the synchronized state is unlikely to oc-
cur for typical initial conditions in phase space.

To consider the amplitude synchronization of the
lattice, we resort to a numerical diagnostic provided by
the complex order parameter introduced by Kuramoto
[45], and here adapted for coupled map lattices as[26]

zn = Rn exp(2πiϕn) ≡ 1

N

N∑
j=1

exp(2πix(j)
n ), (4)

whereRn andϕn are the amplitude and angle, respec-
tively, of a centroid phase vector (for a one-dimensional
chain with periodic boundary conditions). A time-
averageR̄ = limM→∞(1/M)

∑M
n=0 Rn is computed

over an interval large enough to warrant that the asymp-
totic state has been achieved by the lattice. Moreover,
we also consider an average value ofR̄ over five dif-
f
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Fig. 3. Time series of order parameter magnitudeR(n) for a coupled
logistic map lattice defined by Eq.(1), with N = 21,ε = 1.0 and (a)
α = 1.0483, (b) 1.1483, and (c) 1.1583.

of the form e2πix
(j)
n , would nearly vanish at each time.

As the coupling strength grows, diffusion adds spatial
correlations to the site amplitudes, and the summation
in Eq. (4) becomes nonzero, increasing nonlinearly
with ε.

Let us investigate now the dependence of the average
order parameter magnitudēR on the quantities char-
acterizing coupling (strength versus effective range)
(Fig. 4(a)). In fact, for strong coupling and small effec-
tive range we have a completely synchronized chaotic
lattice since, by comparing withFig. 1, we have large
values for the entropy. This large plateau suffers a
breakdown to a situation with weak or no synchroniza-
tion at all, through a steep ramp with irregular spikes for
small coupling and large effective range. This is best
viewed in a projection (Fig. 4(b)), where we separate
regions with: (i) synchronized chaotic orbits; (ii) a tran-
sitional regime; and (iii) completely non-synchronized
orbits [46]. These regions are bounded by the curves
ε∗(α) andεc(α). The marked points of the former curve
correspond to values ofε∗ andα for which the average
order parameter magnitudēR ceases to be equal to the
unity. The points on the curveεc(α) were computed
by means of the finite-time Lyapunov exponents, as
will be explained in Section 7. The curves themselves
erent and randomly chosen initial conditions.
The combination of strong coupling and sm

ange produces a plateau near unity in plots of
rder parameter magnitudeR(n), indicating complet
ynchronization, like in the globally coupled case (Fig.
(a)). This follows from the coherent superposition
he phase vectors with the same amplitude at each
or all lattice sites. Fixing the coupling strength a
ncreasing the effective range, we find that the sync
ization plateau begins to breakdown through inter

ent spiking (Fig. 3(b)). As the effective range is furth
ncreased these spikes become more frequent an
rder parameter magnitude can have lower valuesFig.
(c)). On the other hand, if the maps were uncou
ε = 0), we would expect a pattern with site amplitu
(j)
n so spatially uncorrelated that they might be c
idered essentially as random variables. In this c
he order parameterzn, being a space average of ter
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Fig. 4. (a) Time-averaged order parameter magnitudeR̄ vs. coupling
strength and effective range; (b) projected view showing the synchro-
nization regions. The solid curves correspond to nonlinear fittings.

in 4(b) are nonlinear fittings of the form 1/(a − bα),
wherea = 2.14 andb = 0.995 for theε∗(α) curve; and
a = 1.75 andb = 0.754 for theεc(α) one.

By fixing the parameter range at an intermedi-
ate value, sayα = 0.4, and decreasing the coupling
strength ε from its maximum value to be consid-
ered in this paper, 1.0, to zero, the following hap-
pens. For ε large enough we havēR = 1, or a
completely synchronized chaotic state. Whenε =
εc(0.4) ≈ 0.69 it starts to be interrupted by intermit-
tent bursts of non-synchronized behavior, but even-
tually the stationary completely synchronized regime
is achieved. The bursting becomes more frequent
as the coupling strength is further decreased and,
at ε = ε∗(0.4) ≈ 0.57, the order parameter vanishes

and the lattice becomes non-synchronized, never to
achieve a completely synchronized state. Hence, the
interval εc < ε < ε∗ characterizes a transition region
for which the intermittent bursting is a transient
phenomenon.

This scenario is robust and present for a large por-
tion of the coupling parameter plane. As we increase
the value of the effective range parameterα from zero,
it turns out that the interval characterizing a transition
region is pushed towards higher values of the coupling
strengthε. We can understand this hysteresis since the
higher the effective rangeα is, the closer we are to
a locally coupled lattice, in which only the nearest
neighbors contribute in a significant way. It becomes
then increasingly more difficult to have a stationary
completely synchronized state. We callαc ≈ 0.940 the
range parameter value for which the first critical curve
reaches the upper limit given byεc(αc) = 1. Accord-
ingly,α∗ ≈ 1.146 is the value where the second critical
curve is such thatε∗(α∗) = 1. Hence, forα > α∗, we
do not observe a stationary complete synchronization
state, irrespective of how strong the coupling may be,
i.e. the intermittent bursting continues for an arbitrarily
long time.

We find that the critical range parameter necessary
for chaotic synchronization, orα∗, depends on the lat-
tice size, diminishing as we increase the number of
coupled maps (Fig. 5). We obtained that a power law
fits well this finite-size scaling

α

w his
w
N

tion
t tion
d s. In
t ch
s ten-
d aps,
r . On
t the
n tacle
t ong
t sed
b dy-
n

∗(N) ∼ exp[(lnN)−γ̃ ], (5)

here γ̃ = 1, up to the numerical accuracy. In t
ay, it is possible to get a value ofα∗∞ ≈ 0.44 in the
→ ∞.limit.
These results are compatible with the assump

hat a globally coupled lattice favors synchroniza
ue to the long-range spreading of the interaction

he limit of vanishingα, the coupling is such that ea
ite interacts with the mean field of other sites. Any
ency to synchronize is transmitted to all other m
egardless of their relative distance along the lattice
he other hand, a locally coupled lattice connects
earest neighbors of a given site, and this is an obs

o synchronization. Disturbances do slowly move al
he lattice, and this diffusive effect is easily surpas
y the intrinsic randomness present in the chaotic
amics of each site.
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Fig. 5. Dependence of the critical range parameter on the lattice size
for chaotic synchronization, forε = 1.0.

4. Intermittent transition to synchronization

The transition from a synchronized to non-
synchronized behavior, in coupled map lattices, has
many features common to structural phase transitions
[47]. In the vicinity of the critical point, for example,
an Ising system is expected to present fluctuations in
the corresponding order parameter, which is the mag-
netization. Coupled map lattices, which have the Ku-
ramoto’s order parameter, also do present such fluctua-
tions. They are manifested as intermittent bursts which,
as we shall see, have the universal features of the on–off
intermittency.

Let us focus our attention onFig. 4(b), where a rep-
resentative portion of the phase diagram, using the Ku-
ramoto’s order parameter, is shown. Near the critical
curveε∗(α), the time series of the order parameter mag-
nitude presents laminar regions, a fact already observed
in other coupled map lattices[11]. The laminar regions
of synchronization presented inFig. 3 have typically
different lengthsτi, having an exponential distribution,
but their average length is found to obey a power-law
scaling with the differenceα − α∗, forα � α∗: (Fig. 6):

〈τ〉 = 1

Np

Np∑
i=1

τi ∼ (α − α∗)−γ
, for α → α∗, (6)

with γ = 1/2, within the numerical accuracy. This
suggests that the transition to synchronization occurs
through a crisis[48].

Fig. 6. Average length of the synchronization plateaus vs.α − α∗ for
ε = 1.0,α∗ = 1.1463177. The solid line is a power law least-squares
fit with exponent 0.502.

The rationale for this analogy is the identification of
the bursts between laminar regions as a kind of chaotic
transient, similarly to that occurring when a chaotic
attractor suffers a crisis by collision with an unstable
periodic orbit. The average chaotic transient length in
one-dimensional maps, like the logistic mapf (x) =
rx(1 − x) at r = 4, obeys a scaling identical to(6),
with the same critical exponent. In two-dimensional
maps this exponent is related to the stable and unstable
eigenvalues of the unstable periodic orbit with which
the chaotic attractor collides.

In ref.[49] there was considered a boundary crisis in
a two-dimensional map with an invariant subspace in
which a chaotic orbit lies. The dynamics in the transver-
sal direction is such that there is another attractor at
infinity. For a given range of a system parameter there
is a fractal basin boundary between the basins of the
chaotic and the infinity attractor. As the system param-
eter approaches a critical value, this basin boundary
collides with the chaotic attractor in an infinitely large
number of points. Each unstable point suffers a saddle-
repeller bifurcation, in which the saddle belonging to
the chaotic attractor in the invariant subspace coalesce
with the repeller lying in the fractal basin boundary.
This has been called an unstable-unstable pair bifurca-
tion [50,51].
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This analogy can be pushed forward if we consider
that the chaotic attractor lies in the synchronization
manifold (when the maximal Lyapunov exponent is
positive,λ1 > 0), which is itself an invariant manifold
of the coupled map lattice(1) [52]. Hence, the transition
to synchronization is mediated by an unstable-unstable
pair bifurcation occurring in the synchronization man-
ifold, in which a saddle loses its transversal stability.
This fact will be exploited in the next section, where we
consider the onset and evolution of shadowing break-
down in such a system.

Another distinctive feature of the intermittent tran-
sition to synchronization is the universal character of
the statistics of the laminar regions[53]. In Fig. 7(a)
we present a histogram for the length of the lami-

nar regions. Two different regimes are highlighted: for
shorter times, the histogram is well-fitted by a power-
lawP(τ) ∼ τ−γ , with γ ≈ 1.5 (Fig. 7(b)); whereas the
scaling is exponentialP(τ) ∼ e−κτ for larger times,
with κ ≈ 10−3 (Fig. 7(c)).

This 3/2-scaling, for shorterτ, does not persist for
other synchronization regions shown in the phase dia-
gram ofFig. 4, as illustrated inFig. 8. There we plot
distributions obtained forε = 0.7 andε = 0.4, respec-
tively below and above the critical transition to com-
plete synchronization behavior. In this case we still
have a power-law scaling, but with an exponent dif-
ferent from 3/2.

The presence of the 3/2-scaling plus the exponen-
tial decay indicates that on–off intermittency is taking

F
l

ig. 7. (a) Histogram for the lengthτi of the synchronization plateaus; (b
aw; (c) magnification of the short time region, showing a power-law s
) magnification of the long time region, showing an exponential scaling
caling. The coupling parameters areε = 1.0, andα = 1.147.
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Fig. 8. Histogram for the length of the synchronization plateaus forα = 0.476 and (a)ε = 0.7; (b) ε = ε∗(0) ≈ 0.47.

place in the transition to synchronization[12]. As a
matter of fact, the transversal stability properties of the
invariant synchronization manifold provide a support
for this statement. In the transition region, trajectories
off but very near the synchronization manifold expe-
rience intermittent bursting, such that numerical diag-
nostics using an insufficiently large time interval could
erroneously point out the absence of complete synchro-
nization[54,55]. The system is now in the neighbor-
hood of an unstable-unstable pair bifurcation so dif-
ferent parts of the lattice are pulled away or towards
the synchronization manifold, producing the sequence
of bursting regions. The chaotic bursting on a portion
of the lattice appears as random kicks on other parts
due to the coupling. In fact, the existence of two scal-
ings with a shoulder in between, as depicted inFig. 7,
indicates the presence of noise in the on–off intermit-
tent scenario, with a crossover time proportional to the
noise level.

There are many situations of physical interest in
which two or more continuous-time oscillators may
have different amplitudes, even in a chaotic regime, but
with a well-expressedphase coherence. The oscillator
phase can be defined in various ways for continuous-
time systems, the simplest one being a geometrical
phase for a bounded attractor[48,56]. For coupled map
lattices, however, this procedure cannot be carried over,
since there is no vanishing Lyapunov exponent which
would enable an interaction of the coupled phases, in
order to yield phase synchronization. Instead of phase
s ence
w on.

Direction-coherentmaps are defined as those show-
ing local maxima or minima for their amplitudes at the
same time[57], such that the direction is provided by
two sequential iterations of the coupled maps[58,59].
A lattice sitex(j)

n thus has a direction at a fixed timen
given by

P (j)
n =

{
1, if x(j)

n /x
(j)
n−1 > 1,

0, otherwise,
(7)

in such a way that a direction-coherent cluster is a union
of adjacent maps with the same value ofP

(j)
n .

Fig. 9shows the overlap of amplitude-site profiles,
for a hundred successive times and after a large number
of transients have decayed, for a lattice of strongly
coupled logistic maps in the intermediate range
situation. In order to allow for a better visualization
of the local maxima and minima, we depict only three
sequential profiles, where the arrows show the phase
directions. On the basis of the previous definition we
can say that between timesn = 1005 and 1006 all sites
in Fig. 9 are direction-coherent, whereas, between
n = 1006 andn = 1007, this occurs just for a fraction
(nearly half) of them.

We denote byN(0)
n = ∑N

j=1(P (j)
n = 0) andN(1)

n =∑N
j=1(P (j)

n = 1) the number of lattice sites at a given
time with phases equal to 0 and 1, respectively. We
define a coherence ratioρn as[58,59]

ρ

ynchronization, coupled maps can display a coher
ith respect to the direction of their temporal evoluti
 n ≡ 1

N
max(N(0)

n ,N(1)
n ), (8)
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Fig. 9. Overlap of 3 space-amplitude plots for a lattice, after 1004
transients, ofN = 21 maps withα = 0.49, andε = 1.0. The arrows
indicate the phase direction.

in such a way that, if the directions of all lattice sites flip
randomly between 0 and 1, the ratio would approach
a constant value, whereas ifρ = 1 all lattice sites are
direction-coherent (Fig. 10(a)). The minimum value for
this ratio isρ = 1/2, a situation in which half of the
sites haveP (j)

n = 0.
As the lattice pattern evolves with time, this ra-

tio varies in an intermittent fashion, as illustrated by
Fig. 10(b). The coherence ratio has laminar phases
at 1.0 with irregular bursts, some of them approach-
ing the lower bound atρ = 1/2 [Fig. 10(c)], indicat-

Fig. 10. Time series of the direction-coherence ratio forN = 21,
α = 0.49, andε = 1.0.

Fig. 11. Time-averaged direction-coherence ratio as a function of
the coupling strength and range forN = 21 coupled logistic maps.

ing an intermittent behavior very similar to that de-
scribed in the previous section for amplitude synchro-
nization. The average duration of the laminar intervals
scales with the range parameter in a power-law fash-
ion, just like that depicted inFig. 6. Fig. 11 shows
the dependence of the time-averaged coherence ratio
ρ̄ = limM→∞(1/M)

∑M
n=0 ρn, which compares well

with Fig. 4(a), where the time-averaged order param-
eter is plotted against the same parameters. In partic-
ular, theε∗(α) curve inFig. 4(a), which indicate the
loss of complete synchronization of chaos, and the cor-
responding curve in11, which signals loss of direc-
tion coherence, nearly coincide. This occurs because,
while complete synchronization obviously implies di-
rection coherence, the converse is not necessarily true,
as illustrated byFig. 9, where we see that the maps,
though not complete synchronized, have a direction
coherence. This difference is manifested mainly in the
transitional region of intermittent transition to com-
plete synchronization, which is very narrow inFig.
11 compared with that observed in the order param-
eter results ofFig. 4(a). Moreover, we have numeri-
cally verified that the number of coherence-direction
ratio laminar intervals also depends on the interval
lengths according to a power-law distribution, just like
that observed inFig. 7. In a lattice of piecewise linear
maps the slope of the corresponding linear fit is close
to the 3/2-value characteristic of on–off intermittency
[11].
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5. Unstable dimension variability and
shadowing breakdown

The main issue to be discussed in this section is
the relation between the on–off intermittent transition
to synchronization and the breakdown of shadowing
of chaotic trajectories which accompanies the loss of
hyperbolicity via unstable dimension variability. Con-
tinuous shadowability of pseudo-trajectories for a rea-
sonable time-span is a sufficient, albeit not necessary,
requirement for numerically generated chaotic trajec-
tories to be valid[22]. In the case of complex sys-
tems like a coupled map lattice, with many degrees
of freedom and displaying a rich spatio-temporal dy-
namical behavior, the question of shadowing is of
paramount importance. As we shall see, unstable di-
mension variability is quite common in those systems
for practically any coupling strength[60–62]. There
are many observable consequences of unstable dimen-
sion variability in a chaotic system, like the geomet-
ric growth of very small one-step errors in the numer-
ical procedures to obtain trajectories. As a result of
that, our confidence in long time averages of dynam-
ical quantities like entropies and dimensions, is ques-
tioned[63]. Another consequence of unstable dimen-
sion variability in complex systems of the form(1)
turns out to be the intermittent transition to synchro-
nization.

In the previous section we have interpreted that
the existence of an intermittent transition to syn-
c able
p ly-
i a-
t bil-
i bit,
a at-
t the
s sta-
b and
t of
n in-
fi sta-
b lti-
m m-
i , it
h rmit-
t hen
t i-

olent loss of hyperbolicity in the system dynamics
[64].

As the parameter is increased, the number of unsta-
ble periodic orbits, that are transversely unstable, also
increases. A way to quantify the relative abundance of
periodic orbits with a different number of unstable di-
rections is to calculate the corresponding finite-time, or
time-n, Lyapunov exponentsλi(n), i = 1, · · ·N. They
are computed in the same way as the Lyapunov spec-
trum we discussed in Section2, but using trajectories of
small duration, sayn = 50 iterations. The usual spec-
trum is obtained formally as the infinite-time limit of
themλi = limn→∞ λi(n). Unlike the usual spectrum,
where the computed exponents are the same for almost
every initial condition (except for a Lebesgue measure
zero set), the time-n exponents are generally different
for different initial conditions, and they yield a distri-
bution centered at the infinite-time limit.

It has been recognized as a fingerprint of unstable
dimension variability in dynamical systems the fluc-
tuating behavior (about zero) of the time-n exponent
closest to zero[16] for trajectories belonging to the
synchronization manifoldS of the coupled map lat-
tice. The finite-time Lyapunov exponent is computed
along a direction transversal toS. A completely syn-
chronized behavior means thatλ1 > 0 andλi ≤ 0 for
i = 2,3, . . .. Hence, the finite-time Lyapunov exponent
closest to zero that fluctuates about zero, whenS loses
hyperbolicity through unstable dimension variability,
is λ2(n). The corresponding eigendirection will be re-
f there
a un-
d t us
c he
i
n riant
s r
w av-
e lling
(

er-
s ss
o
t e
t
λ on
v h
t

hronization is mediated by an unstable–unst
air bifurcation occurring in the chaotic attractor

ng on the synchronization manifold. This bifurc
ion marks the onset of unstable dimension varia
ty in the chaotic dynamics, since a periodic or
nd all its pre-images embedded in the system

ractor, lose transversal stability with respect to
ynchronization manifold. These transversely un
le orbits form a dense set of repelling tongues

hey are responsible for the intermittent bursts
on-synchronization. There remains, however, an
nitely large number of embedded transversely
le periodic and aperiodic orbits, which are u
ately responsible for the existence of the la

nar synchronization intervals. For that reason
as been proposed to call this process an inte

ency induced by unstable dimension variability, w
he on–off intermittent bursting is followed by v
erred to as the transversal direction (even though
re many other transversal directions as well). To
erstand the reason for this fluctuating behavior, le
onsider an initial condition off but very close to t
nvariant subspaceS. Such a chaotic trajectory visitsε-
eighborhoods of saddles and repellers of the inva
etS. This means that there are time-n segments fo
hich the trajectory is transversely attracting (on
rage) and others for which it is transversely repe
also on average)[17].

The fluctuating behavior of the finite-time transv
al Lyapunov exponentλ2(n) suggests the usefulne
f a probability distributionP(λ2(x0, y0 = 0;n)) for

hem, so thatP(λ2)dλ2 is the probability that th
ransversal time-nexponent has a value betweenλ2 and
2 + dλ2 for a givenn [18]. Hence, unstable dimensi
ariability implies a positive tail inP(λ2), even thoug
he average time-n exponent, defined as
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m ≡< λ2(x0, y0 = 0;n) >

=
∫ +∞
−∞ P(λ2(x0, y0 = 0;n))λ2dλ2∫ +∞
−∞ P(λ2(x0, y0 = 0;n))dλ2

= λT (9)

may be less than zero. In fact, whenm is equal to
zero, the negative and positive areas of the distribu-
tion are equal and the unstable dimension variability is
the most intense (the amount of transversely attracting
and repelling contributions nearly counterbalance each
other). At this point, the synchronization manifold loses
transversal stability as a whole, and the infinite-time
transversal exponent vanishes, (m = λT = 0), charac-
terizing a blowout bifurcation[65].

We can get a numerical approximation for the proba-
bility distributionP(λ2(n)) by considering a large num-
ber of trajectories of lengthn from initial conditions
randomly chosen in the synchronization manifold. In
Fig. 12, we show some distributions of time-50 ex-
ponents, obtained for different values of the effective
rangeα, which here plays the role of a bifurcation
parameter. The critical value for the onset of unsta-
ble dimension variability is also the onset of intermit-
tent transition to complete synchronization, atα = αc,
where an unstable–unstable pair bifurcation occurs in
the synchronization manifold. Numerically the onset
of unstable dimension variability is estimated by com-
puting the value ofα for which the fraction of positive

Fig. 12. Distributions of the second (transversal) finite-time Lya-
punov exponent for different values of the effective rangeα, for
ε = 1.0.

finite-time Lyapunov exponents,

φ(n) =
∫ +∞

0 P(λ2(x0, y0 = 0;n))λ2dλ2∫ +∞
−∞ P(λ2(x0, y0 = 0;n))dλ2

(10)

becomes non-zero, yielding the points on the curve
εc(α) depicted inFig. 4(b). Hence, forα < αc, no shad-
owing breakdown via unstable dimension variability
is expected, and the chaotic synchronized trajectories
are expected to be adequately shadowed over a longer
time interval, which may be long enough for practical
purposes (e.g., when computing dimensions and en-
tropies).

The shape of the probability distributions inFig. 12
is Gaussian-like, with different variancesσ2, according
to the value whichα takes on. The Gaussian-like na-
ture ofP(λ2(n)) is already expected on general grounds
[18], and the distribution as a whole drifts toward pos-
itive values ofλ2(n), asα increases. Whenα = α∗,
the averagem = 〈λ2(n)〉 crosses zero and has a maxi-
mum unstable dimension variability (Fig. 13) since, at
this point,m = 0, as illustrated by the distribution for
α = 1.14834� α∗ shown inFig. 12. Accordingly, the
points on the curveε∗(α) (Fig. 4) were also computed
by imposing thatm = 0, which furnished the same re-
sults as those obtained with help of the order parameter
R̄, thus confirming the relationship between the loss of
synchronization and the shadowing breakdown via un-
stable dimension variability.

Fig. 13. Average of the second (transversal) finite-time Lyapunov
exponent vs. the effective range, forε = 1.0. The inset shows the
corresponding variance.
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In the vicinity of the pointα = α∗, the shadowing
times can be very short, and the validity of the com-
puted numerical trajectories is doubtful beyond that.
There results the time-nexponents (withngreater than
the shadowing time), may suffer from similar shad-
owability problems, when taking individually, as the
chaotic trajectories themselves. However, in terms of
the numerical diagnostics of unstable dimension vari-
ability, we are actually interested in statistical prop-
erties of the time-n exponents, as their averages and
variances, but forn very small. The former yields
the point where unstable dimension variability is the
most intense, at the a blowout instability, whereas the
latter can be used to estimate shadowing times[66].
On the other hand, in some physically relevant cases,
statistical quantities like these have been found to
be meaningful despite unstable dimension variability
[67].

For α > α∗, the relative number of positive time-n

exponents increases and we progressively return to a
situation where unstable dimension variability is less
pronounced, and better shadowing properties are ex-
pected. For example, whenα = 2.5, Fig. 12indicates
that the second time-n exponents is positive for most
initial conditions. This means that, even though the
lattice trajectories are far from being complete syn-
chronized, they are nonetheless better shadowed than
before.Fig. 13 also depicts the variance of the dis-
tributions, showing that it is roughly constant untilα

reaches the blowout valueα∗, after that the distribution
b

ility
a uan-
t ing
t ory
i tory,
c
p uta-
t ies,
a

h

i
t ov
e d
t t

byσ2
n = nσ2

1. There results that, ifm = 0, the shadow-
ing time has a minimum value, such that the effect of
unstable dimension variability is so intense that we do
not expect shadowing for more than thousand iterations
of the dynamical process.

6. Conclusions

In this paper we pursued the close correspondence
between shadowing breakdown via unstable dimension
variability and the intermittent transition to synchro-
nization in a complex system comprised of a coupled
map lattice with variable range coupling. A tunable
parameter allows us to pass continuously from a lo-
cal (nearest-neighbor) to a global (mean field) cou-
pling. The existence of a transition to synchronization
as this variable range is swept over its interval is a
well-established fact, but in this paper we focused on
the behavior near criticality.

The intermittent transition studied is akin to the on–
off intermittency, and both share common properties,
since there is an invariant subspace in the coupled map
lattice, which is the synchronization manifold. The dis-
tribution of the laminar regions reveals a power-law
scaling with the interval length, having a 3/2 universal
exponent characterizing on–off intermittency, and also
presents a shoulder with an exponential decay for large
intervals, as expected if noise is added to the system.
In our case, the role of noise is played by the chaotic
fl lat-
t p in
t

yn-
c n-
s en-
t pe-
r ani-
f tory
s e-
r e of
t this
t sely
s tra-
j

ith
a syn-
c pair
roadens up and the variance increases.
The relation between unstable dimension variab

nd shadowing breakdown can be put on a more q
itative ground. There was shown that the shadow
ime, or the time-span for which a numerical traject
s continuously shadowed by a true chaotic trajec
an be estimated as[66] 〈τ〉 ∼ q−h(m), whereq is the
recision of the arithmetics used in numerical comp

ion (number of precision digits) of chaotic trajector
nd

(m) ≡ 2|m|
σ2

1

(11)

s the so-calledhyperbolicity coefficient[63], σ2
1 being

he variance of the distribution of the time-1 Lyapun
xponent closest to zero (P(λ2(1))). The latter is relate
o the variance of the corresponding time-n exponen
uctuations due to bursting in different parts of the
ice, through the coupling term added to each ma
he lattice.

The transversal stability properties of the s
hronization manifold explain the bursting of no
ynchronization which characterizes the abovem
ioned transition. If there are some, but not all,
iodic orbits embedded in the synchronization m
old which do not have transversal stability, a trajec
tarting off but very close to this manifold will exp
ience at first a laminar behavior, but the existenc
ransversely unstable orbits will eventually make
rajectory to burst away. The remaining transver
table periodic (and aperiodic) orbits will push the
ectory back to the synchronization manifold.

We have used a simpler two-dimensional map w
n invariant subspace to argue that the transition to
hronization is mediated by an unstable–unstable
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bifurcation. On the other hand, this bifurcation also
marks the loss of hyperbolicity of the chaotic attractor
embedded in the synchronization manifold by means
of unstable dimension variability. The synchronization
transition can then be understood by considering the
statistical properties of the finite-time Lyapunov expo-
nent in the direction transversal to the synchronization
manifold. In particular, we have determined the situa-
tion for which the loss of shadowing via unstable di-
mension variability is more intense, namely, when the
synchronization, manifold as a whole, loses transversal
stability. Similar properties were found to hold if we
consider the behavior of the direction coherence of the
lattice sites.

While our discussion was based on a specific cou-
pled map lattice, we argue that the general features ob-
served are rather typical for complex systems present-
ing regular and chaotic behavior in space and time. The
existence of more than one positive Lyapunov exponent
when a system parameter, like the coupling strength,
is varied, indicates that the synchronization manifold
(when it exists) has lost transversal stability. Hence,
the connection between shadowing breakdown and in-
termittent transition to synchronization is a common
feature of complex systems.

Acknowledgements

l fi-
n rch
a also
s y).
W ns.

R

chool
1, p.

ou-

nd
, vol.

haos

[6] L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64 (1990) 821.
[7] A. Pikovsky, M. Rosemblum, J. Kurths, Synchronization—A

Universal Concept in Nonlinear Sciences, Cambridge Univer-
sity Press, 2001.

[8] S. Bocalletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou,
Phys. Reports 366 (2002) 1.

[9] E. Ott, P. So, E. Barreto, T. Antonsen, Physica D 173 (2002)
29.

[10] L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F. Heagy,
Chaos 7 (1997) 520.

[11] A.M. Batista, S.E. de S. Pinto, R.L. Viana, S.R. Lopes, Phys.
Rev. E 65 (2002) 056209.

[12] J.F. Heagy, N. Platt, S.M. Hammel, Phys. Rev. E 49 (1994)
1140.

[13] P. Ashwin, J. Buescu, I. Stewart, Phys. Lett. A 193 (1994) 126.
[14] P. Ashwin, J. Buescu, I. Stewart, Nonlinearity 9 (1996) 703.
[15] R. Abraham, S. Smale, Proc. Symp. Pure Math. (AMS) 14

(1970) 5.
[16] S.P. Dawson, C. Grebogi, T. Sauer, J.A. Yorke, Phys. Rev. Lett.

73 (1994) 1927.
[17] R.L. Viana, S.E. de S. Pinto, J.R.R. Barbosa, C. Grebogi, Int.

J. Bifurcat. Chaos 13 (2003) 1.
[18] E.J. Kostelich, I. Kan, C. Grebogi, E. Ott, J.A. Yorke, Physica

D 109 (1997) 81.
[19] D.V. Anosov, Proc. Steklov Inst. Math. 90 (1967) 1.
[20] R. Bowen, J. Diff. Eq. 18 (1975) 333.
[21] C. Grebogi, S. Hammel, J.A. Yorke, Bull. Am. Math. Soc. 19

(1988) 465.
[22] C. Grebogi, L. Poon, T. Sauer, J. A. Yorke, D. Auerbach, Shad-

owability of chaotic dynamical systems, in: Handbook of Dy-
namical Systems, vol. 2, Fiedler, North-Holland, Amsterdam,
2002, pp. 313–344.

[23] S.C. Venkataramani, T.M. Antonsen Jr., E. Ott, J.C. Sommerer,
Phys. Lett. A 207 (1995) 173.

[24] G. Paladin, A. Vulpiani, J. Phys. A 25 (1994) 4511.

.

81

297.

hys.
R.L.

. 76

998)

215.
This work was made possible through partia
ancial support from the following Brazilian resea
gencies: FAPESP, CNPq, and CAPES. C.G. was
upported by A.V. Humboldt Foundation (German
e acknoledge C. Anteneodo for useful suggestio

eferences

[1] P. Grassberger, F. Ramos-Gomez (Eds.), Fifth Mexican S
on Statistical Mechanics, World Scientific, Singapore, 199
57.

[2] K. Kaneko, K. Kaneko (Eds.), Theory and Applications of C
pled Map Lattices, Wiley, Chichester, 1993.

[3] R. Badii, A. Politi, Complexity: Hierarchical Structures a
Scaling in Physics, Cambridge Nonlinear Science Series
6, Cambridge University Press, 1997.

[4] J. Kurths, A. Voss, P. Saparin, H.J. Kleiner, N. Wessel, C
5 (1995) 88.

[5] H. Fujisaka, T. Yamada, Prog. Theor. Phys. 69 (1983) 32.
[25] A. Torcini, S. Lepri, Phys. Rev. E 55 (1997) R3805.
[26] S.E. de S. Pinto, R.L. Viana, Phys. Rev. E 61 (2000) 5154
[27] H. Nozawa, Chaos 2 (1992) 377.
[28] S. Ishii, M. Sato, Physica D 121 (1998) 344.
[29] P.M. Gade, C.-K. Hu, Phys. Rev. E 60 (1999) 4966.
[30] Y. Kuramoto, H. Nakao, Physica D 103 (1997) 294.
[31] Y. Kuramoto, D. Battogtokh, H. Nakao, Phys. Rev. Lett.

(1998) 3543.
[32] S. Raghavachari, J.A. Glazier, Phys. Rev. Lett. 74 (1995) 3
[33] K. Kaneko, Physica D 23 (1986) 436.
[34] K. Kaneko, Physica D 34 (1989) 1.
[35] K. Kaneko, Physica D 41 (1990) 137.
[36] T. Shimada, K. Kikuchi, Phys. Rev. E 62 (2000) 3489.
[37] C. Anteneodo, S.E. de S. Pinto, A.M. Batista, R.L. Viana, P

Rev. E 68 (2003) 045202(R); C. Anteneodo, A.M. Batista,
Viana, Phys. Lett. A 326 (2004) 227.

[38] K. Kaneko, Physica D 37 (1989) 60.
[39] K. Wiesenfeld, P. Colet, S.H. Strogatz, Phys. Rev. Lett

(1996) 404.
[40] K. Wiesenfeld, P. Colet, S.H. Strogatz, Phys. Rev. E 57 (1

1563.
[41] D. Tsygankov, K. Wiesenfeld, Phys. Rev. E 66 (2002) 036



108 R.N. Viana et al. / Physica D 206 (2005) 94–108

[42] S.H. Strogatz, Nonlinear Dynamics and Chaos, Addison Wes-
ley, 1984.

[43] D.J. DeShazer, R. Breban, E. Ott, R. Roy, Phys. Rev. Lett. 87
(2001) 044101.

[44] C. Schäfer, M.G. Rosenblum, H.-H. Abel, J. Kurths, Phys. Rev.
E 60 (1999) 857.

[45] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence,
Springer Verlag, Berlin, 1984.

[46] R.L. Viana, C. Grebogi, S.E. da S. Pinto, S.R. Lopes, A.M.
Batista, J. Kurths, Phys. Rev. E 68 (2003) 067204.

[47] F. Schmüser, W. Just, H. Kantz, Phys. Rev. E 61 (2000) 3675.
[48] A. Pikowsky, G. Osipov, M. Rosenblum, M. Zaks, J. Kurths,

Phys. Rev. Lett. 79 (1997) 47.
[49] Y.-C. Lai, C. Grebogi, J.A. Yorke, S.C. Venkataramani, Phys.

Rev. Lett. 77 (1996) 55.
[50] C. Grebogi, E. Ott, J.A. Yorke, Phys. Rev. Lett. 50 (1983) 935.
[51] C. Grebogi, E. Ott, J.A. Yorke, Ergod. Th. Dynam. Sys. 5 (1985)

341.
[52] R.L. Viana, C. Grebogi, Int. J. Bifurcat. Chaos 11 (2001)

2689.

[53] E. Covas, P. Ashwin, R. Tavakol, Phys. Rev. E 56 (1997)
6451; Y. Do, Y.-C. Lai, Z. Liu, E.J. Kostelich, Phys. Rev. E
67 (2003) 035202(R).

[54] C. Zhou, J. Kurths, Phys. Rev. Lett. 88 (2002) 230602.
[55] C. Zhou, C.-H. Lai, Physica D 135 (2000) 1.
[56] G.V. Osipov, A.S. Pikowsky, M.G. Rosenblum, J. Kurths, Phys.

Rev. E 55 (1997) 2353.
[57] B. Hu, Z. Liu, Phys. Rev. E 62 (2000) 2114.
[58] W. Wang, Z. Liu, B. Hu, Phys. Rev. Lett. 84 (2000) 261.
[59] W. Wang, Z. Liu, B. Hu, Phys. Rev. E 55 (1997) 2353.
[60] Y.-C. Lai, C. Grebogi, Phys. Rev. Lett. 82 (1999) 4803.
[61] Y.-C. Lai, C. Grebogi, J. Bifurcat. Chaos 10 (2000) 683.
[62] Y.-C. Lai, D. Lerner, K. Williams, C. Grebogi, Phys. Rev. E 60

(1999) 5445.
[63] T.D. Sauer, Phys. Rev. E 65 (2002) 036220.
[64] R.L. Viana, S.E. de S. Pinto, C. Grebogi, Phys. Rev. E 66 (2002)

046213.
[65] E. Ott, J.C. Sommerer, Phys. Rev. Lett. 71 (1993) 4134.
[66] T. Sauer, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 79 (1997) 59.
[67] Y.-C. Lai, C. Grebogi, J. Kurths, Phys. Rev. E 59 (1999) 2907.


	Bubbling bifurcation: Loss of synchronization and shadowing breakdown in complex systems
	Introduction
	Logistic map lattice with a power-law coupling
	Chaos synchronization in the coupled map lattice
	Intermittent transition to synchronization
	Unstable dimension variability and shadowing breakdown
	Conclusions
	Acknowledgements
	References


