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Abstract

Complex dynamical systems with many degrees of freedom may exhibit a wealth of collective phenomena related to high-
dimensional chaos. This paper focuses on a lattice of coupled logistic maps to investigate the relationship between the loss
of chaos synchronization and the onset of shadowing breakdown via unstable dimension variability in complex systems. In
the neighborhood of the critical transition to strongly non-hyperbolic behavior, the system undergoes on—off intermittency with
respectto the synchronization manifold. This has been confirmed by numerical diagnostics of synchronization and non-hyperbolic
behavior, the latter using the statistical properties of finite-time Lyapunov exponents.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction interrelated in a nontrivial manner; (ii) they can exhibit
both ordered and random behaviors; and (iii) they
The study of collective spatio-temporal behavior in display a hierarchy of structures over a wide range
complex system has received a great deal of attention of lengths[1]. Spatially extended systems built from
over the last 20 years or so. It is widely agreed coupled chaotic maps or flows typically belong to
that a complex system should fulfill the following the category of complex systems, for different parts
properties: (i) they are composed of many parts of the lattice can exhibit different dynamics, say,
regular and chaotic, forming structures where coherent
"+ Corresponding author. Tel.: +55 41 3613098 and incoherent behavior coex_[ﬁ]. There are many
fax: +55 41 3613418, quantitative ways to characterize the complexity of a
E-mail addressviana@fisica.ufpr.br (R. Viana). given system, more effectively being a mix of sundry
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numerical diagnostics like the Lyapunov spectrum, the the breakdown of the continuous splitting between
Kolmogorov-Sinai entropy, the Fisher information, stable and unstable manifolds, because the dimension
and so on[3]. In addition, there are also several of the unstable and stable eigenspaces vary along
non-traditional measures of complexity, based on the chaotic invariant sdtl8]. The consequences of
symbolic dynamics and a renormalized entr¢fly unstable dimension variability are disastrous from the
Synchronization has been one of the collective point of view of the shadowing of the numerically
phenomena most intensively studied, mainly after generated chaotic trajectorig9—-22]
the discovery that chaotic systems, in spite of their ~ The relation between loss of synchronization and
natural instability, can synchronize their trajectories the properties of the Lyapunov spectrum has been pre-
[5,6]. While a considerable amount of research has viously investigated in a lattice of coupled mdp4].
focused on small assemblies of coupled systems, In this paper, we extend this approach to put into evi-
the question of how and why complex systems with dence the connection between the collective phenom-
many degrees of freedom synchronize still presents ena and the chaotic bursting which leads to shadowing
challenging questiong/]. Synchronization results in  breakdown. The key point we wish to convey is that
a system as the outcome of the competition between the transition to synchronization in the coupled map
two antagonistic factors: the intrinsic disorder caused lattice is accompanied by the loss of transversal sta-
by the nonlinear behavior of each system unit and the bility of the synchronization manifold, and the conse-
diffusive effect provoked by their coupliri§,9]. When guent shadowing breakdown of chaotic trajectories by
the latter dominates the former, as in many global means of unstable dimension variability. Moreover, as
coupling schemes, the entire system (or portions of it) aresult of unstable dimension variability, there appears
can synchronize, meaning that the state variables for a chaotic bursting in the vicinity of the synchronization
neighbor units share a common vaj@& On the other  transition which is in fact a case of on—off intermittency
hand, local couplings are such that the diffusive effect [23]. These claims are supported by strong numerical
typically is not able to surpass the intrinsic randomness evidence which uses diagnostics of nonhyperbolicity
and, as a result, synchronization is not achig\€yq. and synchronization for the loss of hyperbolicity via
There is considerable evidence that synchroniza- unstable dimension variability. While the topics treated
tion occurs as a well-defined transition for a given in this paper, like shadowing breakdown, loss of syn-
strength of the coupling effe¢8]. The vicinity of the chronization, and on—off intermittency, have been in-
critical point for transition to chaos synchronization tensively studied for their own, this work aims to clarify
is characterized by an intermittent behavior, in which links between them, focusing on different numerical
the synchronized dynamics is interrupted by chaotic techniques employed to identify their occurrence in a
bursts. This fact has been previously reported for lat- dynamical system.
tices of coupled piecewise linear chaotic mgps]. The structure of this paper is as follows. In Section
The chaotic bursting accompanying the synchroniza- 2 we present the paradigmatic spatially extended sys-
tion transition is an example of the so-called on—off tem to be studied, and the characterization of chaotic
intermittency[12]. dynamics for it. Sectior8 considers the existence of
The rationale for explaining the presence of on-off completely synchronized states for the lattice. Section
intermittency lies in the transversal dynamics to the 4 analyzes chaotic bursting accompanying the loss of
synchronization manifold whenever it exists in the synchronization as an on—off intermittent situation, and
high-dimensional phase space of the coupled systemdeals with the definition and characterization of phase
[13]. When this manifold becomes transversally synchronization for the system. The synchronization
unstable, there are consequences in terms of theproblem, analyzed from the point of view of shadow-
synchronized properties of chaotic trajectorjég]. ing breakdown, is considered in Sectignwhich also
There is also a profound change in the dynamics of studies the evolution of unstable dimension variability
the synchronization manifold after it loses transversal as a system parameter is varied. Numerical evidence of
stability, since the synchronized dynamics becomes unstable dimension variability is provided by comput-
non-hyperbolic via a mechanism called unstable ing finite-time exponents. Our conclusions are left to
dimension variability[15-17] It is characterized by  the final section.
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2. Logistic map lattice with a power-law
coupling

Coupled map lattices are widely reckoned as simple
but paradigmatic models for complex systems like neu-
ral networks, excitable media, oscillator chains, L.
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Laplacian-type couplin33]
=(1- /D) + 5 SLAGE) + G,
(2)

obtainedwher — oo, to aglobalmean-field coupling

n+1

They present both space and time as discrete variables[35,9]

while retaining a continuous state variable that is capa-
ble to undergo a smooth nonlinear dynamics. We exam-
ine, in particular, a one-dimensional chaimb€oupled
logistic maps at outer crisis — f(x) = 4x(1 — x),
Wherex,({) € [0, 1] represents the state variable for the
sitei (i = 1,2,..., N) at timen. Our results, though,
should not be quantitatively very different if we had

A =a-9ra + Z £
/ 1, j#i
when o = 0. Hence, asy increases, we shorten the
effective coupling range and can investigate any phe-
nomenon which depends on this effect. Such an exam-

®)

chosen the logistic map parameter to be below the outer ple is chaos synchronization in coupled map lattjggs

crisis value.
In this paper we use a variable range coupling in

Short range (nearest-neighbor or diffusive) couplings
do not favor synchronization, since the coupling effect

which the interaction strength between sites decays in is typically too weak to overcome the disorder caused

a power-law fashion with the lattice distan@4—26]

O
31 =

=(1-9fEN+ o Z LFG )

+ G, (1)

where e > 0 and ¢ > 0 are the coupling strength
and range, respectively, an@x) = 221)’:’1 Jj%, with

= (N — 1)/2 for N odd. We use periodic boundary
conditions for the lattice, ox,(f) = xﬁfiN).

The coupling prescription used in Ed.) is nonlo-
cal since it connects maps from distant parts of the lat-
tice. Such couplings are used in neural network archi-
tectures with local production of informatid@7,28],
and they also result from discretization of some par-
tial integro-differential equations modeling physico-
chemical reactionR9]. Further applications are found
in assemblies of biological cells with oscillatory ac-
tivity, whose interaction is mediated by some rapidly
diffusing chemical substand80], and in systems of
diffusive coupling in nucleation kinetics with elimina-
tion of the rapidly diffusing componen{81]. Nonlo-
cal prescriptions such g4), for which the coupling
intensity decays with the distance along the lattice in a
power-law, have been used in models of some biolog-
ical neural network§32].

The virtue of the coupling prescription in E€L)
is that it allows one to pass continuously from a local

by the extended map dynamif33,34] On the other
hand, nonlocal couplings tend to facilitate synchroniza-
tion, since the coupling effect extends throughout the
lattice, as in globally coupled map lattices, where each
site interacts with the mean field produced by all the
other one$35,36]

The uncoupled logistic maps, at outer crisis, have
the Lyapunov exponenty = In2 for almost all ini-
tial conditionsxg (except for a Lebesgue measure zero
set of points). On the other hand, the coupled map lat-
tice (1) exhibits a Lyapunov spectrum consisting of
N ordered exponents; = Amax > A2 > --- Ay. Since
we expect that many of these exponents be positive, a
quantity of interest is the density of the Kolmogorov—
Sinai entropy. We depict iRig. 1its dependence with
the parameters characterizing the coupling intensity —
its strengthe and rangex — for the dynamical model
given by Eq.(1). For a global couplingd = 0), the
mean value of the entropy density is close to zero for
strong coupling (large) and, beyond a given critical
valuea ~ 0.2, it grows monotonically until it reaches
a maximum value, achieved for vanishing coupling,
which turns out to be just the Lyapunov exponent for
uncoupled mapsy ~ 0.69.

As the effective range further increases, we still
have such a transition, but it becomes delayed and not
so sharp, with the presence of an oscillatory behavior of
increasing amplitude asdecreases. Asgoes to zero,
it eventually has the same steep and monotonic increase
characteristic of global couplings. Wheris large, the
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Fig. 2. Overlap of 30 lattice patterns fof = 21 coupled maps with
o = 3.0 and (ak = 0.165; (b)e = 0.950.

Fig. 1. Kolmogorov—Sinai entropy of the coupled map lat{itevs.

coupling strength and range, fofr = 21. with smaller Lyapunov exponent (tlzéy-zagpatterns)

[38].

coupling between maps becomes effectively noticeable  The coupled map lattice treated herewith has the
only with the nearest neighbors, and even a strong cou- characteristics necessary to be classified as a bona fide
pling is not able to change the global chaotic dynamics complex systerfil,3] since: (a) itis composed by many
of the orbits, although the number of positive Lyapunov parts, represented by the coupled maps, which interact
exponents diminishes as the coupling strength grows. according to a well-defined prescription; (b) there is
The numerical features we have observed agree with coexistence among ordered and random behaviors, as
analytical expressions for the Lyapunov spectrum of illustrated byFig. 2(a); and (c) we can devise a hi-
power-law lattices such as E(.) [37]. erarchy among coexistent structures. The latter issue

When botha and € have large values, i.e. for will be clarified later on in this work, when we clas-
strong and essentially local coupling, the entropy is sify patterns related to synchronized behavior and find
low (Fig. 1) which may be explained as a result of a a power-law distribution for the corresponding typical
chaos suppression mechanism by pattern selegtign.  lengths.
2(a) shows, forx = 3.0 (the upper limit of the range
depicted inFig. 1), an overlap of 30 lattice patterns,
after we have waited 10,000 transient iterations. The 3. Chaos synchronization in the coupled map
resulting zig-zag pattern is dominant over the lattice, lattice
with exception of a defect, where the dynamics is ap-
parently chaotic. The resulting entropy is nonzero, yet  Synchronization of chaotic dynamics in coupled
very small. In general, for a frozen random pattern, systems became, in the past decade, the convergence
there is a decrease of the entropy with increasing non- point of many analytical and numerical techniques of
linearity[38]. For slightly highek (Fig. 2(b)), however, analysis[7]. Besides its own interest, as a collective
there is complete selection of a period-2 pattern with spatio-temporal phenomenon, synchronization in cou-
zero entropy, for there is no positive Lyapunov expo- pled maps and oscillators have applications in arrays
nent. This is in accordance with the conjecture that a of Josephson junctiof89—-41] assemblies of flashing
pattern selection occurs with smaller Lyapunov expo- fireflies[42], chaotic laser array@3], and physiolog-
nent. Patterns with higher Lyapunov exponents, like the ical systemg$44], among others.
ones exhibiting defects such adHig. 2(a), tend to col- Complete synchronization of a coupled map lat-
lapse under the influence of their neighbors to a pattern tice means the existence of identical sites with
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same values for the state variables at a given time L1 . - - —
n: x,(f)=x$li+1)=x,(f+2)=~-~x£,l+Nj). If N; =N, the 1()5:- @ ]
entire lattice is synchronized. Otherwise one has a syn- N il
chronization cluster of lengtlv;. The phase-space is - |
N-dimensional, but a completely synchronized state ~ “° [~ 7]
lies in a one-dimensional synchronization manifold L1 —t
S. All the N — 1 remaining directions are referred to fig
as transversal directions. If the synchronized state is - 8
chaotic it follows thatimax > 0, and the stability of o e R o
the synchronization manifold is thus determined by the 095 - =
N — 1 remaining transversal Lyapunov exponents. If Y A N MU N R
A2 > 0 (the second exponent) thehis transversally T (e A
unstable, and the synchronized state is unlikely to oc- s ]
cur for typical initial conditions in phase space. I

To consider the amplitude synchronization of the 0.95
lattice, we resort to a numerical diagnostic provided by o A L Al | 1
the complex order parameter introduced by Kuramoto 0 10000 20000 30000 40000 50000
[45], and here adapted for coupled map latticeé% n

R(n)

Fig. 3. Time series of order parameter magnit&ge) for a coupled

N
1 . - _ ’ )
— R. exp(2ri = = exp(2rixV) i 4 logistic map lattice defined by E¢fL), with N = 21,¢ = 1.0 and (a)
on n eXp(2ign) N 2; p(2rix;") ) « = 1.0483, (b) 1.1483, and (c) 1.1583.
J:

whereR, andg, are the amplitude and angle, respec- of the form €+, would nearly vanish at each time.
tively, of a centroid phase vector (for aone-dimensional As the coupling strength grows, diffusion adds spatial
chain with periodic boundary conditions). A time- correlations to the site amplitudes, and the summation
averageR = limy—oo(1/M) Y 2o R, is computed  in Eq. (4) becomes nonzero, increasing nonlinearly
over aninterval large enough to warrant that the asymp- with e.
totic state has been achieved by the lattice. Moreover, et usinvestigate now the dependence of the average
we also consider an average valuerRobbver five dif- order parameter magnitude on the quantities char-
ferent and randomly chosen initial conditions. acterizing coupling (strength versus effective range)
The combination of strong coupling and small (Fig. 4(a)). In fact, for strong coupling and small effec-
range produces a plateau near unity in plots of the tive range we have a completely synchronized chaotic
order parameter magnitud¥r), indicating complete  |attice since, by comparing withig. 1, we have large
synchronization, like in the globally coupled cabey values for the entropy. This large plateau suffers a
3(a)). This follows from the coherent superposition of - breakdown to a situation with weak or no synchroniza-
the phase vectors with the same amplitude at each timetion at all, through a steep ramp with irregular spikes for
for all lattice sites. Fixing the coupling strength and small coupling and large effective range. This is best
increasing the effective range, we find that the synchro- viewed in a projectionKig. 4(b)), where we separate
nization plateau begins to breakdown through intermit- regions with: (i) synchronized chaotic orbits; (i) a tran-
tent spiking Fig. 3(b)). As the effective range is further  sitional regime; and (i) completely non-synchronized
increased these spikes become more frequent and theyrbits [46]. These regions are bounded by the curves
order parameter magnitude can have lower valB&s ( ¢*(«) andec(«r). The marked points of the former curve
3(c)). On the other hand, if the maps were uncoupled correspond to values ef and« for which the average
(e = 0), we would expect a pattern with site amplitudes  order parameter magnitudeceases to be equal to the
x,(ﬂ) so spatially uncorrelated that they might be con- unity. The points on the curve;(«) were computed
sidered essentially as random variables. In this case,by means of the finite-time Lyapunov exponents, as
the order parametet,, being a space average of terms  will be explained in Section 7. The curves themselves
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(a)

SYNCHRONIZED

0.8

0.6
NON-SYNCHRONIZED

0.4

0 0.2
(b)

o

Fig. 4. (a) Time-averaged order parameter magniftids. coupling
strength and effective range; (b) projected view showing the synchro-
nization regions. The solid curves correspond to nonlinear fittings.

in 4(b) are nonlinear fittings of the form/la — ba),
wherea = 2.14 andb = 0.995 for thec*(«) curve; and
a = 1.75 andb = 0.754 for theec(x) One.

By fixing the parameter range at an intermedi-
ate value, sayr = 0.4, and decreasing the coupling
strengthe from its maximum value to be consid-
ered in this paper, 1.0, to zero, the following hap-
pens. Fore large enough we havk =1, or a
completely synchronized chaotic state. When=
€c(0.4) ~ 0.69 it starts to be interrupted by intermit-
tent bursts of non-synchronized behavior, but even-
tually the stationary completely synchronized regime

99

and the lattice becomes non-synchronized, never to
achieve a completely synchronized state. Hence, the
interval ¢ < € < €* characterizes a transition region
for which the intermittent bursting is a transient
phenomenon.

This scenario is robust and present for a large por-
tion of the coupling parameter plane. As we increase
the value of the effective range parameidrom zero,
it turns out that the interval characterizing a transition
region is pushed towards higher values of the coupling
strengthe. We can understand this hysteresis since the
higher the effective range is, the closer we are to
a locally coupled lattice, in which only the nearest
neighbors contribute in a significant way. It becomes
then increasingly more difficult to have a stationary
completely synchronized state. We aajl~ 0.940 the
range parameter value for which the first critical curve
reaches the upper limit given ky(ac) = 1. Accord-
ingly, o* ~ 1.146 is the value where the second critical
curve is such that*(«*) = 1. Hence, forx > o*, we
do not observe a stationary complete synchronization
state, irrespective of how strong the coupling may be,
i.e. the intermittent bursting continues for an arbitrarily
long time.

We find that the critical range parameter necessary
for chaotic synchronization, ar*, depends on the lat-
tice size, diminishing as we increase the number of
coupled mapsKig. 5. We obtained that a power law
fits well this finite-size scaling
«*(N) ~ exp[(InN) 7], (5)
wherey = 1, up to the numerical accuracy. In this
way, it is possible to get a value af, ~ 0.44 in the
N — oo.limit.

These results are compatible with the assumption
that a globally coupled lattice favors synchronization
due to the long-range spreading of the interactions. In
the limit of vanishingy, the coupling is such that each
site interacts with the mean field of other sites. Any ten-
dency to synchronize is transmitted to all other maps,
regardless of their relative distance along the lattice. On
the other hand, a locally coupled lattice connects the
nearest neighbors of a given site, and this is an obstacle
to synchronization. Disturbances do slowly move along

is achieved. The bursting becomes more frequent the lattice, and this diffusive effect is easily surpassed

as the coupling strength is further decreased and,

at ¢ = €*(0.4) ~ 0.57, the order parameter vanishes

by the intrinsic randomness present in the chaotic dy-
namics of each site.
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Fig. 5. Dependence of the critical range parameter on the lattice size
for chaotic synchronization, far= 1.0.

4. Intermittent transition to synchronization
Fig. 6. Average length of the synchronization plateaua vs.o* for
e =1.0,0" =1.1463177. The solid line is a power law least-squares

The transition from a synchronized to non- fit with exponent 0,502,

synchronized behavior, in coupled map lattices, has
many features common to structural phase transitions  The rationale for this analogy is the identification of
[47]. In the vicinity of the critical point, for example,  the bursts between laminar regions as a kind of chaotic
an Ising system is expected to present fluctuations in transient, similarly to that occurring when a chaotic
the corresponding order parameter, which is the mag- attractor suffers a crisis by collision with an unstable

netization. Coupled map lattices, which have the Ku- periodic orbit. The average chaotic transient length in
ramoto’s order parameter, also do present such fluctua-gne-dimensional maps, like the logistic magx) =

tions. They are manifested as intermittent bursts which, (1 — x) at r = 4, obeys a scaling identical ),
aswe shall see, have the universal features of the On—oﬁwith the same critical exponent_ In two-dimensional

intermittency. maps this exponent is related to the stable and unstable
Let us focus our attention dfig. 4b), where arep-  gigenvalues of the unstable periodic orbit with which
resentative portion of the phase diagram, using the Ku- the chaotic attractor collides.
ramoto’s order parameter, is shown. Near the critical In ref. [49] there was considered a boundary crisisin
curvee®(a), the time series of the order parameter mag- 3 two-dimensional map with an invariant subspace in
nitude presents laminar regions, a fact already observedyhich a chaotic orbit lies. The dynamics in the transver-
in other coupled map latticgs1]. The laminarregions  sa direction is such that there is another attractor at
of synchronization presented fig. 3 have typically  infinity. For a given range of a system parameter there
different lengths;, having an exponential distribution, s a fractal basin boundary between the basins of the
but their average length is found to obey a power-law chaotic and the infinity attractor. As the system param-

scaling with the difference — o*, fora 2 o™: (Fig. 6): eter approaches a critical value, this basin boundary
N collides with the chaotic attractor in an infinitely large
1 Y number of points. Each unstable point suffers a saddle-
= — i~ (o — , for *, (6 P : P
@ Np ; (-l oo’ (0 repeller bifurcation, in which the saddle belonging to

the chaotic attractor in the invariant subspace coalesce
with y = 1/2, within the numerical accuracy. This  with the repeller lying in the fractal basin boundary.
suggests that the transition to synchronization occurs This has been called an unstable-unstable pair bifurca-
through a crisi$48]. tion [50,51]
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This analogy can be pushed forward if we consider
that the chaotic attractor lies in the synchronization
manifold (when the maximal Lyapunov exponent is
positive,A1 > 0), which is itself an invariant manifold
ofthe coupled map lattiqd) [52]. Hence, the transition

to synchronization is mediated by an unstable-unstable

pair bifurcation occurring in the synchronization man-
ifold, in which a saddle loses its transversal stability.
This fact will be exploited in the next section, where we

consider the onset and evolution of shadowing break-

down in such a system.
Another distinctive feature of the intermittent tran-

101

nar regions. Two different regimes are highlighted: for
shorter times, the histogram is well-fitted by a power-
law P(7) ~ t~7, with y & 1.5 (Fig. 7(b)); whereas the
scaling is exponentiaP(z) ~ € ** for larger times,
with « ~ 103 (Fig. 7(c)).

This 3/2-scaling, for shortet, does not persist for
other synchronization regions shown in the phase dia-
gram ofFig. 4, as illustrated irFig. 8 There we plot
distributions obtained for = 0.7 ande = 0.4, respec-
tively below and above the critical transition to com-
plete synchronization behavior. In this case we still
have a power-law scaling, but with an exponent dif-

sition to synchronization is the universal character of ferent from 3/2.

the statistics of the laminar regiofs3]. In Fig. 7(a)
we present a histogram for the length of the lami-

107 T

107

P(7)

10°

3
10°

The presence of the 3/2-scaling plus the exponen-
tial decay indicates that on—off intermittency is taking

| | 1 |
%100 4x10°  6x10°

T

8x10°

(b)

107 T T

P(1)

4 1 1

100 5

10
(c)

Fig. 7. (a) Histogram for the length of the synchronization plateaus;

100

(b) magnification of the long time region, showing an exponential scaling

law; (c) magnification of the short time region, showing a power-law scaling. The coupling parametets &/@ anda = 1.147.



102 R.N. Viana et al. / Physica D 206 (2005) 94-108

10° T T 10" T T T
o L]
102 b I o ° -
o
-B
e e \
ool = -
10 107 . -
10-5F 10 4
L L L
10‘4 . = 5 H)— At aasasl PR .“.ul‘ At s asanal - i d asass
10 10 10 10° 10! 10° 10% 10*
(a) T (b) .

Fig. 8. Histogram for the length of the synchronization plateaus fer0.476 and (ay = 0.7; (b) e = €*(0) ~ 0.47.

place in the transition to synchronizatifh?]. As a Direction-coherentnaps are defined as those show-
matter of fact, the transversal stability properties of the ing local maxima or minima for their amplitudes at the
invariant synchronization manifold provide a support same timg57], such that the direction is provided by
for this statement. In the transition region, trajectories two sequential iterations of the coupled m§p8,59]

off but very near the synchronization manifold expe- A lattice sitex”) thus has a direction at a fixed time
rience intermittent bursting, such that numerical diag- given by
nostics using an insufficiently large time interval could
erroneously point out the absence of complete synchro- 1 if x(j)/x(j) -1
nization[54,55] The system is now in the neighbor- P,” = { ' s (7
hood of an unstable-unstable pair bifurcation so dif-

ferent parts of the lattice are pulled away or towards
the synchronization manifold, producing the sequence i i )
of bursting regions. The chaotic bursting on a portion ©f adjacent maps with the same valuerff.

of the lattice appears as random kicks on other parts  F19- 9shows the overlap of amplitude-site profiles,
due to the coupling. In fact, the existence of two scal- for a hundred successive times and after a large number

ings with a shoulder in between, as depicteig. 7, of transients have decayed, for a lattice of strongly

indicates the presence of noise in the on—off intermit- coupled logistic maps in the intermediate range

tent scenario, with a crossover time proportional to the Stuation. In ord.er to allow f'or a better ylsuallzatlon
noise level. of the local maxima and minima, we depict only three

There are many situations of physical interest in Séguential profiles, where the arrows show the phase
which two or more continuous-time oscillators may directions. On the bas_ls of the previous def|n|t|qn we
have different amplitudes, even in a chaotic regime, but ¢an say that between times= 1005 and 1006 all sites
with a well-expresseghase coherencd@he oscillator N Fig. 9 are direction-coherent, whereas, between
phase can be defined in various ways for continuous- # = 1006 and: = 1007, this occurs just for a fraction
time systems, the simplest one being a geometrical (N€arly half) of them. .
phase for a bounded attrac{dB,56] For coupled map We denote byV() = Z;Vzl(PISJ) = 0) andA) =
lattices, however, this procedure cannot be carried over, 27:1( P}Ej) = 1) the number of lattice sites at a given
since there is no vanishing Lyapunov exponent which time with phases equal to 0 and 1, respectively. We
would enable an interaction of the coupled phases, in define a coherence ratjg as[58,59]
order to yield phase synchronization. Instead of phase
synchronization, coupled maps can display a coherence 1 maxMO), /\/Ell)),

0, otherwise

in such away that a direction-coherent cluster is a union

with respect to the direction of their temporal evolution. “" =

(8)
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Fig. 9. Overlap of 3 space-amplitude plots for a lattice, after 1004
transients, oV = 21 maps withw = 0.49, ande = 1.0. The arrows
indicate the phase direction.

in such away that, if the directions of all lattice sites flip
randomly between 0 and 1, the ratio would approach
a constant value, whereasgf= 1 all lattice sites are
direction-coherenfig. 10(a)). The minimum value for
this ratio isp = 1/2, a situation in which half of the
sites haveP”) = 0.

As the lattice pattern evolves with time, this ra-
tio varies in an intermittent fashion, as illustrated by
Fig. 1Qb). The coherence ratio has laminar phases
at 1.0 with irregular bursts, some of them approach-
ing the lower bound ap = 1/2 [Fig. 1((c)], indicat-
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Fig. 10. Time series of the direction-coherence ratio foe 21,
o= 0.49, ande = 1.0.

103

1.5

1.0

Fig. 11. Time-averaged direction-coherence ratio as a function of
the coupling strength and range f9r= 21 coupled logistic maps.

ing an intermittent behavior very similar to that de-
scribed in the previous section for amplitude synchro-
nization. The average duration of the laminar intervals
scales with the range parameter in a power-law fash-
ion, just like that depicted irfrig. 6. Fig. 11 shows

the dependence of the time-averaged coherence ratio
p = limy—oe(1/M) XM pu, which compares well
with Fig. 4(a), where the time-averaged order param-
eter is plotted against the same parameters. In partic-
ular, thee*(«) curve inFig. 4(a), which indicate the
loss of complete synchronization of chaos, and the cor-
responding curve ill, which signals loss of direc-
tion coherence, nearly coincide. This occurs because,
while complete synchronization obviously implies di-
rection coherence, the converse is not necessarily true,
as illustrated byFig. 9, where we see that the maps,
though not complete synchronized, have a direction
coherence. This difference is manifested mainly in the
transitional region of intermittent transition to com-
plete synchronization, which is very narrow Fig.

11 compared with that observed in the order param-
eter results ofig. 4a). Moreover, we have numeri-
cally verified that the number of coherence-direction
ratio laminar intervals also depends on the interval
lengths according to a power-law distribution, just like
that observed ifrig. 7. In a lattice of piecewise linear
maps the slope of the corresponding linear fit is close
to the 3/2-value characteristic of on—off intermittency
[11].
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5. Unstable dimension variability and olent loss of hyperbolicity in the system dynamics
shadowing breakdown [64].
As the parameter is increased, the number of unsta-

The main issue to be discussed in this section is ble periodic orbits, that are transversely unstable, also
the relation between the on—off intermittent transition increases. A way to quantify the relative abundance of
to synchronization and the breakdown of shadowing periodic orbits with a different number of unstable di-
of chaotic trajectories which accompanies the loss of rections is to calculate the corresponding finite-time, or
hyperbolicity via unstable dimension variability. Con- time-n, Lyapunov exponents;(n),i = 1, --- N. They
tinuous shadowability of pseudo-trajectories for a rea- are computed in the same way as the Lyapunov spec-
sonable time-span is a sufficient, albeit not necessary, trum we discussed in Secti@nbut using trajectories of
requirement for numerically generated chaotic trajec- small duration, say = 50 iterations. The usual spec-
tories to be valid[22]. In the case of complex sys- trum is obtained formally as the infinite-time limit of
tems like a coupled map lattice, with many degrees thema; = lim,_, « A;(n). Unlike the usual spectrum,
of freedom and displaying a rich spatio-temporal dy- where the computed exponents are the same for almost
namical behavior, the question of shadowing is of every initial condition (except for a Lebesgue measure
paramount importance. As we shall see, unstable di- zero set), the time&exponents are generally different
mension variability is quite common in those systems for different initial conditions, and they yield a distri-
for practically any coupling strengtfs0—62] There bution centered at the infinite-time limit.
are many observable consequences of unstable dimen- |t has been recognized as a fingerprint of unstable
sion variability in a chaotic system, like the geomet- dimension variability in dynamical systems the fluc-
ric growth of very small one-step errors in the numer- tuating behavior (about zero) of the timeexponent
ical procedures to obtain trajectories. As a result of closest to zerd16] for trajectories belonging to the
that, our confidence in long time averages of dynam- synchronization manifold of the coupled map lat-
ical quantities like entropies and dimensions, is ques- tice. The finite-time Lyapunov exponent is computed
tioned[63]. Another consequence of unstable dimen- along a direction transversal & A completely syn-

sion variability in complex systems of the for(i) chronized behavior means that > 0 andx; < 0 for
turns out to be the intermittent transition to synchro- ; = 2, 3, .. .. Hence, the finite-time Lyapunov exponent
nization. closest to zero that fluctuates about zero, whérses

In the previous section we have interpreted that hyperbolicity through unstable dimension variability,
the existence of an intermittent transition to syn- isx,(n). The corresponding eigendirection will be re-
chronization is mediated by an unstable-unstable ferred to as the transversal direction (even though there
pair bifurcation occurring in the chaotic attractor ly- are many other transversal directions as well). To un-
ing on the synchronization manifold. This bifurca- derstand the reason for this fluctuating behavior, let us
tion marks the onset of unstable dimension variabil- consider an initial condition off but very close to the
ity in the chaotic dynamics, since a periodic orbit, invariant subspac§. Such a chaotic trajectory visis
and all its pre-images embedded in the system at- neighborhoods of saddles and repellers of the invariant
tractor, lose transversal stability with respect to the setS. This means that there are timesegments for
synchronization manifold. These transversely unsta- which the trajectory is transversely attracting (on av-
ble orbits form a dense set of repelling tongues and erage) and others for which it is transversely repelling
they are responsible for the intermittent bursts of (also on averagd)7].
non-synchronization. There remains, however, an in-  The fluctuating behavior of the finite-time transver-
finitely large number of embedded transversely sta- sal Lyapunov exponerito(n) suggests the usefulness
ble periodic and aperiodic orbits, which are ulti- of a probability distributionP(12(xg, yo = 0;r)) for
mately responsible for the existence of the lam- them, so thatP(i,)d)r, is the probability that the
inar synchronization intervals. For that reason, it transversaltimerexponenthas avalue betweerand
has been proposed to call this process an intermit- A, + d, for a givenn[18]. Hence, unstable dimension
tency induced by unstable dimension variability, when variability implies a positive tail inP(1), even though
the on-off intermittent bursting is followed by vi- the average tima-exponent, defined as
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m = < A2(xo, yo = 0;n) >
_ [12° P(ra(x0, yo = 0;n))20A2 .

= 9
S22 P(x2(x0. yo = 0;n))daz ©)

may be less than zero. In fact, whemis equal to
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finite-time Lyapunov exponents,

_ fo+oo P(x2(x0, yo = 0;n))r2dA2
J23 P@2(xo. yo = 0in))diz

becomes non-zero, yielding the points on the curve

P(n) (10)

zero, the negative and positive areas of the distribu- €c() depictedirrig. 4b). Hence, forr < a¢, no shad-

tion are equal and the unstable dimension variability is

owing breakdown via unstable dimension variability

the most intense (the amount of transversely attracting IS €xpected, and the chaotic synchronized trajectories
and repelling contributions nearly counterbalance each are expected to be adequately shadowed over a longer

other). Atthis point, the synchronization manifold loses
transversal stability as a whole, and the infinite-time
transversal exponent vanishes, £ At = 0), charac-
terizing a blowout bifurcatiofe5].

We can geta numerical approximation for the proba-
bility distribution P(12(n)) by considering a large num-
ber of trajectories of length from initial conditions
randomly chosen in the synchronization manifold. In
Fig. 12 we show some distributions of time-50 ex-
ponents, obtained for different values of the effective
rangea, which here plays the role of a bifurcation
parameter. The critical value for the onset of unsta-
ble dimension variability is also the onset of intermit-
tent transition to complete synchronizationgat o,

time interval, which may be long enough for practical
purposes (e.g., when computing dimensions and en-
tropies).

The shape of the probability distributionskig. 12
is Gaussian-like, with different variance$, according
to the value whichx takes on. The Gaussian-like na-
ture of P(12(n)) is already expected on general grounds
[18], and the distribution as a whole drifts toward pos-
itive values ofia(n), asa increases. When = o*,
the average: = (A2(n)) crosses zero and has a maxi-
mum unstable dimension variabilitiig. 13 since, at
this point,,m = 0, as illustrated by the distribution for
o = 1.14834> o* shown inFig. 12 Accordingly, the
points on the curve*(«) (Fig. 4) were also computed

where an unstable—unstable pair bifurcation occurs in by imposing thatn = 0, which furnished the same re-

the synchronization manifold. Numerically the onset
of unstable dimension variability is estimated by com-
puting the value of for which the fraction of positive

0.4 T T T
0.3 F B
o=1.14834
o=1.1
-y
bl 0.2 -
0.1 F o=2.5 .
0.0 : . - -
-0.2 -0.1 0.0 0.1 0.2 0.3 0.4
Ay

Fig. 12. Distributions of the second (transversal) finite-time Lya-
punov exponent for different values of the effective rangdor
€e=10.

sults as those obtained with help of the order parameter
R, thus confirming the relationship between the loss of

synchronization and the shadowing breakdown via un-

stable dimension variability.

<hy>

0.5 0.7

Fig. 13. Average of the second (transversal) finite-time Lyapunov
exponent vs. the effective range, foe= 1.0. The inset shows the
corresponding variance.
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In the vicinity of the pointe = «*, the shadowing
times can be very short, and the validity of the com-
puted numerical trajectories is doubtful beyond that.
There results the tima-exponents (with greater than
the shadowing time), may suffer from similar shad-
owability problems, when taking individually, as the
chaotic trajectories themselves. However, in terms of
the numerical diagnostics of unstable dimension vari-
ability, we are actually interested in statistical prop-
erties of the timea exponents, as their averages and
variances, but fom very small. The former yields

R.N. Viana et al. / Physica D 206 (2005) 94-108

by o2 = no?. There results that, ift = 0, the shadow-
ing time has a minimum value, such that the effect of
unstable dimension variability is so intense that we do
not expect shadowing for more than thousand iterations
of the dynamical process.

6. Conclusions

In this paper we pursued the close correspondence
between shadowing breakdown via unstable dimension

the point where unstable dimension variability is the variability and the intermittent transition to synchro-
most intense, at the a blowout instability, whereas the nization in a complex system comprised of a coupled
latter can be used to estimate shadowing tifG&s. map lattice with variable range coupling. A tunable
On the other hand, in some physically relevant cases, parameter allows us to pass continuously from a lo-
statistical quantities like these have been found to cal (nearest-neighbor) to a global (mean field) cou-
be meaningful despite unstable dimension variability pling. The existence of a transition to synchronization
[67]. as this variable range is swept over its interval is a
Fora > o*, the relative number of positive time-  well-established fact, but in this paper we focused on
exponents increases and we progressively return to athe behavior near criticality.
situation where unstable dimension variability is less ~ The intermittent transition studied is akin to the on—
pronounced, and better shadowing properties are ex-off intermittency, and both share common properties,
pected. For example, when= 2.5, Fig. 12indicates since there is an invariant subspace in the coupled map
that the second time-exponents is positive for most  lattice, which is the synchronization manifold. The dis-
initial conditions. This means that, even though the tribution of the laminar regions reveals a power-law
lattice trajectories are far from being complete syn- scaling with the interval length, having a 3/2 universal
chronized, they are nonetheless better shadowed tharexponent characterizing on—off intermittency, and also
before.Fig. 13 also depicts the variance of the dis- presents a shoulder with an exponential decay for large
tributions, showing that it is roughly constant until intervals, as expected if noise is added to the system.
reaches the blowout valué, after that the distribution  In our case, the role of noise is played by the chaotic
broadens up and the variance increases. fluctuations due to bursting in different parts of the lat-
The relation between unstable dimension variability tice, through the coupling term added to each map in
and shadowing breakdown can be put on a more quan-the lattice.
titative ground. There was shown that the shadowing  The transversal stability properties of the syn-
time, or the time-span for which a numerical trajectory chronization manifold explain the bursting of non-
is continuously shadowed by a true chaotic trajectory, synchronization which characterizes the abovemen-
can be estimated 466] (r) ~ ¢, whereq is the tioned transition. If there are some, but not all, pe-
precision of the arithmetics used in numerical computa- riodic orbits embedded in the synchronization mani-
tion (number of precision digits) of chaotic trajectories, fold which do not have transversal stability, a trajectory

and starting off but very close to this manifold will expe-
om| rience at first a laminar behavior, but the existence of
h(m) = = (11) transversely unstable orbits will eventually make this

o1 trajectory to burst away. The remaining transversely
stable periodic (and aperiodic) orbits will push the tra-
jectory back to the synchronization manifold.

We have used a simpler two-dimensional map with
an invariant subspace to argue that the transition to syn-
chronization is mediated by an unstable—unstable pair

is the so-calledhyperbolicity coefficienit3], of being
the variance of the distribution of the time-1 Lyapunov
exponent closestto zer@(12(1))). The latter is related
to the variance of the corresponding timexponent
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