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Absrract. The magnetic field generated by an infinite 
current grid is a useful result in Tokamak physics, but 
also an interesting electromagnetism problem at the 
undergraduate level. We outline the Solution of the 
boundary value problem in rectangular coordinates and 
comment about the Hamiltonian nature of the magnetic 
field line equations. 

1. Introduction 

In Tokamak confinement research, it is desirable to 
avoid interaction between the plasma column and the 
Tokamak inner wall by means of limiters (Karger 
and Lackner 1977, Engelhardt and Feneberg 1978, 
Feneberg and Wolf 1981). One such device (Belitz 
er a/ 1982) is a ring-shaped grid of thin current con- 
ductors, wound around the torus. The magnetic field 
so generated interacts resonantly with the main 
Tokamak equilibrium field in order to produce (at 
a certain critical condition) a peripheral region of 
stochastic magnetic field. This boundary layer is sup- 
posed to play an important role in the particle and 
heat plasma-wall exchange (Fucbs er 0/1982), so the 
apparatus is commonly called an ergodic limiter. 
It has been successfully used (with a slightly more 
sophisticated design) in real Tokamak experiments, in 
part because of its robustness and simplicity (Ohyahu 
er a/ 1985, McCool et a/ 1989). 

Martin and Taylor (1984) have proposed a theoreti- 
cal model for the ergodic limiter action upon the 
magnetic field lines. They assume, for simplicity, 
a rectangular coordinate system, because: (a) the 
Tokamak is supposed to  have a large aspect ratio, so 
it is possible to neglect toroidal effects. This approxi- 
mation is often used for MHD stability analysis of 
Tokamaks (Bateman 1978); (6) the ergodic limiter 
action is effective only in the Tokamak boundary, 
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minimizing the effect of the poloidal curvature. In 
figure 1 we show the operations which lead to this 
particular geometry. 

In their original paper (Martin and Taylor 1984). 
the authors present a solution for the magnetic field 
generated by such a current configuration. Besides its 
own theoretical interest, it is a fine textbook problem 
for an undergraduate electromagnetism course. We 
have found in standard textbooks only brief mentions 
of this problem (Durand 1959). but through a com- 
plex variable approach, instead of the boundary value 
problem treatment. In the following we detail the 
solution, stressing the Hamiltonian nature of the 
corresponding magnetic field line equations. 

2. Boundary value problem 

The basic geometry is depicted in figure 2. The coor- 
dinates on the x axis correspond to the (rectified) 
poloidal circumference in the real Tokamak. Hence, 
the period for these coordinates is 2nb (where b is the 
Tokamak minor radius). On the y axis we depict the 
radial distance from the torus wall (the zx plane), and 
coordinates on the i axis stand for positions in the 
toroidal direction. Points with y > 0 are located 
inside the Tokamak, whereas y < 0 defines the exter- 
nal medium. As the penetration time of the metallic 
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Figure 1. Operations necessary to obtain a rectangular 
System of coordinates for the Tokamak torus. 

wall is supposed to he vcry small, we can ignore it and 
deal only with vacuum fields. 

The magnetic limiter consists of a grid with m pairs 
of wires conducting a current I in alternate directions, 
such that the separation between two wires is nb/m 
(see figure 3 for a sketch ofthe real limiter shape). In 
order to get a more tractable formulation of the 
problem, we neglect the finite extension of the grid 
and take it as being infinite. Outside the grid there are 
no further current sources, so that V x B = 0 and the 
magnetic field can be written in terms of a magnetic 
scalar potential satisfying a hidimensional Laplace 

Figure 2. Basic geometry of the current grid. 

Y )  

equation: 

Using separation of variables, and considering that 
the effect of the current distribution must vanish far 
from the grid, we can write different solutions for the 
Tokamak (i) and external (e) regions: 

@ ( x , y )  = A'e-"sincu 

P ( x , y )  = A'e''sinux 

The single-valuedness of both solutions in the 
poloidal direction leads to a = N/b ,  where N is a 
positive integer, so that the general solution is a super- 
position of harmonics. The magnetic field com- 
ponefiis <for < 0 and > 0) 

Imposing the continuity of the normal ( y )  com- 
ponent across the interface (namely the plane y = 0) 
we have: 

A b =  -Ah. (4) 

The second boundary condition involves the super- 
ficial current densityj. =!.ez. and reads: 

e, x (E' - F)y-o = bjs ( 5 )  

where the current density on the grid can be simulated 
by a sequence of delta functions: 

Developing the delta function in a Fourier series, 
we pick up the Nth order harmonic of this 
distribution: 

The summation above is l o u d  in standard tables (as 
in Jolley 1965). It gives 2mcos(Nx/b) where N is equal 
to (2p + I )m (where p is a positive integer), and 
vanishes otherwise. Hence the current harmonics 
become equal to: 

The dppliation of cquation ( 5 )  to ticld dnd currcnl 
harmonics detcrminrs the unknoun constants in ( 3 )  

Inside the Tokamak chamber, the magnetic field com- 
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ponents are given by a sequence of p modes: 

4, = 

( I  Ob) 
However, mainly due to the exponential depen- 

dence in (IO), the p = 0 mode has a dominant effect 
upon the other ones, and is usually the only term to 
be retained in the calculations. It is often called pure 
ion mode: 

3. Hamlltonlen approach 

We adopt the so-called cylindrical model for the 
Tokamak (Filonenko et ai 1967), so that the limiter 
field given by ( I  I )  is superposed lo a uniform toroidal 
field in the z direction: B, = B,e,. The magnetic field 
line equations are thus: 

dx/B, = dy/B, = dz/B,. (12) 

ca! equa!icms frnm a Hami!!onian is no! new, Ken! 
The idea of treating this set of equations as canoni- 

(1962) proposed as canonical variables the following 
coordinates (in a rectangular geometry): 

q = x  ( I  3a) 

z being the (rescaled) timelike variable. In this case 
one can rewrite (12) in a canonical form: 

dx/dz = d.%"/ap (144 
dp/dr = - a%/& (1 46) 

where .%" = .X(x,p) is the field line flow Hamiltonian. 
Comparing (12) and (14) we get the following set of 

equations: 

axlap = B, = - E ,  (15) 

which are satisfied by the Hamiltonian: 

1" the cage nfeqoa!ion (! 
As the number of degrees of freedom matches the 

number of integrals of motion (actually there is only 
one, namely the Hamiltonian), this system is said lo 
be integrable, in the Liouville sense. However, in the 
real Tokamak case, the current grid has a finite exten- 
sion, supposed to be small when compared with the 

Figure 3. Current grid design for a Tokamak 
experiment. 

torus dimensions. So, even neglecting border effects, 
one i s  faced with an explicit z dependence in the 
Hamiltonian, which destroys the integrability pro- 
perty and allows a more complicated dynamics, where 
it is possible (and even desirable, as in the case of the 
ergodic limiter) to find chaotic behaviour in the mag- 
netic field line flow (Martin and Taylor 1984). 

This fact suggests that it is possible lo use, at least 
in principle, the Hamiltonian ( I  6) as a finite extension 
perturbation, acting upon an equilibrium Tokamak 
Hamiltonian .V0. The latter invariant is already 
known in the plasma literature (Fernandes er U /  1988). 
The standard perturbation theory is applicable to this 
combination, and quantitative predictions about the 
magnetic field line dynamics could be available. We 
are pursuing this task and results will be published 
elsewhere (Viana and Caldas 1991). 
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