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Abstract

We investigate the synchronization ploenenon in 1D coupled chaotic map lattiedsere the couplingdecay with distance

following a power-law. Depending on the number of maps, the coupling strength and the range of the interactions, complete

chaos synchronization may be attained. The synchronizationain in the coupling parameter space can be analytically
determined by means of the condition of negativity of the laryassversal Lyapunov exponent. g Letter we use previously

found analytical expressions for the synchronization frontier to analyze in detail the role of all the system parameters in the
ability of the lattice to achieve complete synchronization. Analytical predictions are shown to be in accord with the outcomes

of numerical experiments.
0 2004 Elsevier B.V. All rights reserved.
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Coupled map lattices (CMLs), dynamical systems

with discrete space and time, are being intensively in-

function and impulsive forcing [3]. Whenever possi-
ble, the reduction of a given physical problem to the

vestigated nowadays as models of spatiotemporal phe-form of a CML is advantageous from the point of view

nomena occurring in many systems of physical, bi-
ological and technical interest [1]. CMLs may arise,
for example, from the discretization of a class of
diffusion—reaction systems for which the reactive term
is a sequence of delta-functions [2]. Another physical
problem which can be dealt using CMLs is a chain of
coupled particles under a spatially periodic potential
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of numerical simulations, since the computer time is
substantially reduced, when compared to that required
for numerical integration of either partial or ordinary
differential equations.

In this Letter we will deal with the phenomenon of
synchronization and, in particular, amongst the various
kinds of synchronized behavior, with theamplete
synchronization (CS) [4] occurring in CMLs with
regular long-range interactions. Most work done so
far on synchronization in CMLs has focused on two
extreme coupling types: local (nearest-neighbor) [5]

0375-9601/$ — see front mattér 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.physleta.2004.04.035


http://www.elsevier.com/locate/pla

228

and global (“mean field”) ones [6]. However, non-

local couplings are relevant to a variety of situations
ranging from neural networks [7] to physico-chemical
reaction systems [8].

We consider chains a¥ coupled one-dimensional
(1D) chaotic maps — f(x) whose evolution is given
by [9]

@)

011 = A=) f(x)
N’ (i=r) (i+r)
ex S D)+ G )
+- Z - ro s ’ (1)
n r=1
where x,ﬁi) represents the state variable for the site

i i=12,...,N) attimen, ¢ > 0 is the coupling
strengtha > 0 controls the effective range of the in-
teractions and = ZZf’z/lr*"‘ is a normalization fac-
tor, with N’ = (N — 1)/2 for odd N. Boundary condi-
tions are periodicx( =" = x\", fori =1,2,..., N,
and the minimal intersite distance over the ring is con-

sidered to evaluate the power-law couplings. The main
interest in this coupling scheme resides in the fact that F =

it allows to investigate the role of the range of the in-
teractions, scanning from the local & oo) to the
global (@ = 0) cases [10].

CS takes place when the dynamical variables which

define the state of each magdapt, after a transient,
the same value for all the coupled maps at all times
e, x\V=x@ = ... = x™ = x|t can be easily

verified that this state is solution of Eq. (1). Depending
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time-averaged amplitud® is computed after a time
interval long enough to allow the chain attain the as-
ymptotic state. In the CS state, one tas: 1 within a
small allowed deviation.

Another diagnostic of complete synchronization
can be obtained from the Lyapunov spectrum (LS)
of the CS states. If the chaotic maps are completely
synchronized, the maximal Lyapunov exponent, in
the direction parallel to the synchronization manifold
(SM), is strictly positive. The negativity of the second
largest Lyapunov exponent, which belongs to the
direction transversal to the SM, indicates the stability
of the synchronized state under small transversal
displacements [13]. If the SM is the only attractor,
then even trajectory points far from the SM are still
attracted to it [14].

In our case the lattice dynamics given by Eq. (1)
can be written as ") > Fij £y, whereF is a

X n+1 =
matrix of the form

[(1— )1+ 58], 2)
n

with 1 the N x N identity matrix andB defined by
Bji = (1—3jk)/r;?‘k, beingrjr =minez |j —k+IN|.

The Lyapunov spectrum is obtained from the dy-
namics of tangent vectors, which in turn is ob-
tained by differentiation of the original evolution equa-
tions. In matrix form the tangent dynamics reads
& = T,&, where7, is product ofn Jacobian ma-

on the number of maps and on the range of the trices calculated at successive points of a given tra-
interactions, there may exist an interval of values jectory. If A, ..., A" are the eigenvalues of =

of the coupling strengtlz, for which such state is

Iim,Hoo(T;lTY;)%, the Lyapunov exponents are ob-

spontaneously attained, as we have analytically showntained as\® =In A®, for k = 1,..., N [15]. Eval-

in a previous work [11]. It is our purpose here to
scrutinize the role of all the parameters in the ability of
the system to synchronize. Analytical results will be
compared with the outputs of nhumerical simulations

performed for diverse one-dimensional chaotic maps 560

f(x) defined on the intervdl0, 1] and possessing a
single attractor.

CS can be characterized by a complex order pa-

rameter introduced by Kuramoto for phases (cyclic
variables) [12]. Since in this Letter we will deal with
maps defined in the unit intervgd, 1], this definition

is slightly modified tor, = |& Y-V, €2is”'| for the
order parameter amplitude at timewhere the values

of x,(lj) are mapped to the unit circle [9]. Typically a

uating the Jacobian matrices along the synchronized
trajectories, one arrives at the following expression for
the Lyapunov spectrum [11]

(k)
l1-e+ eb—

n
where Ay > 0 is the Lyapunov exponent of the
uncoupled chaotic map, ard® are the eigenvalues
of B that can be obtained by Fourier diagonalization
and, for oddv, read

=iy +In , (3)

N/
b(k)zzzw’ 1<k<N.

mC{

4

m=1
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For evenV, summations run up t&’ = N/2 and half 2 ' (a)‘ N =‘ln2 "%
of the N’th term has to be subtracted. The maximal € u - 201
eigenvalue i$™Y) = 5 and the minimal one is™". N
Except for the casds= N’, with evenN, andk = N, —o— 5
the remaining eigenvalues are two-fold degenerate, a3
beingb® = pN -k, .

In the calculation of Lyapunov exponenis®, d o S %
notice that the parameters that define the particular S N

et

uncoupled map affect onlyy, while the second term

in Eq. (3) is determined by the particular dependence
on distance in the regular coupling scheme (a power
law in our case). It can be easily verified that, for
arbitrarya, the CS state lies along the direction of the

eigenvector associated to the largest exponéfit. a
Therefore, the CS state will be transversally stable
if the (N — 1) remaining exponents are negative, T IR
that is |1 — ¢ + eb® /5| < e, Vk % N. This is (b) Ay=m13 2
equivalent to requiring that the second largest (or o 31
largest transversal) asymptotic exponent, denoted by o 5
X+, be negative. This exponent is obtained from a3
Eqg. (3) with eitheik = 1 (hence alsé = N — 1 due to I
degeneracy) or with = N’ (hence als& = N’ + 1 if d \“jﬁi—;{;}‘;“
N is odd), depending on whethgr— & + sb™® /| is, /
respectively, greater or smaller thdn- & +eb™) /5. /,/W
The conditioni < 0 leads tos, < & < ¢ [11] (see A P
also [16]), where e
pD\ 1 0 T T,
ec(ar, N, Ay) = (1—ekv)(1— —) and (5) o 1 2 3 4 54°
n
, . pNOIN\ 1 Fig. 1. Synchronization diagram in parameter space), for dif-
ec(a, N, y) = (1 +e U) (1 - T) . (6) ferent values ofV andiy =1In2 (a), In13 (b). Lines correspond to

analytical predictions; symbols to numerical simulations using the
In Fig. 1 we show a variety of critical curves in  Bernoulli (a) or triangular (b) map Synchronization is transver-

parameter spacez(e) obtained for different number sally stable in the region between the couple of curves for each set

. . of values of the parameters.

of maps. Stable CS states dwell in the region bounded

by thea = 0 axis, and two curve segments. The critical

curves were obtained analytically from Egs. (5) (lower that for w = 0.074 yields Ay ~ In1.3 (notice that

curve) and (6) (upper curve). The symbols shown Ay =—wlInw — (1 —w)In[1— w]). Additional tests

stand for the numerical results determined from the (results not shown here) were performed for other

condition R = 1 with a tolerance of 1P, after a ~ maps such as the logistic maf(x) = px(1 — x)

transient of 5x 10%. Two different values of.;; were with i = 4 (hencery =In2) andu = 3.6533 (hence

considered. Numerical results shown in Fig. 1 were Ay ~In1.30) yielding the same degree of agreement.

computed for the piecewise linear (a) Bernoulli shift For these interval maps, in principle, one must have

f(x) =2x (mod 1) (thereforery = In2) and (b) 0< e < 1inorder to guarantee that the state variables

triangular map [17] x,ﬂ’) will remain inside the interval0, 1]. But, rein-
jection into the interval can be performed through an
Fip(x) = {x/w’ for0O<x<w, @) operation, for instance, (mod 1), such that it does not
1-x)/Q-w), forw<x<l, spoil the Lyapunov exponent of the chaotic uncoupled
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1.5 T

map. If trajectory points were not reinjected, one can R
still look at our results as valid for trajectories or tra-

jectory segments as long as the state variables remain €
confined within the given interval. Anyway, for other

maps such ag (x) = exp{—[(x — 0.5)/c'1%} [18], one 10
may have any coupling > 0 since the map is natu-
rally defined in the full real axis. Tests performed with
this Gaussian map (results not shown in this Letter) are
also in good accord with theoretical predictions.

In general terms, we observe that for weak cou-
pling, the maps do not synchronize. As the coupling
strength increases, synchronization can occur depend-
ing on the system parametais N, Ay). However, a 1 N
too high coupling intensity > ¢, has a destabiliz- _ S .
ing influence on the CS state and the chain no longer Fig. 2. Synchronization critical Imeg in the plat¥, ¢) for different

values ofe and Ay = In2. In this casew, ~ 0.77. Symbols

Sync_hromzes' An upper bound has been also ObserVedx:orrespond to theoretical calculations. Dotted lines are guides to the
previously for other CMLs such as scale-free networks eyes. Synchronization is transversally stable in the region between
[19], a general class of CMLs [16] and lattices with ho-  the two curves for each set of values of the parameters.
mogeneous couplings [20]. At first it seems counter-
intuitive that a coupling too strong can, in certain |n that same range of one has
cases, be responsible for desynchronization. In order , ,
to understand why this effect can occur we have to g0, 00, Ay) =1+€7, (10)
consider the role of the coupling strengtin Eq. (1). whichisindependent am[11], thus it yields a straight
Small values okt mean that the dynamics of a given line in the plots of Fig. 1. From the intersection of
site x() is mainly influenced by itself, and weakly by &, (e, 00, A/) With &.(a, 0o, Ayy) it results a critical
its neighbors. A goes to unity, it follows that the  value of the interaction range., such that, forx <
contribution from the site itself vanishes, and the dy- o, < 1 (¢, < d in the d-dimensional case [11]),
namics is dictated only by the site neighbors. When synchronizationis possible even in the thermodynamic
is further increased, the term-d¢ becomes negative, limit N — oo for an appropriate window af. Observe
and the influence of the site itself has a sign opposite the corresponding domains in Fig. 1.
to that of its neighbors (the second term in Eq. (1) is  As N diminishes, the upper curve in Fig. 1, which
always positive), what can eventually destabilize the is a straight line for infiniteN, gains a negative
CS state. inclination and extends for large to values ofe less
Concerning chain size, §i 1 already exhibits the  than unity, indicating that the destabilizing effect of
intuitive fact that it is more difficult to synchronize a  very strong coupling is more easily attained. The lower
larger chain than a shorter one, all other parameterscurve segment has a positive inclination, connecting

0.5

being kept fixed. In the limitv — oo, to the upper curve at a point that forms a cusp for
1_etv smallN. For still smallerN (e.g.,N <5foriy =1In2
ge(a, 00, Ay) = ——— (8) andN < 8 for Ay =In 1.3) the two critical curves do
1-Cl not intersect each other even in the limiting case of
where C(a) = limy_o0o bV /n [11]. This limit is first neighborsd¢ — o).
equal to unity fora > 1, so that Eq. (8) yields The effect of system size can also be observed in
a divergent result. Fowr outside the domain of  Fig. 2 that exhibits the synchronization domains in the
convergence of the series, i.e.< 1, plane (v, ¢) for different values ofx. Similar plots
. have been observed in scale-free networks [19], as if
1—a [ cogx) there were an average or effectiwein such cases.
Cla)= P — f X dx. ©) While for « > «, there is un upper boundly, («, Ay)

0 of the number of maps for which synchronization
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o

Fig. 3. Synchronization doains in parameter planex(s) for
various values ofy andN =21 (a), 201 (b) coupled chaotic maps.
Numerical simulations were performed for Bernoulli or triangular
maps. Critical curves were obtained analytically from Egs. (5)
and (6).

occurs; fora < . any number of maps synchronize
(because the critical curves in Fig. 2 do not intersect).
Generically it is easier to synchronize a small number
of maps. Consistently with this observation, chains of
small size (e.g.V <5 foriy =In2) can synchronize
for any «, for a certain window ofs that narrows
with increasinga. For N < 3 there is, naturally, no
dependence o and the system synchronizes for any
Ay > 0.

Although Fig. 1(a) and (b) yield qualitative similar
results, their comparison rkes clear that, as expected,
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Fig. 4. Critical valuea,, below which synchronization is stable
even in the thermodynamic limit, as a function xoff (symbols),
determined from Eq. (13). The dotted line is a guide to the eyes.

influence of the Lyapunov exponeht; on the syn-
chronization domains in the parameter space) is
displayed in Fig. 3. The exhibited numerical results
were acquired fov = 21 and 201 either Bernoulli or
triangular maps.

If the positive Lyapunov exponent of the uncoupled
map increases, the synchronization domain shrinks,
collapsing in the limit.y — oo. In the opposite limit
of .y — 0T one gets

& — 0 and

p(VIN\ 1
fo2(1-0)
n

This limit value of¢/. depends o andN. If N —

oo and o — 0 (00), ¢, goes to 2.0 (1.0) in the
limit of vanishing chaos. (All these extreme behaviors
are already insinuated in Fig. 3.) As a consequence,
the critical valuea. < 1, below which the chain
synchronizes in the thermodynamic limit, depends on
the degree of chaoticity of the uncoupled maps. This
dependence can be explicitly obtained by inversion of

(11)

(12)

2
AU = In[c(ac) 1}, (13)
extracted from Egs. (8) and (10). The critical vatye
as a function ohy is displayed in Fig. 4. In the limit
of vanishing (infinite )7, «. goes to 1.0 (0.0).
When a > «a., it must be N < Np(a, Ay) for
the system to synchronize, whehg decreases with

the more chaotic the uncoupled maps are, the moreincreasinge — o, (as shown in Fig. 2). In the limit

difficult becomes to obtain their synchronization. The

a — oo, it is easy to obtain, from the condition
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Fig. 5. Maximal number of map8/max = Np(a, Ay7), for which
synchronization can be achieved for asmy as a function of the
chaoticity indicatorry; (circles), determined from the condition
&l > & for @ = co. The solid line corresponds to the approximation
given by Eq. (14).

u

el > g, an approximate expression for the maximal
size, valid when one has sufficiently smal, and
largeNy:

2
Nmax= Np(oo, Ay) <m [ —.
\ Au

In Fig. 5, we exhibit the maximal siz&/max for
which synchronization can be achieved in the limit
of nearest-neighbor couplings (hence for arjyas a
function of .y, together with the approximation given
by Eq. (14).

Summarizing, we have presented numerical results
for the CS states in 1D lattices of coupled identical
chaotic maps with intergions that decay with dis-

(14)
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on the degree of chaoticity of uncoupled maps. In all
cases we investigated anadylly the behavior of the
system under limit values of the parameters. Most of
our results could be straightforwardly extended, fol-
lowing [11], to d-dimensional lattices which are ex-
pected to exhibit similar qualitative features. For in-
stance, for arbitrary there is also an upper bound for
a¢, which has been shown to be equal to the lattice di-
mension [11]. Another issue that would be interesting
to explore in future works is the influence of perturba-
tions, such as noise or defects, on the synchronization
domains.
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