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Abstract 

In this work, we analyze the transition from regular to chaotic states in the parametric four-wave interactions. The temporal 
evolution describing the coupling of two sets of three-waves with quadratic nonlinearity is considered. This system is shown 
to undergo a chaotic transition via the separatrix chaos scenario, where a soliton-like solution (separatrix) that is found for 
the integrable (perfect matched) case becomes irregular as a small mismatch is turned on. As the mismatch is increased 
the separatrix chaotic layer spreads along the phase space, eventually engrossing most part of it. This scenario is typical of 
low-dimensional Hamiltonian systems. 

PACS: 05.45.÷b; 52.35.Mw; 42.50.Ne 
Keywords: Hamiltonian chaos; Mode coupling; Plasma; Nonlinear optics 

1. Introduct ion 

Wave phenomena are of  great interest in many branches of  physics. In particular, wave-wave interactions are 

common processes in plasmas and nonlinear optics. Examples  of  these phenomena can be found in anomalous 

absorption of  laser in laboratory plasmas [1,2], generation of  radio emissions in space plasmas [3] and generation 

of  second-harmonic,  amplification and frequency-up conversion of  optical signals [4,5]. 

In this paper, we study a particular kind of  wave-wave  interaction namely, the nonlinear interaction of four waves 

with two of  them participating simultaneously in two resonant triplets. This system was first studied by Sugihara 

[6] and Karplyuk et al. [7] who have derived some particular solutions for the coupling, considering the case of  

perfect matching conditions. Extended solutions including negative energy waves were proposed by Walters and 

Lewak [8] and finally the integrability was proved by the discovery of  the fourth intergral of motion [9]. Opposite 

to the case of  a single three-wave triplet, that has received a lot of  attention [10,11], the interaction of  two sets of  

three-wave interaction (the resonant four-wave case studied in this paper) is not completely understood. 
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In a recent paper, Chian et al. [ 12] have considered the dynamical effects introduced by the presence of frequency 
mismatch in the wave interaction. They investigated a particular initial condition and proved, by means of Lyapunov 
exponents, that its trajectory may undergo a transition to chaos as the mismatch is varied. Here we reconsider this 
problem, fully analyzing both regular (when matching conditions are fulfilled) and chaotic (when the mismatch is 
introduced) dynamics of  a whole set of  initial conditions, providing an understanding of the precisely route that 
leads to the onset of  chaos. 

In particular, for the regular case it is shown that two distinct groups of periodic solutions are present in the 
system phase-space. D i v i d i n g  these two phase-space regions we then find a soliton-like solution whose period goes 
to infinity, i.e., a separatrix. As any finite mismatch is introduced in the system, the non-integrable perturbations 
drive the separatrix dynamics and its surroundings into chaos, following the typical sepa t r i x  c h a o s  scenar io  [13]. 
Increasing the mismatch, the separatrix chaotic layer grows, eventually covering most part of  the phase-space. The 
whole chaotization process is accompanied with the aid of  conveniently constructed Poincar6 plots. 

The paper is organized as follows: in Section 2, we introduce the dynamical equations for the resonant four-wave 
parametric interaction, in Section 3 we discuss some important features of  the perfect matched integrable case, 
in Section 4 the transition to chaotic states when a finite frequency mismatch is introduced is presented and, in 
Section 5 we conclude the paper. 

2. Coupled-mode equations 

Considering the resonant four-wave parametric interaction involving the coupling of two sets of three-wave with 
phase-matching conditions of  the form 

! 
0)3 ,4  = 0)1 z~= 0)2 - -  ~q=, k3,4 ---= kl q= k2, (1) 

f where ~ :  stand for s m a l l  linear frequency mismatches for each of the two wave triplets. In face of  dealing with 
resonant waves (normal modes) one adopts the modulational notation for the wave fields, E~ (x, t) = ½g~ exp i(k~ • 
x - 0 ) J )+c .c . ,  where g~(x, t) is a slowly varying complex envelope such that 102£~[ << [0)~OtC,~l and 2 IOxg~l << 
Ikc~Oxg. I; co~(k . )  denote the linear dispersion relations of  each interacting wave; the subscript ot refers to 1-4. 
Therefore, making use of  the fluid equations and Maxwell  equations, one is able to write the following set of 
dynamical equations for the complex envelope of the waves: 

S 1 E 1  = c r g 2 g 3  e iS/- t  - -  rg~g4e  i~ t ,  (2) 

32~2 = --O'gl g~e ir'-t -- zg~g4e ir~-t , (3) 

$393 = - - c r g l g ~ e  -ia'-t ,  (4) 

$4~4 = 7:£1£2 e-iBm-t, (5) 

where the dot refers to time derivatives, cr and r are the time independent interaction kernels determined by the 
specific physical system one is dealing with 8 ~_ = COl - o92 - w3 and 8~+ = w l  + w2 - w4. 

Performing appropriate normalization (see [12] for details) and introducing real variables defined by ga = 
F1/2e io~ , we can re-write the dynamical equations in a form that is more suitable to be analyzed: 

F1 = 2(F1F2F3) 1/2 cos ~b_ - 2r(F1F2F4) 1/2 cos qS+, (6) 

F2 = -2(F1F2F3)1/2  cos q~_ -- 2r(F1FzF4)1/2 cos ~b+, (7) 

t/'3 = --2(F1F2 F3) 1/2 cos ~b_, (8) 
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t74 = 2r(F1FzF4) 1/2 cos qS+, 

q~_ = 1 /2 (H  + a-F3 + a+F4)(1/F2 - l /F1)  + (F1F2/F3) 1/2 sin ~b_ - a_, 

q~+ : 1 / 2 ( H  + 3 _ F  3 + a + F 4 ) ( - - 1 / F  2 - l / F 1 )  - -  r ( F I F 2 / F 4 )  1/2 sin q~+ - a+, 

where H is the four-degree of  freedom Hamiltonian of  the system: 

H = 2(F1F2)l /2(F 1/2 sin qS_ - rF~/2 sin q~+) - a -F3  - a+F4, 
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(9) 

(10) 

(11) 

(12) 

~b_ ~ q51 - q~2 - ~b3, ~b+ ~ ~b 1 -}- ~b 2 - q}4 a n d  a T are  t h e  n o r m a l i z e d  frequency m i s m a t c h e s .  T h e  ra t io  r m e a s u r e s  

the relative coupling strengths of  the two wave triplets. In the above Hamiltonian formalism F~ and ~bc, are the 

canonically conjugated coordinate and momentum, respectively. 
The system of equations (2)-(5) was first derived by Sugihara [6] in the case of  perfect matching, azy = 0, 

being generalized to include frequency mismatch by Chian et al. [12]. As shown in the latter paper, the inclusion of  
frequency mismatch leads to the appearance of  interesting new features in the non-linear dynamics of  the system, 

specially, the onset of  chaos. The aim of  this paper is to further analyze these new features, investigating the scenario 
that leads to the rise of  chaos. 

3. Integrable case and regular solutions 

Before fully embarking in the analysis of  the dynamics that arise when frequency mismatch is turned on, it is 
worthwhile spending some time investigating the properties of  the regular solutions of  the integrable case, 3q= = 0. 
This will be done in this section. 

In addition to the Hamiltonian given by Eq. (12) the dynamical system of equations (6)-(11) admits other two 
constants of  motion, the so-called Manley-Rowe relations: 

F1 -1- F3 + F4 = c1, (13)  

F2 - -  F3 + F4 = c2. (14)  

Using these relations we are able to remove two pairs of  canonical variables from the Hamiltonian, reducing to 
two the number of  degrees of  freedom of the system. This will be treated in more detail later on. 

Moreover, a fourth independent constant of  motion was found by Romeiras [9], thus proving the general integra- 
bility of  the system. The use of  this constant in order to analyze the properties of  the solutions of  the system is not 
a trivial task. However, if we concentrate ourselves on a special set of  initial conditions, namely those with H = 0, 
much more tractable solutions may be found. In fact, these initial conditions are not only of  didactical interest, but 

also of  practical importance since they encompass those situations typically found in decay instability where one 
or more of  the four waves initially vanishes. 

Following Refs. [7,8], using H = 0 and working with Eqs. (2)-(5) we find three others constants of  motion, c3, 
c4 and c5, to be given by 

F31/2 sin q~_ = c3, (15) 

F 1/2 sin qS+ = c4, (16) 

[El/2 cosq~- + (1 /r ) f l /2cosqa+l  = c5. (17) 

In the last equation it is necessary to take the absolute value since the expression on the left-hand side presents a 
constant modulus but keeps varying its signal due to discontinuous changes in the angle variables qS_ and ~b+. 
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Now defining the variable 

X ---- s F  1/2  cos qS_, (18) 

where s ---- -4-1 stands for the signal of  the left-hand side expression in Eq. (17) without the modulus and is 

conveniently used in order to avoid discontinuities in the dynamics of  X, one can write a closed equation in the 
form 

dX32 
d t  J + V ( X )  = 0 (19) 

with V (X) as an effective potential that drives the motion of  the variable given by 

V ( X )  = - [ e l  - c~ - X 2 - c 2 - r 2 ( X  - e5)2][c2 q- e 2 --}- X 2 - c 2 - r Z ( x  - c5)2]. (20) 

Although Eq. (19) can be solved in terms of  elliptic functions, and from X ( t )  and the constants of motion ci 

we could find the time evolution of  any F , ,  here we will not be interested in the explicit  solutions but instead in 

investigating some features of  the solution that appears as we vary the initial conditions. This can be done by seeking 

for the roots of  V ( X )  and noting that since ( d X / d t )  2 must be always positive, the motion of X is constrained to the 

p o t e n t i a l  w e l l  between two of the roots of  V (X). 

For future purposes that will become clear in the Section 4, we will focus on sets of  initial conditions that have 

not only the same Hamiltonian value (H  = 0), but also the same values for the constants Cl and c2. A very simple 

set that fulfills these requirements is the following: 

F l ( t  = O) = Cl --  7, F 2 ( t  = 0 )  = C2 - -  7 ,  (21) 
F3(t = 0 )  = 0 ,  /?4(t = 0 )  = r/, q~_(t = 0 )  = J r ,  ~b+(t = 0 )  = 0  

with ~ as the parameter  labeling the different initial conditions and whose values vary from 0 to lesser between 

Cl and c2, since F1,2 must be positive. As we are concerned with decay processes, we typically have c2 << cl 

and 0 < ~ < c2. The set of  initial conditions presented in Eqs. (21) is such that c3 = c4 = 0, c5 = v ~ / r  and 

X ( t  = O) = O. 

To start with the analysis of  the different types of  motion that may occur as we vary r/, we first write the roots of  

the effective potential equation (20) for the set of  initial condition we are interested in: 

rrl 1/2 q: v/(r  2 q- 1)Cl - / 7  
X1,2 = r 2 + 1 ' (22) 

rrl 1/2 2F ~ / ( r  2 - 1)c2 + r] 
X3'4 = r 2 -- 1 (23) 

with X1,3 corresponding to the minus sign and X2,4 to the plus sign. 

Let  us first consider the simplest care r = 1. A quick inspection either on the expression for V (X) or on Eqs. (22) 

and (23) reveals that for this value of  the relative coupling strengths parameter  only three roots exist; X4 is no longer 

present, and X3 assumes the value X3 = (7 - c 2 ) / 2 ~  1/2. The effective potential and the respective time evolution 

for the wave amplitudes F~ are shown in Figs. 1 and 2 for different values of  the initial condition parameter  ~ with 

Cl = 10 and c2 = 1, typical of  a decay process. For ~ = 0, curve (a) of  Figs. 1 and 2(a), which actually is the initial 

condition analyzed in [12], we find that X3 diverges to minus infinity and V ( X )  is negative between X1 and X2, 

roots that are symmetric with respect to X = 0, i.e. X oscillates between -4-X1 = q : ( c l / 2 )  1/2. The implication of  

the symmetry in the motion of  X is that F1 has the same value for all its minima as it is seen in Fig. 2(a). For this 

special case, F2 presents no dynamics,  acting just  as a ca t a l y s t  in the interaction [8] and/73 and F4 undergo the same 
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evolution. Increasing the value of  z/, as shown in Figs. 1 (curve (b)) and 2(b) for ~ = 0.015, the root X3 starts to 

migrate in the direction of  X = 0, with X1 and X2 nearly keeping their symmetry since ~7 << Cl. As a consequence, 

F1 and F2 nearly present the same values for all their maxima and minima. For  a critical value of  ~7, namely ~ (see 

Eq. (26)), the potential exhibits a double root at X = X1 = X3 as found in Fig. 1 (curve (c)). Hence, the period 

of  motion of  X and, consequently, of  the F~ tend to infinity giving rise to a soliton-like solution, i.e. a separatrix 

of  the system. This solution is presented in Fig. 2(c). Above q = q~ the roots become such that X3 > Xt and the 

potential well is found for X between X3 and X2 (curve (d) of  Fig. 1). Now the motion of  X is asymmetric and the 

F~ present very distinct values in their successive maxima and minima presented in Fig. 2(d). 

Physically, the emergence of  the two different types of  solutions discussed above, that may be roughly divided 

into the nearly symmetric ones and the asymmetric ones, is understood as follows. For  ~ = 0, one has that the hole 

of waves four and three are the same, both of  them grow pumped by the decay of  wave one or decay to waves two 

and one synchronized in time. As ~/grows to a finite value wave four is not synchronized with wave three anymore, 

so that a second small deep (because of  the decay of  wave one into wave four) in the series of  wave one can be seen. 

By virtue of  the effective potential equation (20) one is able to investigate the dynamics of  X for other values of  

the parameter  r .  The main results of  such investigation are presented in Table 1. There appears the critcal values r*, 

~ and ~ defined as 

/" ¢1 - -  6"2 ~ 1/2 
r *  /\ cl + c2/,/ , (24) 
r/~ = (1 - -  r 2 ) c 2 ,  (25) 



282 R. Pakter et al./Physica D 110 (1997) 277-288 

F 

(a) 

10.0 

8.0 

6.0 

4.0 

2.0 

0.0 
0.0 

, j 

2.0 

i I 

i I 

i I 

~-7 i/i \ 
\ 

\ I 

4.0 
t 

\ 
\/ 

6.0 

10.0 , , 

8.0 ~ 

6.0 t 
: J 

4.0 

2.0 

0.0 2.0 4.0 6.0 
(b) t 

Fig. 2. Time evolution of  the wave amplitudes Fc~ for the same initial conditions used in Fig. 1. 

* 2 - ( 2 6 )  

The contents of Table 1 reveal that, similar to the r = 1 case discussed above in detail, irrespective to the value 

of r it is typically found two types of solutions for the system as the initial conditions are varied. Moreover, in 



R. Pakter et al./Physica D 110 (1997) 277-288 283 

F 

(c) 

F u., 

10.0 

8.0 

6.0 

4.0 

2.0 

0.0 
0.0 

10.0 

8.0 

6.0 

' t ' i , 

/i i 21 _ 

2.0 4.0 6.0 
t 

4.0 

2.0 

I 

t, 
i1' I 

I ;  I' 
- \ I / :  , I / I  

j 

t 

'~"\i' 

\ i 
' \  I' \ ' , \  / /  

' \ ' \ \  / - \  i1,; 

- - F ,  
- - - - - -  f 2 

. . . .  F 3  

& 

0,0 
0.0 2.0 4.0 6.0 

(d) 

, ' \  

/ \ , ]  

Fig. 2. Continued 

the transition between these different types of solutions the period of the orbits goes to infinity, therefore inducing 
the appearance of a soliton-like solution connected to a separatrix of the system. As will be shown in the next 
section, the existence of the separatrix orbit plays a crucial role in the nonlinear dynamics of the coupled-mode 
interaction. 



2 8 4  R. Pakter et al./Physica D 110 (1997) 277-288 

Table  1 

A n a l y s i s  o f  the  d y n a m i c s  o f  X --= s F3 cos  4~_ b y  m e a n s  o f  the  effect ive po ten t ia l  V (X) ,  Eq.  (20),  fo r  d i f fe ren t  va lues  o f  r a n d  r/ 

r r] Roots Remarks 

r < r*  ~7 < t}~ {X 1 < X2} X3,  X 4 complex 
~7 = r/~ X1 < {X3 = X4 < X2} Separatrix 

* * X1 < X 4 < {X 3 < X2} r/1 < r/ < , 1 2  

r/ - -  - -  1/2 * X1 : X4 < {X3 < X2} 

/7 > r/~ X 4 < X 1 < {X 3 < X2} 

r = r*  ~ < t]~ {X 1 < X2} X3,  X 4 c o m p l e x  

t} = r/~ {X 1 = X 3 = X 4 < X2} Sepa ra t r i x  (tr iple root)  

0 > ~ '  X 4 < X l < { X 3 < X 2 }  

r*  < r < 1 t/ < r/~ {X 1 < X2} X3,  X 4 c o m p l e x  

/7 = / 7 ~  X4 : X3 < {Xl  < X2} 

, • X4 < X 3 < {X1 < X2} t] 1 < ~ < 7/2 
/7 = r/~ X 4 < {X 3 = X 1 < X2} Sepa ra t r i x  

* X4 < X 1 < {X 3 < X2} r / > r / 2  

* X3 < {X1 < X2} r = l  r/ < r/2 

/7 = r/~ {X 3 = X 1 < X2} Sepa ra t r ix  

* X1 < {X3 < X2} ~7>t/2 

* X3 < {X 1 < X2} < X 4 1 < r < 1 / r *  rl < 172 
t] = r/2 {X 3 = X 1 < X2} < X 4 Separatrix 

* X1 < {X3 < X2} < X4 ~ > r / 2  

r = 1/r* r/ = 0 {X3 = X1 < X2 = X4} Sepa ra t r ix  ( two  doub le  roo ts )  

r/ > 0 X 1 < {X 3 < X2} < X 4 

* X1 < {X 3 < X4} < X 2 r > 1/r*  ~1 < 7?2 
* X1 < {X3 < X4 = X2} Separatrix t l = t / 2  

* X1 < {X3 < X2} < X 4 r / > r / 2  

The motion is constrained to the roots between curly brackets. Critical values r*, ~7~ and r/~ are defined in Eqs. (24)-(26). 

4. M i s m a t c h e d  case:  T r a n s i t i o n  to c h a o s  

Let us now proceed to the analysis of  the case where there is a linear frequency mismatch. Recalling some 

discussions of  the previous section, when 3: F = 0 four independent (in the sense that they are in involution) 

constants of  motion can be found to assure the integrability of  the four-degree of  freedom system described by the 

Hamiltonian equation (12). These constants are: the one found by Romeiras [9], the Manley-Rowe relations (13) 

and (14) and, of  course, the Hamiltonian itself. For the special case H = 0, the former one may be replaced by 

the constants defined in Eqs. (15)-(17) and the system becomes s u p e r - i n t e g r a b l e  (note, however, that c3 and c4 are 

dependents), presenting more constants in involution than degrees of  freedom [ 14]. 

As a finite frequency mismatch is turned on, the scenario presented above is changed. Although the constancy 

of  the Hamiltonian and the Man ley -Rowe  relations remain valid, neither the constant found by Romeiras [9], nor 

any of  the c3,4,5 defined in Eqs. (15)-(17) persist. Hence, the system turns to have more degrees of  freedom than 

constants of  motion and chaos is l ikely to be found. Actually, the presence of  chaotic motion was confirmed by 

Chian et al. [12] who found positive Lyapunov exponents in the dynamics of  the mismatched system. Our aim here 

is to further analyze the transition from the regular motion previously discussed, enlightening the processes that 

drive dynamics into chaos. 
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Our investigations will be based on the analysis of  Poincar6 plots constructed from the numerical integration of  

the motion equations of  the system in their complex form and we will set 8+ = 0 and let 8_ as a free parameter. 
In order to build up convenient plots it is necessary to take into consideration some aspects to be treated now. First 

of  all, note that all the initial conditions must be chosen in such a way that they lead to the same values for all the 
constants of  motion H, cl and c2. Not surprisingly this is exactly the case for the initial conditions afore considered, 
given by Eqs. (21). Another important subject matter concerns the choice of the coordinates to be plotted each time 
the Poincar6 section is pierced. At this point, we realize that until now we have not explicitly used the constants of  
motion we have at hands to effectively reduce the number of  degrees of  freedom of the system. This can be properly 

done by introducing a generating function of  the form 

.T'z({Fa, qS~}) = Flq~ + F2qS~ + (F1 - F2 + 2F3)~b~ + (F1 + F2 + 2F4)q~, (27) 

that leads to the following canonical transformation equations: 

F~ = F1, 
F~ = F2,  

F ~ = F 1 - F z + 2 F 3  = C l - C 2 ,  
F~ = F1 + F2 + 2 F 4  = ca +C2,  

~ = @ + + ~ _ ) / 2 ,  

2 (~+ -- ~_) /2 ,  

< = ~4/2, 

where the primes indicate transformed variables. Note that Fi and F2 have no transformation and so we will drop 
their primes from now on. The Hamiltonian assumes the form 

H = ( F 1 F 2 / 2 ) U Z [ ( F ~  - -  F 1 + F2) 1/2 sin(q~ -- q~) 

- - r ( F ~  --  F1 - -  F2) 1/2 sin(q~ + qS~)] -- 8_(F~ - F1 + F2)/2. (28) 

As a matter of  fact, q~ and ~p~ are cyclic and F~ and F~ are now constants. Finally, we choose to plot the pair 

{~b~, F2} each time F1 has a minimum. 
In general, it would be interesting to start by exploring Poincar6 plots made for the integrable case 8_ = 0, so we 

would probably get some notion of  the system we are dealing with. However, taking into account that for 8_ = 0 
the initial conditions we are considering (H = 0) lead to a s u p e r - i n t e g r a b l e  system, in attempting to construct the 
plots we would find that each initial condition pierces the Poincar6 section in a finite number of  points that form no 
structures (curves), thus giving no useful information. 

Hence, let us begin our analysis for a small but finite value of  the mismatch parameter. In Fig. 3(a) the Poincar6 
plot is presented for 8_ = 0.01. Constants Cl and c2 are the same as in the previous figures and we will focus on the 
case r = 1, remarking however, that following the discussions of  the Section 3, similar conclusions are expected for 
other values of  r. Note that instead of  plotting the phase ~p~ which is re-periodic, we are using ~b+ - qS_ = 2~b~ that 

is properly 27r-periodic. One can easily see the presence of  two distinct resonant islands separated by a thin chaotic 
layer. Comparing the values of  the initial condition parameter ~ for the different structures that are present, we were 
led to the conclusion that the l o w e r  resonant island in Fig. 3(a) refers to the symmetric solutions found for 77 < 0~ 
in the integrable case, and the u p p e r  one, to the asymmetric solutions found for ~/ > rl~. In fact, these two islands 
present different periods as it is shown in Fig. 3(b), where we plot a linear-log version of  Fig. 3(a). There we realize 

that the former is actually period one, while the latter is period two, piercing the Poincar6 Plot once for F2 << 1 and 
then for/72 ~ 1-10. Moreover, as it could be expected [13], the chaotic layer in the intermediate region between the 
different island chains is found for initial conditions near the separatrix value ~ = ~ .  As the value of  the mismatch 
parameter is increased up to 8 = 0.1, Fig. 3(c), one can readily see the enlargement of  the chaotic region and the 
occurrence of  phase-locked states that appear as secondary resonant islands surrounding the fixed points of  the map. 
The appearance of  such structures is another signature of  the non-integrability of  the system. Further increasing 8, 
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Fig. 3(d), we find an almost completely destroyed Poincar6 Plot with the chaotic region engrossing the major part of  
the phase-space. It becomes clear from these last figures that there is a growing (with 8) portion of  the phase space, 
namely around q~+ - q~_ ~ 0 (2zr) and F2 ~ 2.0, where no trajectory pierces the Poincar6 Plot. It is worthwhile 
mentioning that the existence of  this portion is not related to any KAM curves that may be present there, but to 
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the occurrence of a forbidden region where it is impossible to satisfy the mapping condition F1 = 0 for the given 

parameter values [ 15]. 

5. Conclusion 

In this paper we have analyzed the transition to chaos in the resonant four-wave interaction involving the coupling 

of two sets of three-waves. In the absence of frequency mismatch this system is integrable presenting typically 

two distinct types of periodic solutions, and a soliton-like solution as the initial conditions are varied. By means of 

conveniently constructed Poincar6 plots we have shown that in presence of frequency mismatch the afore mentioned 

two types of solutions give rise to two island%hains of different periodicity, with a chaotic layer (relative to the 

soliton-like solution) between them. Thus, characterizing the separatrix chaos scenario. As the value of the frequency 

mismatch parameter was increased the spreading of the chaotic layer was verified over the major part of the phase- 

space, leading to the chaotization of basically all initial conditions. 
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