Peripheral Stochasticity in Tokamaks.
The Martin-Taylor Model Revisited

R. L. Viana
Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19081, 81531 Curitiba, Paraná, Brazil

I. L. Caldas
Instituto de Física, Universidade de Sao Paulo, Caixa Postal 20516, 01498, Sao Paulo, Sao Paulo, Brazil

Z. Naturforsch. 47a, 941–944 (1992); received December 10, 1991

We analyse the effect of an Ergodic Magnetic Limiter on the magnetic field line dynamics in the edge of a large aspect-ratio Tokamak. We model the limiter action as an impulsive perturbation and use a peaked-current model for the Tokamak equilibrium field. The theoretical analysis is made through the use of invariant flux functions describing magnetic surfaces. Results are compared with a numerical mapping of the field lines.

1. Introduction

One of the various proposed techniques to reduce plasma-wall interactions in Tokamaks is the Ergodic Magnetic Limiter (EML) concept [1, 2]. The basic mechanism of EML action is the creation of a boundary layer of ergodic magnetic field *, in order to reduce the heat loading at the Tokamak inner wall. Recent experiments have shown a decrease of impurity level in the plasma core due to EML action [3].

The simpler implementation for an EML consists of a ring-shaped arrangement of m pairs of conductors wound around the Tokamak (see Figure 1). Martin and Taylor [4] were able to study magnetic field ergodization in this EML proposal by means of a poloidal Poincaré mapping, but they have employed a model restricted to the Tokamak edge region, for both equilibrium and EML fields. Nevertheless, they point to the right direction, when considering the peripheral magnetic surface destruction as the main source of field ergodization.

This achievement has led us to revisit their model, using a systematic method for magnetic surface description. Notice that some models for the Tokamak equilibrium field were combined with numerical evaluation of field line trajectories caused by EML action [5], but few analytical results were found up to now. We try to circumvent the extremely complicated nature of EML field, treating the limiter action as an impulsive perturbation. The mapping of field lines is also simplified in this approach, giving analytical results even when toroidal effects are considered.

2. Equilibrium and Limiter Field

In this paper we assume a large aspect ratio geometry by using cylindrical coordinates, as depicted in Figure 1. The Tokamak equilibrium field in this approximation can be written as \(B^{(0)} = (0, B_\phi(r), B_\phi) \), where \(B_\phi = \text{const} \) and the poloidal field \(B_\phi(r) \) is calc-

* The words ergodic, stochastic and chaotic will be used as meaning actually the same thing.

Reprint requests to Prof. I. L. Caldas, Instituto de Física, Universidade de São Paulo, Caixa Postal 20516, 01498 São Paulo, São Paulo, Brazil.

Fig. 1. Geometry of an Ergodic Magnetic Limiter.

0932-0784 / 92 / 0900-0941 $ 01.30/0. – Please order a reprint rather than making your own copy.
The objective function in this case is to minimize the expression:

\[\varepsilon \overset{<}{\underset{\geq}{\approx}} \frac{|w_{d}^{\text{new}} - w_{d}^{\text{old}}|}{w_{d}^{\text{new}} + w_{d}^{\text{old}}} = S \]

where \(S \) is the so-called stochasticity parameter.

The objective function leads to the following condition (including the constraint associated with the number of failures and the number of successes):

\[n_{\text{fail}} \overset{\geq}{\underset{\leq}{\approx}} \frac{q}{w_{d}^{\text{new}}} \frac{\partial \delta}{\partial \delta} \frac{\partial \varepsilon}{\partial

The objective function is well defined within the constraints of the model.

Although the criterion used is only specific to this case, the general expression of the objective function is:

\[(\hat{\theta}^{\text{new}} - \hat{\theta}^{\text{old}})^{2} \frac{\partial \varepsilon}{\partial \theta} = (\hat{\theta}^{\text{new}} - \hat{\theta}^{\text{old}})^{2} \frac{\partial \varepsilon}{\partial \theta} \]

where \(\theta \) is the parameter of interest.

The factorial design, which is designed to test the hypothesis of

\[\frac{\partial \varepsilon}{\partial \theta} = 0 \]

is optimal. The design is orthogonal, which means that the effect of

\[\frac{\partial \varepsilon}{\partial \theta} = 0 \]

is independent of the factor levels.

The objective function is:

\[\varepsilon = \frac{\partial \varepsilon}{\partial \theta} \frac{\partial \varepsilon}{\partial \theta} \]

where \(\varepsilon \) is the error term and \(\theta \) is the parameter of interest.

The design is therefore optimal if

\[\frac{\partial \varepsilon}{\partial \theta} = 0 \]

is satisfied. The optimal design is the one that maximizes the determinant of the information matrix.

The objective function is:

\[\varepsilon = \frac{\partial \varepsilon}{\partial \theta} \frac{\partial \varepsilon}{\partial \theta} \]

where \(\varepsilon \) is the error term and \(\theta \) is the parameter of interest.

The design is therefore optimal if

\[\frac{\partial \varepsilon}{\partial \theta} = 0 \]

is satisfied. The optimal design is the one that maximizes the determinant of the information matrix.

The factors of interest are:

\[n_{\text{fail}} \overset{\geq}{\underset{\leq}{\approx}} \frac{q}{w_{d}^{\text{new}}} \frac{\partial \delta}{\partial \delta} - \frac{\partial \varepsilon}{\partial \theta} = 0 \]

where \(n_{\text{fail}} \) is the number of failures.

The factors of interest are:

\[n_{\text{fail}} \overset{\geq}{\underset{\leq}{\approx}} \frac{q}{w_{d}^{\text{new}}} \frac{\partial \delta}{\partial \delta} - \frac{\partial \varepsilon}{\partial \theta} = 0 \]

where \(n_{\text{fail}} \) is the number of failures.

The factors of interest are:

\[n_{\text{fail}} \overset{\geq}{\underset{\leq}{\approx}} \frac{q}{w_{d}^{\text{new}}} \frac{\partial \delta}{\partial \delta} - \frac{\partial \varepsilon}{\partial \theta} = 0 \]

where \(n_{\text{fail}} \) is the number of failures.
Tokamak operating at the University of São Paulo (a = 0.08 m, b = 0.11 m, \(R_0 = 0.30\) m, \(B_0 = 0.32\) T, \(I_p = 10.0\) kA). The Chirikov condition (8) is verified only for values of the EML current (~20% of the plasma current) one order of magnitude larger than typical values for helical windings [6]. This result indicates the need of several ergodic limiters in order to obtain current values closer to those that have been used in helical limiters. This is a point that has been noted in other works on the subject [8].

4. Magnetic Field Line Mappings

The use of an impulse model for EML action enables us to give simple analytical forms to the Poincaré-type puncture plots of the magnetic field lines. The procedure, although approximate, uses less computer time than previous codes based in ab initio Biot-Savart evaluations of the EML field [5]. The equilibrium and limiter fields are taken from the formulae of the preceding section. We treat the impulsive perturbation by means of a simple procedure for this class of problems [9], defining discretized variables for the radial as well as angular positions of the points on the mapping:

\[
\begin{align*}
 r_n &= \lim_{\epsilon \to 0} r(z = 2\pi R_0 n + \epsilon), \\
 r^*_n &= \lim_{\epsilon \to 0} r(z = 2\pi R_0 (n + 1) - \epsilon), \\
 r_{n+1} &= \lim_{\epsilon \to 0} r(z = 2\pi R_0 (n + 1) + \epsilon)
\end{align*}
\]

and similar definitions for \(\theta_n, \theta^*_n, \theta_{n+1}\). These are coordinates of successive piercings of a given field line on a surface of a section located at \(\phi = \text{const}\).

The map reads

\[
\begin{align*}
 r_{n+1} &= r^*_n - \xi \left(r^*_n \right)^m b \sin(m \theta^*_n), \\
 \theta_{n+1} &= \theta^*_n + \xi b \left(r^*_n \right)^m \cos(m \theta^*_n),
\end{align*}
\]

where

\[
\xi = \frac{\mu_0 m I L}{B_0 \pi},
\]

and

\[
\begin{align*}
 r^*_n &= r_n, \\
 \theta^*_n &= \theta_n + \frac{2\pi B_0 (r_n) R_0}{r_n B_0}.
\end{align*}
\]

In (13b) the second term is the rotational transform of the field line.

We can also include the so-called toroidality effect on the toroidal field \(B_\phi\), by taking

\[
B_\phi = \frac{B_0}{1 - \frac{r}{R_0} \cos \theta},
\]

so that we rewrite (13b) as

\[
\theta^*_n = 2\arctan \left[\dot{\lambda}^{-1}(r_n) \tan(\Omega(r_n) + \arctan \Xi(r_n, \theta_n)) \right] + 2\pi,
\]

where we have defined

\[
\begin{align*}
 \Omega(r_n) &= \frac{\pi R_0 B_0 (r_n) (1 - \varepsilon(r_n))}{B_0 r_n \dot{\lambda}(r_n)}, \\
 \dot{\lambda}(r_n) &= \frac{1 - \varepsilon(r_n)}{\sqrt{1 - \varepsilon^2(r_n)}}, \\
 \Xi(r_n) &= \tan \left(\frac{\theta_n}{2} \right) \dot{\lambda}(r_n), \\
 \varepsilon(r_n) &= \frac{r_n - R_0}{R_0}.
\end{align*}
\]

5. Conclusions

Two approaches were used in order to describe the magnetic field line topology caused by EML action on a large aspect-ratio Tokamak. Firstly, we introduce an
invariant flux function to characterize perturbed magnetic surfaces of the equilibrium field. The resonances between the EML and Tokamak fields show up as islands whose dimensions were estimated. Each island is surrounded by a thin layer of stochastic motion, which is enlarged when neighbouring islands approach mutually. A simple criterion to evaluate threshold external currents for peripheral ergodization gives a value quite large when compared to other magnetic divertors. It is better to regard it as an upper bound, rather than an exact value.

The second way to analyse the field line flow is the Poincaré surface of section technique. The impulsive character of the EML action, as supposed in our model, enables us to readily obtain an analytical form for the resulting mapping. A detailed analysis of the dynamical features of this mapping, as well as numerical examples are being completed and will be published elsewhere.

Acknowledgements

The authors were partially supported by CNPq (Brazilian Government Agency).