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Abstract

We investigate the synchronization phenomenon in 1D coupled chaotic map latticeswhere the couplingsdecay with distance
following a power-law. Depending on the number of maps, the coupling strength and the range of the interactions, c
chaos synchronization may be attained. The synchronizationdomain in the coupling parameter space can be analytic
determined by means of the condition of negativity of the largesttransversal Lyapunov exponent. In this Letter we use previousl
found analytical expressions for the synchronization frontier to analyze in detail the role of all the system paramete
ability of the lattice to achieve complete synchronization. Analytical predictions are shown to be in accord with the ou
of numerical experiments.
 2004 Elsevier B.V. All rights reserved.
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Coupled map lattices (CMLs), dynamical syste
with discrete space and time, are being intensively
vestigated nowadays as models of spatiotemporal
nomena occurring in many systems of physical,
ological and technical interest [1]. CMLs may aris
for example, from the discretization of a class
diffusion–reaction systems for which the reactive te
is a sequence of delta-functions [2]. Another phys
problem which can be dealt using CMLs is a chain
coupled particles under a spatially periodic poten

* Corresponding author.
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function and impulsive forcing [3]. Whenever pos
ble, the reduction of a given physical problem to
form of a CML is advantageous from the point of vie
of numerical simulations, since the computer time
substantially reduced, when compared to that requ
for numerical integration of either partial or ordina
differential equations.

In this Letter we will deal with the phenomenon
synchronization and, in particular, amongst the vari
kinds of synchronized behavior, with thecomplete
synchronization (CS) [4] occurring in CMLs with
regular long-range interactions. Most work done
far on synchronization in CMLs has focused on t
extreme coupling types: local (nearest-neighbor)
.
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and global (“mean field”) ones [6]. However, no
local couplings are relevant to a variety of situatio
ranging from neural networks [7] to physico-chemic
reaction systems [8].

We consider chains ofN coupled one-dimensiona
(1D) chaotic mapsx �→ f (x) whose evolution is given
by [9]

x
(i)
n+1 = (1− ε)f

(
x(i)
n

)
(1)+ ε

η

N ′∑
r=1

f (x
(i−r)
n ) + f (x

(i+r)
n )

rα
,

where x
(i)
n represents the state variable for the s

i (i = 1,2, . . . ,N) at time n, ε � 0 is the coupling
strength,α � 0 controls the effective range of the i
teractions andη = 2

∑N ′
r=1 r−α is a normalization fac

tor, with N ′ = (N − 1)/2 for oddN . Boundary condi-
tions are periodic:x(i±N)

n = x
(i)
n , for i = 1,2, . . . ,N ,

and the minimal intersite distance over the ring is c
sidered to evaluate the power-law couplings. The m
interest in this coupling scheme resides in the fact
it allows to investigate the role of the range of the
teractions, scanning from the local (α → ∞) to the
global (α = 0) cases [10].

CS takes place when the dynamical variables wh
define the state of each map adopt, after a transien
the same value for all the coupled maps at all timen,
i.e, x

(1)
n = x

(2)
n = · · · = x

(N)
n ≡ x

(∗)
n . It can be easily

verified that this state is solution of Eq. (1). Depend
on the number of maps and on the range of
interactions, there may exist an interval of valu
of the coupling strengthε, for which such state is
spontaneously attained, as we have analytically sh
in a previous work [11]. It is our purpose here
scrutinize the role of all the parameters in the ability
the system to synchronize. Analytical results will
compared with the outputs of numerical simulatio
performed for diverse one-dimensional chaotic m
f (x) defined on the interval[0,1] and possessing
single attractor.

CS can be characterized by a complex order
rameter introduced by Kuramoto for phases (cyc
variables) [12]. Since in this Letter we will deal wit
maps defined in the unit interval[0,1], this definition

is slightly modified toRn = | 1
N

∑N
j=1 e2πix

(j)
n | for the

order parameter amplitude at timen, where the values
of x

(j)
n are mapped to the unit circle [9]. Typically
time-averaged amplitudēR is computed after a tim
interval long enough to allow the chain attain the
ymptotic state. In the CS state, one hasR̄ = 1 within a
small allowed deviation.

Another diagnostic of complete synchronizati
can be obtained from the Lyapunov spectrum (L
of the CS states. If the chaotic maps are comple
synchronized, the maximal Lyapunov exponent,
the direction parallel to the synchronization manifo
(SM), is strictly positive. The negativity of the seco
largest Lyapunov exponent, which belongs to
direction transversal to the SM, indicates the stabi
of the synchronized state under small transve
displacements [13]. If the SM is the only attract
then even trajectory points far from the SM are s
attracted to it [14].

In our case the lattice dynamics given by Eq.
can be written asx(i)

n+1 = ∑
j Fij f (x

(j)
n ), whereF is a

matrix of the form

(2)F =
[
(1− ε)1 + ε

η
B
]
,

with 1 the N × N identity matrix andB defined by
Bjk = (1−δjk)/rα

jk, beingrjk = minl∈Z |j −k+ lN |.
The Lyapunov spectrum is obtained from the d

namics of tangent vectorsξ , which in turn is ob-
tained by differentiation of the original evolution equ
tions. In matrix form the tangent dynamics rea
ξn = Tnξ0, whereTn is product ofn Jacobian ma
trices calculated at successive points of a given
jectory. If Λ(1), . . . ,Λ(N) are the eigenvalues of̂Λ =
limn→∞(T T

n Tn)
1

2n , the Lyapunov exponents are o
tained asλ(k) = lnΛ(k), for k = 1, . . . ,N [15]. Eval-
uating the Jacobian matrices along the synchron
trajectories, one arrives at the following expression
the Lyapunov spectrum [11]

(3)λ̄(k) = λU + ln

∣∣∣∣1− ε + ε
b(k)

η

∣∣∣∣,
where λU > 0 is the Lyapunov exponent of th
uncoupled chaotic map, andb(k) are the eigenvalue
of B that can be obtained by Fourier diagonalizat
and, for oddN , read

(4)b(k) = 2
N ′∑

m=1

cos(2πkm/N)

mα
, 1� k � N.
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For evenN , summations run up toN ′ = N/2 and half
of the N ′th term has to be subtracted. The maxim
eigenvalue isb(N) = η and the minimal one isb(N ′).
Except for the casesk = N ′, with evenN , andk = N ,
the remaining eigenvalues are two-fold degener
beingb(k) = b(N−k).

In the calculation of Lyapunov exponentsλ(k),
notice that the parameters that define the partic
uncoupled map affect onlyλU , while the second term
in Eq. (3) is determined by the particular depende
on distance in the regular coupling scheme (a po
law in our case). It can be easily verified that,
arbitraryα, the CS state lies along the direction of t
eigenvector associated to the largest exponentλ̄(N).
Therefore, the CS state will be transversally sta
if the (N − 1) remaining exponents are negativ
that is |1 − ε + εb(k)/η| < e−λU , ∀k 	= N . This is
equivalent to requiring that the second largest
largest transversal) asymptotic exponent, denoted
λ̄⊥, be negative. This exponent is obtained fro
Eq. (3) with eitherk = 1 (hence alsok = N − 1 due to
degeneracy) or withk = N ′ (hence alsok = N ′ + 1 if
N is odd), depending on whether|1− ε + εb(1)/η| is,
respectively, greater or smaller than|1−ε+εb(N ′)/η|.
The conditionλ̄⊥ < 0 leads toεc < ε < ε′

c [11] (see
also [16]), where

(5)εc(α,N,λU ) = (
1− e−λU

)(
1− b(1)

η

)−1

and

(6)ε′
c(α,N,λU ) = (

1+ e−λU
)(

1− b(N ′)

η

)−1

.

In Fig. 1 we show a variety of critical curves
parameter space (α, ε) obtained for different numbe
of maps. Stable CS states dwell in the region boun
by theα = 0 axis, and two curve segments. The criti
curves were obtained analytically from Eqs. (5) (low
curve) and (6) (upper curve). The symbols sho
stand for the numerical results determined from
condition R̄ = 1 with a tolerance of 10−6, after a
transient of 5× 103. Two different values ofλU were
considered. Numerical results shown in Fig. 1 w
computed for the piecewise linear (a) Bernoulli sh
f (x) = 2x (mod 1) (thereforeλU = ln2) and (b)
triangular map [17]

(7)fw(x) =
{

x/w, for 0 � x � w,

(1− x)/(1− w), for w < x � 1,
Fig. 1. Synchronization diagram in parameter space (α, ε), for dif-
ferent values ofN andλU = ln 2 (a), ln1.3 (b). Lines correspond to
analytical predictions; symbols to numerical simulations using
Bernoulli (a) or triangular (b) maps. Synchronization is transve
sally stable in the region between the couple of curves for eac
of values of the parameters.

that for w = 0.074 yieldsλU � ln1.3 (notice that
λU = −w lnw − (1 − w) ln[1 − w]). Additional tests
(results not shown here) were performed for ot
maps such as the logistic mapf (x) = µx(1 − x)

with µ = 4 (henceλU = ln2) andµ = 3.6533 (hence
λU � ln1.30) yielding the same degree of agreeme
For these interval maps, in principle, one must h
0 � ε � 1 in order to guarantee that the state variab
x

(j)
n will remain inside the interval[0,1]. But, rein-

jection into the interval can be performed through
operation, for instance, (mod 1), such that it does
spoil the Lyapunov exponent of the chaotic uncoup
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map. If trajectory points were not reinjected, one c
still look at our results as valid for trajectories or tr
jectory segments as long as the state variables re
confined within the given interval. Anyway, for oth
maps such asf (x) = exp{−[(x − 0.5)/σ ]2} [18], one
may have any couplingε � 0 since the map is natu
rally defined in the full real axis. Tests performed w
this Gaussian map (results not shown in this Letter)
also in good accord with theoretical predictions.

In general terms, we observe that for weak c
pling, the maps do not synchronize. As the coupl
strength increases, synchronization can occur dep
ing on the system parameters(α,N,λU ). However, a
too high coupling intensityε > ε′

c has a destabiliz
ing influence on the CS state and the chain no lon
synchronizes. An upper bound has been also obse
previously for other CMLs such as scale-free netwo
[19], a general class of CMLs [16] and lattices with h
mogeneous couplings [20]. At first it seems coun
intuitive that a coupling too strong can, in certa
cases, be responsible for desynchronization. In o
to understand why this effect can occur we have
consider the role of the coupling strengthε in Eq. (1).
Small values ofε mean that the dynamics of a give
sitex(i) is mainly influenced by itself, and weakly b
its neighbors. Asε goes to unity, it follows that the
contribution from the site itself vanishes, and the d
namics is dictated only by the site neighbors. Wheε
is further increased, the term 1− ε becomes negative
and the influence of the site itself has a sign oppo
to that of its neighbors (the second term in Eq. (1
always positive), what can eventually destabilize
CS state.

Concerning chain size, Fig. 1 already exhibits the
intuitive fact that it is more difficult to synchronize
larger chain than a shorter one, all other parame
being kept fixed. In the limitN → ∞,

(8)εc(α,∞, λU ) = 1− e−λU

1− C(α)
,

where C(α) = limN→∞ b(1)/η [11]. This limit is
equal to unity for α > 1, so that Eq. (8) yields
a divergent result. Forα outside the domain o
convergence of the series, i.e.,α < 1,

(9)C(α) = 1− α

π1−α

π∫
0

cos(x)

xα
dx.
-

Fig. 2. Synchronization critical lines in the plane(N, ε) for different
values of α and λU = ln 2. In this caseαc ≈ 0.77. Symbols
correspond to theoretical calculations. Dotted lines are guides t
eyes. Synchronization is transversally stable in the region betw
the two curves for each set of values of the parameters.

In that same range ofα one has

(10)ε′
c(α,∞, λU ) = 1+ e−λU ,

which is independent onα [11], thus it yields a straigh
line in the plots of Fig. 1. From the intersection
εc(α,∞, λU ) with ε′

c(α,∞, λU ) it results a critical
value of the interaction rangeαc , such that, forα �
αc < 1 (αc < d in the d-dimensional case [11])
synchronization is possible even in the thermodyna
limit N → ∞ for an appropriate window ofε. Observe
the corresponding domains in Fig. 1.

As N diminishes, the upper curve in Fig. 1, whic
is a straight line for infiniteN , gains a negative
inclination and extends for largeα to values ofε less
than unity, indicating that the destabilizing effect
very strong coupling is more easily attained. The low
curve segment has a positive inclination, connec
to the upper curve at a point that forms a cusp
smallN . For still smallerN (e.g.,N � 5 for λU = ln2
andN � 8 for λU = ln 1.3) the two critical curves do
not intersect each other even in the limiting case
first neighbors (α → ∞).

The effect of system size can also be observe
Fig. 2 that exhibits the synchronization domains in
plane (N,ε) for different values ofα. Similar plots
have been observed in scale-free networks [19], a
there were an average or effectiveα in such cases
While for α > αc there is un upper boundNb(α,λU )

of the number of maps for which synchronizati
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Fig. 3. Synchronization domains in parameter plane (α, ε) for
various values ofλU andN = 21 (a), 201 (b) coupled chaotic map
Numerical simulations were performed for Bernoulli or triangu
maps. Critical curves were obtained analytically from Eqs.
and (6).

occurs; forα < αc any number of maps synchroniz
(because the critical curves in Fig. 2 do not interse
Generically it is easier to synchronize a small num
of maps. Consistently with this observation, chains
small size (e.g.,N � 5 forλU = ln2 ) can synchronize
for any α, for a certain window ofε that narrows
with increasingα. For N � 3 there is, naturally, no
dependence onα and the system synchronizes for a
λU > 0.

Although Fig. 1(a) and (b) yield qualitative simila
results, their comparison makes clear that, as expecte
the more chaotic the uncoupled maps are, the m
difficult becomes to obtain their synchronization. T
Fig. 4. Critical valueαc , below which synchronization is stab
even in the thermodynamic limit, as a function ofλU (symbols),
determined from Eq. (13). The dotted line is a guide to the eyes

influence of the Lyapunov exponentλU on the syn-
chronization domains in the parameter space (α, ε) is
displayed in Fig. 3. The exhibited numerical resu
were acquired forN = 21 and 201 either Bernoulli o
triangular maps.

If the positive Lyapunov exponent of the uncoupl
map increases, the synchronization domain shri
collapsing in the limitλU → ∞. In the opposite limit
of λU → 0+ one gets

(11)εc → 0 and

(12)ε′
c → 2

(
1− b(N ′)

η

)−1

.

This limit value ofε′
c depends onα andN . If N →

∞ and α → 0 (∞), ε′
c goes to 2.0 (1.0) in the

limit of vanishing chaos. (All these extreme behavi
are already insinuated in Fig. 3.) As a conseque
the critical valueαc < 1, below which the chain
synchronizes in the thermodynamic limit, depends
the degree of chaoticity of the uncoupled maps. T
dependence can be explicitly obtained by inversion

(13)λU = ln

[
2

C(αc)
− 1

]
,

extracted from Eqs. (8) and (10). The critical valueαc

as a function ofλU is displayed in Fig. 4. In the limi
of vanishing (infinite)λU , αc goes to 1.0 (0.0).

When α > αc, it must be N � Nb(α,λU ) for
the system to synchronize, whereNb decreases with
increasingα − αc (as shown in Fig. 2). In the limi
α → ∞, it is easy to obtain, from the conditio
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Fig. 5. Maximal number of mapsNmax ≡ Nb(α,λU ), for which
synchronization can be achieved for anyα, as a function of the
chaoticity indicatorλU (circles), determined from the conditio
ε′
c > εc for α = ∞. The solid line corresponds to the approximati

given by Eq. (14).

ε′
c > εc, an approximate expression for the maxim

size, valid when one has sufficiently smallλU and
largeNb :

(14)Nmax ≡ Nb(∞, λU ) � π

√
2

λU

.

In Fig. 5, we exhibit the maximal sizeNmax for
which synchronization can be achieved in the lim
of nearest-neighbor couplings (hence for anyα) as a
function ofλU , together with the approximation give
by Eq. (14).

Summarizing, we have presented numerical res
for the CS states in 1D lattices of coupled identi
chaotic maps with interactions that decay with dis
tance as a power law. Those results are in agreem
with theoretical predictions derived from the critic
lines obtained in previous work from the conditio
of negativity of the largest transversal Lyapunov e
ponent [11]. We have scrutinized the role of the s
tem parameters in the ability of the lattice to atta
complete synchronization. In numerical simulatio
we used various chaotic 1D maps with a single attr
tor. We observed, in the coupling parameter plane
overall decrease of the area of the synchronization
gions, as the number of coupled maps is increased.
shape of these regions is bounded by critical cur
which vary with the number of coupled maps in
fashion we were able to predict analytically in exc
lent agreement with numerical results. We have a
studied the dependence of the synchronization reg
t

on the degree of chaoticity of uncoupled maps. In
cases we investigated analytically the behavior of the
system under limit values of the parameters. Mos
our results could be straightforwardly extended, f
lowing [11], to d-dimensional lattices which are e
pected to exhibit similar qualitative features. For
stance, for arbitraryd there is also an upper bound f
αc , which has been shown to be equal to the lattice
mension [11]. Another issue that would be interest
to explore in future works is the influence of perturb
tions, such as noise or defects, on the synchroniza
domains.
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