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Abstract. The stationary equilibrium of an axisymmetric plasma characterized by toroidal and
poloidal flows is considered within the framework of ideal double adiabatic magnetohydrodynamic
equations. The problem is reduced to a nonlinear partial differential equation for the poloidal
magnetic flux function, containing six surface functions, plus a nonlinear algebraic Bernoulli
equation defining the plasma density. Ellipticity conditions and bifurcations of its solutions are
discussed in the limit of small beta, appropriated for tokamak-like equilibria. Possible connections
with the L–H transition are suggested.

1. Introduction

At the end of the 1970s, various tokamak experiments, in which neutral beam heating was
applied, indicated the existence of an important velocity field in the plasma and also some
kind of pressure anisotropy (Bell 1979, Suckeweret al 1979). Almost all regimes of tokamak
operation present some sort of plasma flow, sometimes with very large Mach numbers. Both
toroidal and poloidal plasma velocities have been observed (Brauet al1983, Isler 1983, Taylor
et al1991). Plasma flow is of relevance also in other magnetic confinement schemes, e.g. field-
reversed configurations (Carraroet al 1998), where azimuthal rotation is responsible for an
n = 2 instability that may destroy plasma confinement (Linfordet al 1979).

A basic step to approach studies on the effects of plasma flow and anisotropy on
macroscopic transport and stability related problems should be to find a realistic axisymmetric
equilibrium model. The problem of axisymmetric magnetohydrodynamic (MHD) equilibria
with isotropic plasma pressure and general flow has been studied by several authors (Zehrfeld
and Green 1970, Morozov and Solov’ev 1980, Hameiri 1983, Maschke and Perrin 1984, Kerner
and Tokuda 1987, Zelaznyet al 1993, Tasso and Throumoulopoulos 1998). In general, the
problem is reduced to two coupled equations, one nonlinear partial differential equation for
the poloidal magnetic flux function, containing hypotheses on five surface quantities and a
nonlinear algebraic Bernoulli equation defining plasma density.

This makes the problem quite intractable and the only known approximate analytical
solution is due to Maschke and Perrin (1984), who have considered the limit of small plasma
beta and small ratio of poloidal to toroidal magnetic field.Żelazny and collaborators (Żelazny
et al1993) have obtained numerical solutions of the equations by using the inverse method and
Fourier decomposition. In agreement with the results of Hameiri (1983), they quantitatively
showed the existence of different branches for the plasma density and the special behaviour
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of the nonlinear partial differential equation, which alternates between elliptic and hyperbolic,
when the Alfv́en–Mach number of the poloidal flow with respect to the poloidal magnetic field
increases. The existence of hyperbolic regimes implies that some kind of shock wave should
be generated in the plasma and no closed equilibrium would be possible.

On the other hand, if the plasma is subjected to a strong magnetic field, ions have a small
Larmor radius and a rapid gyro-motion. This gives rise to pressure anisotropy and it should
be taken into account if a general MHD equilibrium equation is to be written down.

In this paper we present more general MHD equilibrium equations, which consider both
poloidal and toroidal flows as well as pressure anisotropy. To pursue this task we will
apply double adiabatic equations of state, in which different plasma pressures—along and
orthogonally to the magnetic field—are allowed. In analogy with simple adiabatic models, a
nonlinear partial differential equation for the poloidal magnetic flux is obtained in terms of
six surface functions (one more than in the adiabatic case). Such an equation is coupled to a
nonlinear algebraic Bernoulli equation defining the plasma density.

Since double adiabatic equations of state loose their meaning when the magnetic field
vanishes, toroidal equilibria like FRC (field-reversed configurations, in which the magnetic
field vanishes at the O-point) with poloidal plasma flow cannot be described by the present
model. However, this does not invalidate previous results on the existence of static and rotating
FRC with pressure anisotropy, since the state equations do not enter in such models (Clemente
1993, 1994). As a bypass result that has not been pointed out in previous studies, we show
that in the case of FRC with simple adiabatic flow and isotropic pressure, both toroidal and
poloidal flow cannot coexist simultaneously.

Our Bernoulli equation presents some advantage over the corresponding Bernoulli
equation for simple adiabatic flows, since it can be reduced to two auxiliary equations defining
different branches for the density. Moreover, at least one of the bifurcation points for the
density can be obtained analytically. It is shown that such a bifurcation point falls inside
the second region of ellipticity of the nonlinear partial differential equation for the poloidal
magnetic flux. The critical points for the elliptic regimes are obtained analytically in the case
of small thermal to magnetic energy ratio and small poloidal to magnetic field ratio. The
bifurcation behaviour of the density should be connected with the L–H transition in tokamaks,
which is still not well understood.

This paper is organized as follows: in section 2 the equilibrium model in cylindrical
coordinates is presented. The model equations and the magnetic field and velocity
representations are worked out to give the momentum balance partial differential equation and
the generalized Bernoulli equation. The final section is devoted to a discussion on ellipticity
and density bifurcation conditions, as well as to our conclusions.

2. Stationary double adiabatic model

We will consider an ideal plasma of electrons and singly charged ions in stationary equilibrium.
All partial time derivatives will be assumed to vanish, whereas plasma pressure anisotropy and
a non-zero plasma velocity will be allowed. In the following, cylindrical coordinates(r, z, φ)

and axisymmetry will be assumed throughout. Standard units will be adopted and the Chew–
Goldberger–Low form for the pressure tensor will be considered (Chewet al 1956)

P = p⊥I + σ−BB (1)

whereI is the identity tensor,p‖ andp⊥ are parallel and perpendicular plasma pressures,
respectively,B is the magnetic field,σ− = (p‖ −p⊥)/B2 is a measure of pressure anisotropy
andB = |B|.
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The corresponding ideal MHD equations for stationary equilibria are

∇ · (ρv) = 0 (2)

ρ(v · ∇)v +∇ · P = j ×B (3)

∇ ·B = 0 (4)

∇ ×B = j (5)

∇ ×E = 0 (6)

E + v ×B = 0. (7)

If the plasma is subjected to a strong magnetic field, it may present distinct perpendicular
and parallel pressures that obey different evolution equations, the so-called double adiabatic
equations (Stacey 1981)

v · ∇ lnp‖ − v · ∇ ln ρ +
2B · [(B · ∇)v]

B2
= 0 (8)

v · ∇ lnp⊥ − 2v · ∇ ln ρ − B · [(B · ∇)v]

B2
= 0 (9)

where

ρ = n(me +mi) (10)

is the plasma mass density,n being the particle number density andme,mi the electronic and
ionic masses, respectively.v, E, andj are the plasma velocity, electric field, and plasma
current density, respectively.

In axisymmetric equilibria the magnetic field can be represented in terms of two scalar
functions9(r, z) andI (r, z) (poloidal magnetic flux and current functions, respectively)

B = ∇9 × êφ
r

+ I
êφ

r
. (11)

According to equation (2), introducing two additional scalar functions0(r, z) andF(r, z), a
similar representation can be used forρv,

ρv = ∇F × êφ
r

+ ρ0
êφ

r
. (12)

Taking the cross product between (12) and (11), we obtain

v ×B = ∇9 ×∇F
r2

− I∇F
ρr2

+
0∇9
r2

. (13)

Since, from Faraday’s law (6), the azimuthal component ofE must vanish, the Jacobian of the
transformation(r, z)→ (F,9)must be identically zero, i.e.F = F(9) is a surface function.
This means that magnetic field lines and flow lines lie on the same nested toroidal surfaces
and for any surface quantityQ it follows thatB · ∇Q = v · ∇Q = 0. Hence∇F = F ′∇9,
where from here on the prime will denote differentiation with respect to9.

Taking the curl of (13) it is possible to show that

� = 0

r2
− IF

′

ρr2
(14)

is also a surface quantity, physically being a toroidal angular velocity(� = vφ/r).
Combining (14) and (15) we have the following expression for the plasma velocity,

v(r, z) = F ′

ρ
B(r, z) +�r êφ. (15)
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The momentum balance equation (3) can be rearranged in the following way

∇
(
p⊥ +

B2

2

)
+∇ · T = 0 (16)

where we have defined the tensor

T = (σ− − 1)BB + ρvv. (17)

Since (16) has vanishing azimuthal component, a new surface quantity results

3(9) = (σ− − 1)I + F ′0. (18)

From the starting set of equations it is possible to obtain an energy theorem for anisotropic
stationary equilibria

∇ ·
[(
p‖
2ρ

+
2p⊥
ρ

+
v2

2

)
ρv + σ−B(B · v) +E ×B

]
= 0 (19)

which can be written as

B · ∇
[

3p‖
2ρ

+
p⊥
ρ

+
v2

2
− �I
F ′
(1− σ−)

]
= 0 (20)

from which we recognize the existence of another surface quantity:

2 = 3p‖
2ρ

+
p⊥
ρ

+
F ′2B2

2ρ2
− �

2r2

2
. (21)

2(9) represents a generalized Bernoulli law. It may be seen that forσ− = 0 it reduces to the
previously obtained Bernoulli law for isotropic pressure and adiabatic flow with specific heat
ratioγ = 5/3 (Maschke and Perrin 1984).

Using (1), (8), and (9) we can also obtain

∇ ·
(
p‖p2

⊥
ρ4

v

)
= 0 (22)

∇ ·
(p⊥
B
v
)

= 0 (23)

∇ ·
(
p‖B2

ρ2
v

)
= 0 (24)

from which the existence of two other surface quantities

g(9) = p⊥
ρB

f (9) = p‖B2

ρ3
(25)

may be recognized.
At this point, by considering the component parallel to∇9 of the momentum balance

equation (3), and after some straightforward algebra, we are able to obtain a partial differential
equation for the poloidal magnetic flux function as(

1− F
′2

ρ
− σ−

)
1∗9 = −r4ρ��′ − I3′ − r2(F ′�)′I − r2ρ2′

+I 2F
′F ′′

ρ
+∇9 ·

[
F ′∇

(
F ′

ρ

)
+∇σ−

]
+ r2

(
p⊥
g′

g
+
p‖
2

f ′

f

)
(26)

where

1∗9 = r ∂
∂r

(
1

r

∂9

∂r

)
+
∂29

∂z2
(27)

is the well known Grad–Shafranov operator.
Equation (26) together with (21) form a coupled set of equations whose solutions depend

on six hypotheses on the functional dependence with9 of the surface quantities�,F ′, f, g,3,
and2, the plasma mass density being defined by (21).
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3. Discussion

The equations obtained in the previous section allow us to treat the general problem of stationary
axisymmetric anisotropic MHD equilibria. All previous axisymmetric MHD equilibrium
models can be recovered from this set of equations. The isotropic pressure and adiabatic flow
axisymmetric equilibria are described whenσ− vanishes andγ = 5/3 (Morozov and Solovev
1980, Hameiri 1983, Maschke and Perrin 1984, Kerner and Tokuda 1987). The equations for
axisymmetric plasmas with pure toroidal flow and anisotropic pressure are recovered when
F ′ vanishes (Mercier and Cotsaftis 1961, Clemente 1993, 1994). Isotropic pressure equilibria
with pure toroidal rotation are described whenF ′ = σ− = 0 (Maschke and Perrin 1980,
Clemente and Farengo 1984, Vianaet al 1997).

Some remarks are needed in the case of purely poloidal magnetic fields (FRC for example).
In such a case some region of vanishing magnetic field, wherep‖ = p⊥, will necessarily
exist, while double adiabatic equations predict different expressions for the density. Such
expressions will also be incompatible with the corresponding density arising from Bernoulli
equation (21). Our conclusion is that, when poloidal flow is present, FRC-like equilibria cannot
be anisotropic in the Chew, Golberger and Low sense. However, they can be anisotropic if
only toroidal rotation is present, as has recently been shown (Clemente 1994).

Another interesting point, which has not been pointed out previously, comes out from
considering the expression forI arising from (18), when it must vanish withσ− = 0, i.e.
isotropic pressure and simple adiabatic flow. It can be seen thatI = 0 may be fulfilled
only whenF ′ = 0 or� = 0, or both are vanishing simultaneously. This means that in an
axisymmetric FRC the coexistence of poloidal and toroidal flow is not admitted within a simple
adiabatic ideal MHD model.

Due to the previous considerations, from here on the discussion will be restricted to toroidal
equilibria for which both poloidal and toroidal magnetic fields exist and there are no regions
of vanishing magnetic field in the plasma.

An important issue formerly discussed by Hameiri (1983), in the case of isotropic plasma
pressure and simple adiabatic flow, are the conditions of ellipticity for the nonlinear partial
differential equation for the poloidal magnetic flux. Taking into account thatσ− and the density
arising from Bernoulli law (21) are both functions of9, |∇9|2, andr, the determinant of the
symmetric matrix of the coefficients of the second-order derivatives of9 in equation (26) can
be obtained as

Det=
(

1− F
′2

ρ
− σ−

)2 [
1− (F ′2/ρ)− σ− −X

1− (F ′2/ρ)− σ− −X(1− (|∇9|2/r2B2)

]
(28)

where

X = (3β‖ − β⊥ − F ′2/ρ)2
(3β‖ − F ′2/ρ) − 4β‖ + β⊥ (29)

with

β‖ = p‖
B2

β⊥ = p⊥
B2
. (30)

Equation (26) will be elliptic if Det> 0, and in this case a boundary value problem is well
defined for the equilibrium equations.

Thinking in tokamak (low-beta) applications, we can develop the denominator of Det to
the first order in|∇9|2/r2B2, β‖, andβ⊥. It can be seen that Det is positively definite when
the following conditions hold:

0<
F ′2

ρ
< 3β‖ − β2

⊥
1 + 2β⊥
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3β‖ − β2
⊥

1 + 2β⊥

(
1− |∇9|

2

r2B2

)
/ F ′2

ρ
< 1− β‖ + β⊥

1− β‖ + β⊥ <
F ′2

ρ
/ r2B2

|∇9|2 .

As in the simple adiabatic case we have three regions of ellipticity for the parameterF ′2/ρ,
which can be interpreted as the square of the Alfvén–Mach number. We note that the second
region is separated from the first one by a very small gap.

At this point it is interesting to note that in the present case of double adiabatic flow, using
the definition off andg, the Bernoulli equation may be split into two auxiliary equations for
the density,

3fρ2

B2
= 2 +

�2r2

2
− gB ±

√(
2 +

�2r2

2
− gB

)2

− 3fF ′2 (31)

where it must be taken into account thatB also depends onρ. The plus or minus sign
distinguishes different branches forρ. Their equivalence defines one of the bifurcation points
for the density.

Using expression (21) for2, the vanishing of the square root in (31) defines a bifurcation
point for the density corresponding toF ′2/ρ = 3β‖. As can be seen from the ellipticity
conditions, such a bifurcation point falls just inside the second region of ellipticity for the
nonlinear partial differential equation for the poloidal magnetic flux. As the plasma flows may
drive anisotropy, its connection with a transition similar to the L–H transition in tokamaks is
quite suggestive.

In conclusion, we have presented a new set of equations to describe axisymmetric
stationary equilibria with anisotropic pressure, which reduce to the equilibrium equations
already known in the appropriate limits. Conditions of ellipticity of the resulting nonlinear
partial differential equation were shown, together with possible bifurcations for the density.
Further work will be needed in order to obtain solutions which will be useful in describing
plasma configurations appearing in the present generation of tokamaks.
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