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Abstract We analyse the effects of the Stochastic Analytic Regularieation method on 
the gauge invariance, computing the vacuum polarieation tensor for spinor QED in one-loop 

order. Consequences in the non-abelian and supersymmetric cases are discussed. 

1. Introduction 

Some years ago, Parisi and Wul developed a new original method to deal with 

Euclidean field theories in the continuum: the so-called Stochastic Quantization 

method (SQM). One of the most important features of SQM is a new regulariza- 

tion scheme which resembles the Analytic Regularization method2. We will cal1 

it Analytic Stochastic Regularization (ASR)3.4. There was some evidence that 

ASR could preserve a11 physical symmetries, like gauge invariance, in a given field 

theory. However, the validity of this statement has been questioned. Recently, the 

ASR method was used to verify the breaking of gauge symmetry for abelian and 

non-abelian scalar gauge theories in four dimensions5. We extended the analysis 

to theories containing spin 112 fermions. 
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The paper is organized as follows: in section 2 we outline the basics of SQM 

and the necessary tools to include fermions in the formalism. In section 3 the ASR 

scheme is quickly reviewed, and in the subsequent section we apply ASR to Spinor 

QED. We calculate the one-loop correction to the photon propagator showing the 

breaking of gauge invariance induced by ASR. The physical consequences and 

further developments are discussed in the last section. 

2. A survey of stochastic quantization 

The cornerstone of the SQM6 is the well-known formal analogy between Eu- 

clidean field theory and classical statistical mechanics. In the Euclidean n-point 

Green function, one can associate the functional exp(-S[d]/h) to the equilibrium 

distribution for a statistical system. In SQM we consider this system as performing 

a stochastic process. 

In order to study the evolution of the system, the classical field is endowed 

with an additional parameter, here called ficticious time r .  Moreover, the stochas- 

tic dynamics may be described by a Langevin equation. For the simple case of a 

boson field with Euclidean action S[d] this equations reads 

where ~ ( x ,  r )  is the (white) noise field, whose correlations are given by 

Higher noise correlations are obtained by a Wick decomposition. 

The n-point correlation furictions, in the stationary limit (equal and large fic- 

ticious times), reduce to the Euclidean Green functions. Perturbative calculations 

using SQM consist in: 

(i) a choice of initial conditions for the Langevin equation so that it can be 

rewritten in an integral form; 
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(ii) solving the resulting integral equation by iterative procedures, in powers 

of the coupling constant; 

(iii) a graphical convention: we assign full lines to propagators and crosses to 

noises. Vertices are linked to coupling constants as in usual field theories; 

(iv) joining these tree expansions we obtain n-point correlation functions. 

Crosses are fused in accordance with their white noise properties, so we need to 

consider a11 possible contractions. 

(v) in these (stochastic) diagrams, lines containing fused crosses describe com- 

posite or crossed propagators. 

We will exemplify matters directly with fermion fields, although some remarks 

must be made for the sake of completeness. Stochastic Quantization of fermions 

is a non-trivial matter, because there is no classical analog for anticommuting 

variables. In fact, by means of a direct approach one is lead to non-positive 

operators and ill-defined probability distributions (in the sense of the equivalent 

Fokker-Planck equation). The most accepted prescription to circumvent these 

problems is the introduction of a kernel Kij into the Langevin e9uation7. 

The noise correlations are also changed, giving 

where v is a Grassmann noise. 

The Langevin equation for free spin 112 fermions, whose Euclidean action is 

SI*, $1 = -i / d4zdr*(z,r)(p + iM)+(z, 7 )  (2.5) 

is obtained with use of a Dirac kernel 

and reads as a boson-like expression 
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together with its conjugate counterpart. 

With a suitable choice of initial conditions for the above equation, and the 

help of the Green function (in momentum space) 

GF (k; r - 7')ij = si, exp(-(k2 + M 2)( r  - r1))8(r - 8 )  (2.8) 

the integral form of eq. (2.7) is written as 

$, (k, r )  = / ~ T ' G F  (k; T - r')i ,V,  (k, r') (2.9) 

The convolution of eq.(2.9) - also called uncrossed propagator - and the Dirac 

kernel yields a fermionic Green function. 

r i j(k;  r - r') = (- ,k -b M),, exp(-(k2 + M 2 ) ( r  - r1))8(7 - r') (2.10) 

3. Stochastic analytic regularization 

The stochastic processes described up to now are Markovian, due to their 

white noise properties. Breit, Gupta and Zakss introduced a non-Markovian el- 

ement, smearing the delta function which involves the ficticious time, using a 

parameter-dependent regulator function. Alfaro

Q 

took the Mellin transform of the 

Gupta regulator and found a, different function, which we adopt 

f,(7) = € 1 ~ 1 ( - ~  

and whose Fourier-transformed expression is 
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where 
Ir i. = ar(r) sin [?(I - E ) ]  

The (non-white) noise correlations are 

< qi(z,r)qj(d,rt)  = Kij(x,zt)f,(r - r') (3.4) 

When the regulator parameter (in Alfaro's case) approaches zero one recovers 

the unregularized theory, i.e. 

lim f, (r - r') = 28(r - r') 
c- o (3.5) 

Equation (3.1) enables us to compute the 2-point fermionic correlation func- 

tion, whose lowest order contribution gives the crossed propagator (in momentum 

sp-) 

Aij(k; r, r') =< (k, r)$j (-k, r') > (3 -6) 

Using eqs. (2.8), (2.9) and (3.3) we obtain 

An outstanding feature of the ASR method is that one is led to meromorphic 

amplitudes for stochastic diagrams, i.e., the ultraviolet divergences show up as 

poles in 6, like in Analytic Regularization2. 

In order to calculate stochastic amplitudes in gauge theories we need expres- 

sions for uncrossed and crossed gauge field propagators as well. In the Feynman 

gauge, they are'' 
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and 

respectively. In fig. 1  our graphical conventions for fermion and gauge field prop- 

agators are depicted. 

Fig.1- Fermion and Gauge Field Propagators. 

4. Vacuum polarization tensor in spinor electrodynamics 

With the Feynman rules shown in the preceding section, we are able to per- 

form loop computations in spinor QED whose Euclidean action is 

1 
s [ A , , $ , ~ ]  = d4sdr [ i ~ p , ,  F,. - id(P - ie ,h + i ~ ) + ]  (4.1) 

The related Langevin equations are (T stands for matrix transposition) 

208 
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a$i 
a7 - = -[(P - iM) (P+ iM)], + vi 

% = -a.~,.. + e$%$ + v, 
ar 

where D, is the usual slashed covariant derivative and 

The commuting ( r ] )  and anticommuting ( v )  noises obey regularized correlations 

(3.4). 

Due to an inherent shortcoming of the SQM method, namely the lack of 

a Noether's theorem approach, we are forced to deal with indirect methods to 

study physical symmetries, specially gauge invariance. A common way to do it 

is computing the mass correction to photon propagator. In this sense, the non- 

transversality of the latter implies a breaking in gauge invariance induced by this 

regularization prescription (ASR). 

Thus, we calculate the vacuum polarization tensor at one loop order. We 

show the relevant diagrams in fig. 2. As the ultraviole divergences occur as simple 

poles in 6, the approximation 

suffices for crossed propagators. Vertices in this stochastically quantized theory are 

of the same type as that appearing in conventionally quantized one (in Euclidean 

space) . 
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Fig.2 - Diagrama with one and two internal crossed lines for the calculation 

of vacuum polarization. 

Using the standard rules for diagrarnmatic calculations in SQM", we find for 

the contribution (G - 1) (we attach a factor two due to the different orderings of 

internal ficticious times) 

The diagrams (G - 2) and (G - 3) are topologically similar and one can add 

them, with an overaI1 combinatorial factor, giving (more details of the algebra are 

found in the appendix) 
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8 
-6,, ( M 2  + k2 + k .p )  + 2k ,  k ,  + pu k ,  + p, k ,  

[ ( k  + P ) ~  + M 2 ] l + e ( p 2  + k2 + k .p  + M 2 )  (4.9) . 
These integrals are very difficult to evaluate in a closed form. Although we 

may obtain some exact results in two dimensions, it seems more interesting to 

use an expansion, removing the divergent (and perhaps finite) terms from the 

expressions. 

This is possible because of the analiticity of the polarization tensor for large 

m a s .  Hence re rescale the loop momentum k -t M k  and expand the thoublesome 

integrand in powers of k / M  until the order which shows dívergent pieces, Le., until 

one isolates the poles. Further terms in this expansion are finite. 

We apply this procedure to the integrals above, getting (see appendix) 

such that the polarization tensor reads (for its divergent piece) 

d i v  1 i ~ 2 6 ~ u  P&Pu 
r,, (P) = --- - - 9 6 ã 2 c  127r2 E 

which is clearly non-transverse due to the double-crossed diagram (G - 1 ) .  It is 

half the necessary value - notice that 2(G - 1) + (G - 2) + (G - 3) is transverse - 
in the sense of dimensional regularization (with analytically continued dimension 
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D = 4 - 2c). The other two diagrams are equal to the dimensionally regularized 

ones. 

5. Conclusions 

At first sight, any regularization scheme which involves a ficticious time vari- 

able would respect physical symmetries. Our results, however, show that  there is 

an over-simplification in these beliefs. Aithoug a certain choice of regulator could 

keep gauge invariance, as shown by Gavela and Huffel12 (who had studied spinor 

QED by means of a Gupta-type regulator), other possibilities will no longer give 

the same result. We proved this latter statement using the Alfaro regulator, up to 

one-loop order, which means a perturbative breaking of gauge invariance induced 

by a specific regulator function. 

In recent papersl3!l4, dealing with abelian as well as non-abelian scalar gauge 

theories in the context of ASR, this breaking has been observed many times. 

Surprisingly, even when a Gupta regulator is applied in apure  non-abelian theory15 

there is some trouble with gauge invariance. The question of whether this or that 

regulator furnishes non-gauge invariant corrections to a gauge field remains open, 

in our opinion. 

On the other hand, as a byproduct of our calculations, we found evidence 

that the ASR scheme can work nicely in some supersymmetrical models16. A 

comparison between results already found for scalar non-abelian theories with 

spinor ones show that the contribution (G-1), given by eq.(4.10) is minus twice the 

corresponding bosonic value. This fact indicates that ASR would be a reasonable 

method to regularize supersymmetric theories, because the problematic bosonic 

and fermionic contributions cancel in some multiplets, namely: 

(i) The coupling of a gauge field with a supersymmetric matter multiplied 

(two bosonic charged fields arid one Dirac field); 

(ii) The case of N = 1 supersymmetric Yang Mills theory with one Majorana 

fermion in the adjoint representation. The scalar matter contribution is given by 

the non-abelian self-interaction. 
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Appendix 

In this appendix, we show the intermediate steps necessary to write down t ly  

stochastic amplitudes associated with the diagrams (G - 2) + (G - 3). In order to 

integrate over the ficticious interna1 times, we adopt the ordering 

< r2 < T: = r i  = finite ficticious time 

because we start our Langevin process with T -+ -00. 

Using the Feynman rules (fig.l), we rewrite eq.(4.8) as (we take e = 1) 

c3 
exp(-p2 (r  - T;) - (k2 + M2)(r; - ~ ; ) ) T r [ 7 ~  (- A- ,b + M)rv  (- ,k + M)] 

(p2)l+<[(k + p)2 + M2]l+t 

( A 4  

The trace in the above expression is computed using the Euclidean Clifford 

algebra 

so that we obtain eq. (4.9). 

We may substitute k + -k - p and obtain an expression in powers of the 

externa1 momenta, as follows 
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giving twelve momentum integrals which to be evaluated, whose sum is eq. (4.11). 
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Resumo 

Analisamos os efeitos do método de Regularização Analítica estocástica sobre a invariança 

de calibre, calculando o tensor de polarização do vácuo em QED espinorial, em ordem de 1 loop. 

As consequências nos casos não abeliano e supersimétrico são discutidos. 


