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9 Gravity 
   Conceptual Physics Instructor’s Manual, 12th Edition 
 
  9.1  The Universal Law of Gravity 
  9.2  The Universal Gravitation Constant, G 
  9.3  Gravity and Distance: The Inverse-Square Law 
  9.4  Weight and Weightlessness 
  9.5  Ocean Tides 
    Tides in Earth and Atmosphere 
    Tidal Bulges on the Moon 
  9.6  Gravitational Fields 
          Gravitational Field Inside a Planet 
     Einstein’s Theory of Gravitation 
  9.7  Black Holes 
  9.8  Universal Gravitation 

 
Dutch friend Ed Van den Berg uses balls to pose questions about the inverse-square law in the opening 
photo to this chapter. I am still moved by photos of astronauts performing space walks! Photo 3 shows Eric 
Mazur engaging students in class. When engagement occurs between professor and student, learning can 
occur. Without this engagement, likely less learning occurs. Hats off to Eric! Tomas Brage, physics 
department head at Lund University in Sweden shows a version of the Cavendish apparatus to measure G.  
 
The personality profile is of Eric Mazur.  
 
This chapter begins with a historical approach and ends on an astronomical theme. It offers a good place to 
reiterate the idea of a scientific theory, and comment on the all-too common and mistaken idea that because 
something has the status of scientific theory, it is somehow short of being valid. This view is evident in 
those who say, “But it’s only a theory.” Bring the essence of the first and last footnotes in the chapter into 
your discussion (about scientific homework and being unable to see radically new ways of viewing the 
world). The last chapter on Cargo Cult Science of Feynman’s book, Surely You’re Joking Mr. Feynman 
(Norton, 1985), expands nicely on this. (When I first read this delightful book I allowed myself only one 
chapter per day—to extend the pleasure. It’s THAT good!) 
 
Kepler’s 3rd law follows logically from Newton’s law of gravitation. Equate the force of gravity between 
planet m and the Sun M to the centripetal force on m. Then, 
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where the speed of the planet is 2 per period T. Cancel and collect terms, 
 

 GM

4 2    
r3

T 2
 

 
This is Kepler’s 3d law, for GM/42 is a constant. 
 
The idea of the force field is introduced in this chapter and is a good background for the electric field 
treated later in Chapter 22. The gravitational field here is applied to regions outside as well as inside the 
Earth. 
 
In the text I say without explanation that the gravitational field increases linearly with radial distance inside 
a planet of uniform density. Figure 9.24 shows that the field increases linearly from zero at its center to 
maximum at the surface. This is also without explanation. The text states that “perhaps your instructor will 
provide the explanation.” Here it is: We know that the gravitational force F between a particle m and a 
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spherical mass M, when m is outside M is simply F = GmMd2. But when m is inside a 
uniform density solid sphere of mass M, the force on m is due only to the mass M´ 
contained within the sphere of radius r < R, represented by the dotted line in the figure. 
Contributions from the shell > r cancel out (Figure 9.25, and again for the analogous case 
of the electric field in Figure 22.20, later in the book). So, F = GmM´r2. From the ratio of 
M´M, you can show that M´ = Mr3R3. [That is, M´M = V´V = (43 πr3)(43 πR3) = r3R3.] 
Substitute M´ in Newton’s equation for gravitation and we get F = GmMrR3. All terms on 
the right are constant except r. So F = kr; force is linearly proportional to radial distance when r < R. 
 
Interestingly enough, the condition for simple harmonic motion is that the restoring force be proportional to 
displacement, F = kr. Hence the simple harmonic motion of one who falls in the tunnel through the Earth. 
(Hence also the simple harmonic motion of one who slides without friction to-and-fro along any straight 
line tunnel through any part of the Earth. The displacement is then the component r sin .) The period of 
simple harmonic motion, T = 2π√(R3GM) is the same as that of a satellite in close circular orbit about the 
Earth. Note that it is independent of the length of the tunnel. I treat falling through a vertical tunnel in the 
screencast Tunnel Through Earth. 
 
You can compare the pull of the Moon that is exerted on you with the pull exerted by more local masses, 
via the gravitational equation. Consider the ratio of the mass of the Moon to its distance squared: 
 
 7.4  1022 kg(4 105 km)2 = 5  1012 kgkm2. 
 
This is a sizeable ratio, one that buildings in your vicinity cannot match. (City buildings of greatest mass 
are typically on the order of 106 or 107 kilograms.) However, if you stand 1 kilometer away from 
the foot of a mountain of mass 5 x 1012 kilograms (about the mass of Mount Kilimanjaro), then the pull of 
the mountain and the pull of the Moon are about the same on you. Simply put, with no friction you would 
tend to gravitate from your spot toward the mountain—but you experience no tendency at all to gravitate 
from your spot toward the Moon! That’s because the spot you stand on undergoes the same gravitational 
acceleration toward the Moon as you do. Both you and the whole Earth are accelerating toward the Moon. 
Whatever the lunar force on you, it has no tendency to pull you off a weighing scale—which is the essence 
of Think and Discuss 97 and 98. This is not an easy notion to grasp—at first. 
 
Not covered in this edition is the inverse-cube nature of tidal forces. This follows from subtracting the tidal 
force on the far side of a body from the tidal force on the near side. Consider a kilogram of water on the 
side of the Earth nearest the Moon that is gravitationally attracted to the Moon with a greater force than a 
kilogram of water on the side of the Earth farthest from the Moon. The difference in force per kilogram of 
mass, ∆Fm, which we’ll call the tidal force TF is 
 
 TF = Fd+R - Fd-R 
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where M is the Moon’s mass, (d+R) is the distance to the far side of Earth, (d-R) is the distance to the near 
side. 
 
 
 
 
 
When d is very much greater than R, the (d2-R2)2 is very nearly equal to d4. Then the inverse-cube nature of 
tidal force is evident, for 
 

 TF ~ 4GMR

d3
 . 
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Some interesting results occur when calculating the tidal force of the Moon on planet 
Earth. TF is 2.2  10-6 N/kg. In contrast TF of an overhead Moon on a person on Earth 
is 3  10-13 N/kg, a hundred million times weaker because of the tiny differences in 
pulls across the body. The tidal force of the Earth on the same person is 6  10-6 N/kg, 
more than the Moon’s influence. And as the text reports, the tidal force due to a 1-kg 
mass held 1 m above your head is about 200 times as much effective as the Moon! 
Have those who believe the tidal effects of planets influence people make the 
calculations themselves. 
 
A brief treatment of black holes is included in this chapter. The idea that light is influenced by a 
gravitational field isn’t treated until Chapter 36, so may merit further explanation. You’ll probably want to 
acknowledge that light bends in a gravitational field as does a thrown baseball. We say light travels in 
straight lines much for the same reason that some people say that a high-speed bullet doesn’t curve 
downward in the first part of its trajectory. Over short distances the bullet doesn’t appear to drop only 
because of its high speed and the short time involved. Likewise for light’s speed, which we don’t notice 
because of the vast distance it travels in the brief time it’s in the strong part of Earth’s gravitational field. 
Look ahead to the treatment of this idea in Figure 36.6.  
 
Black holes at the center of galaxies are bigger than those found in binary star systems. The biggest 
recently reported galactic black holes have equivalent masses of some 10 to 40 billion Suns. 
 
Dark matter is briefly mentioned in this chapter and is discussed in Chapter 11. Present consensus among 
astrophysicists is that dark energy is working against the force of gravity to accelerate the expansion of the 
universe. These findings downplay the oscillating universe scenario speculated about in the earlier editions 
of this text (although there remains speculation that the present outward acceleration may change to rapid 
deceleration and lead to a Big Crunch). The concepts of dark matter and dark energy are at the forefront of 
physics at this point, and are quite mysterious. Dark matter is out of sight, but not out of mind. 
 
This chapter is prerequisite to the following chapter on satellite motion. It also provides useful background 
information for Chapter 22 (the inverse-square law, and the analogy between a gravitational and electric 
field) and Chapter 36 (general relativity). This chapter may be skipped without complicating the treatment 
of material in Chapters other than 22 and 36. It’s an especially interesting chapter because the material is 
high interest, historical, quite understandable, and closely related to areas of space science that are currently 
in the public eye. 
 
 
Practicing Physics Book: 
• Inverse-Square Law     • Our Ocean Tides 
 
Problem Solving Book: 
Some 30 problems 
  
Laboratory Manual: 
No labs for this chapter  
 
Next-Time Questions: 
• Earth-Moon Cable • Giant Plane 
• Moon Tides • Body Tide 
• Solar Black Hole • Gravity Force on Shuttle 
• Earth Rise               • Weight 
• Normal Force and Weight 
 
Hewitt-Drew-It! Screencasts:  
• Weight/Weightlessness • Tunnel Through Earth 
• Gravity  • Ocean Tides 
• Gravity Inside Earth  
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SUGGESTED LECTURE PRESENTATION 
 
Begin by briefly discussing the simple codes and patterns that underlie the complex things around us, 
whether musical compositions or DNA molecules, and then briefly describe the harmonious motion of the 
solar system, the Milky Way and other galaxies in the universe—stating that the shapes of the planets, 
stars, and galaxies, and their motions are all governed by an extremely simple code, or if you will, a 
pattern. Then write the gravitational equation on the board. Give examples of bodies pulling on each other 
to convey a clear idea of what the symbols in the equation mean and how they relate. (Acknowledge that 
many other texts and references use the symbol r instead of the d in this text. The r is used to indicate the 
radial distance from a body’s CG, and to emphasize the center-to-center rather than surface-to-surface 
nature for distance, and to prepare for r as a displacement vector. We don’t set our plow that deep, 
however, and use d for distance.) 
 
Inverse-Square Law 
Discuss the inverse-square law and go over Figures 9.5 and 9.6 or their equivalents with candlelight or 
radioactivity. 
 
Plot to scale an inverse-square curve on the board, showing the steepness of the curve—14, 19, and 116, for 
twice, three times, and four times the separation distance. This is indicated in Figures 9.5 and 9.6. (You 
may return to the curve of Figure 9.6 when you explain tides.) 
 

CHECK QUESTIONS: A photosensitive surface is exposed to a point source of light that is a 
certain distance away. If the surface were instead exposed to the same light four times as far away, 
how would the intensity upon it compare? A radioactive detector registers a certain amount of 
radioactivity when it is a certain distance away from a small piece of uranium. If the detector is 
four times as far from the uranium, how will the radioactivity reading compare? 

 
CHECK QUESTIONS: How is the gravitational force between a pair of planets altered when one 
of the planets is twice as massive? When both are twice as massive? When they are twice as far 
apart? When they are three times as far apart? Ten times as far apart? [The screencast on Gravity 
explains this.] 
 
CHECK QUESTION: What do you say to a furniture mover who claims that gravity increases 
with increased distance from the Earth, as evident to him when he’s carrying heavy loads up 
flights of stairs? 

 
Weight and Weightlessness  
Note that we define weight as a support force. Even in a gravity-free region inside a rotating toroid, you’d 
experience weight. So weight needn’t always be related to gravity. Discuss weightlessness and relate it to 
the queasy feeling your students experience when in a car that goes too fast over the top of a hill. State that 
this feeling is what an astronaut is confronted with all the time in orbit! Ask how many of your class would 
still welcome the opportunity to take a field trip to Cape Canaveral and take a ride aboard an orbiting 
vehicle. What an exciting prospect! 
 
A marvelous space station called Skylab was in orbit in the 1970s. When it underwent unavoidable orbital 
decay the space shuttle was not yet in operation to give it the boost it needed to keep it in orbit. Quite 
unfortunate. But fortunately, there is movie footage of antics of astronauts aboard Skylab. The NASA film 
is “Zero g,” which I showed every semester in my classes. It not only is fascinating in its shots of astronaut 
acrobatics in the orbiting lab, but illustrates Newton’s laws as they apply to intriguing situations. The film 
shows the good sense of humor of the astronauts. A must! Also check out the screencast on Weight/ 
Weightlessness.  
 
Discuss the differences in a baseball game on the Moon, and your favorite gravity-related topics. 
 
Tides: Begin your treatment of tides by asking the class to consider the consequences of someone pulling 
your coat. If they pulled only on the sleeve, for example, it would tear. But if every part of your coat were 
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pulled equally, it and you would accelerate—but it wouldn’t tear. It tears when one part is pulled harder 
than another—or it tears because of a difference in forces acting on the coat. In a similar way, the spherical 
Earth is “torn” into an elliptical shape by differences in gravitational forces by the Moon and Sun. 
 

CHECK QUESTION: Why do the tides not occur at the same time each day? [As the Earth takes 
24 hours to rotate, the Moon advances in its orbit one hour ahead of the Earth. If the Moon didn’t 
move in its orbit, the high-tide bulge would be at the same time each day as the Earth spins 
beneath the water.] 

 
Misconceptions About the Moon: This is an appropriate place for you to dispel two popular misconceptions 
about the Moon. One is that since one side of the Moon’s face is “frozen” to the Earth it doesn’t spin like a 
top about its polar axis; and two, that the crescent shape commonly seen is not the Earth’s shadow. To 
convince your class that the Moon spins about its polar axis, simulate the situation by holding your eraser at 
arms length in front of your face. Tell your class that the eraser represents the Moon and your head 
represents the Earth. Rotate slowly keeping one face of the eraser in your view. Call attention to the class 
that from your frame of reference, the eraser doesn’t spin 
as it rotates about you—as evidenced by your observation 
of only one face, with the backside hidden. But your 
students occupy the frame of reference of the stars. (Each 
of them is a star.) From their point of view they can see all 
sides of the eraser as it rotates because it spins about its 
own axis as often as it rotates about your head. Show them 
how the eraser, if not slowly spinning and rotationally 
frozen with one face always facing the same stars, would show all of its sides to you as it circles around 
you. See one face, then wait 14 days later and the backside is in your view. The Moon’s spin rate is the 
same as its rotational rate . 
 
Misconception 2: Draw a half moon on the board. The shadow is along the diameter and is perfectly 
straight. If that were the shadow of the Earth, then the Earth would have to be flat, or be a big block shape! 
Discuss playing “flashlight tag” with a suspended basketball in a dark room that is illuminated by a 
flashlight in various locations. Ask your class if they could estimate the location of the flashlight by only 
looking at the illumination of the ball. Likewise with the Moon illuminated by the Sun! 
 
Sketch the picture on the right on the board and 
ask what is wrong with it.  
 
[Answer: The Moon is in a daytime position as 
evidenced by the upper part of the Moon being 
illuminated. This means the Sun must be above. 
Dispel notions that the crescent shape of the 
Moon is a partial eclipse by considering a half 
moon and the shape of the Earth to cast such a 
shadow.] 
 
 
Back to Tides 
Explain tides via the accelerating ball of Jell-O as in Figure 9.14. Equal 
pulls result in an undistorted ball as it accelerates, but unequal pulls 
cause a stretching. This stretching is evident in the Earth’s oceans, 
where the side nearest the Moon is appreciably closer to the Moon than 
the side farthest away. Carefully draw Figure 9.16 on the board, which 
explains why closeness is so important for tides. The figure shows that 
the magnitude of F rather than F itself is responsible for tidal effects. 
Hence the greater attraction of the distant Sun produces only a small 
difference in pulls on the Earth, and compared to the Moon makes a small 
contribution to the tides on Earth. 
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Explain why the highest high tides occur when the Earth, Moon, and Sun are aligned—at the time of a new 
and a full Moon. 
 
Discuss tides in the molten Earth and in the atmosphere. 
 
Amplify Figure 9.16 with a comparison of Fs for both the Sun and the Moon as sketched at the upper 
right.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly F is smaller for the larger but farther Sun. 
 
The text treats tides in terms of forces rather than fields. In terms of the latter, tidal forces are related to 
differences in gravitational field strengths across a body, and occur only for bodies in a nonuniform 
gravitational field. The gravitational fields of the Earth, Moon, and Sun, for example, are inverse-square 
fields—stronger near them than farther away. The Moon obviously experiences tidal forces because the 
near part to us is in a stronger part of the Earth’s gravitational field than the far part. But even an astronaut 
in an orbiting space shuttle strictly speaking experiences tidal forces because parts of her body are closer to 
the Earth than other parts. This tidal force, the difference between the forces on near and far parts of her 
body, follow an inverse-cube law (in this manual as derived earlier). The micro differences produce 
microtides. Farther away in deep space, the differences are less. Put another way, the Earth’s gravitational 
field is more uniform farther away. The “deepness” of a deep-space location can in fact be defined in terms 
of the amount of microtides experienced by a body there. Or equivalently, by the uniformity of any 
gravitational field there. There are no microtides in a body located in a strictly uniform gravitational field. 
 
If there are microtides of an astronaut in orbit, would such microtides are even greater on the Earth’s 
surface? The answer is yes. This brings up Exercise 42 that concerns biological tides. Interestingly enough, 
microtides in human bodies are popularly attributed to not the Earth, but the Moon. This is because popular 
knowledge cites that the Moon raises the ocean an average of 1 meter each 12 hours. Point out that the 
reason the tides are “stretched” by 1 meter is because part of that water is an Earth diameter closer to the 
Moon than the other part. In terms of fields, the near part of the Earth is in an appreciably stronger part of 
the Moon’s gravitational field than the far part. To the extent that part of our bodies are closer to the Moon 
than other parts, there would be lunar microtides—but enormously smaller than the microtides produced by 
not only the Earth, but massive objects in one’s vicinity. 
 
Is there a way to distinguish between a gravity-free region and orbital free-fall inside the International 
Space Station? The answer is yes. Consider a pair of objects placed side by side. If the ISS were floating in 
a gravity-free region, the two objects would remain as placed over time. Since the ISS orbits the Earth, 
however, each object is in its own orbit about the Earth’s center, in its own orbital plane. All orbital planes 
pass through the center of the Earth and intersect, which means that depending on the proximity of the 
objects, they may collide by the time the ISS makes a quarter orbit—a little more than 23 minutes! If the 
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pair of objects are placed one in front of the other, with respect to their direction of motion, there will be no 
such effect since they follow the same orbital path in the same orbital plane. If the objects are one above the 
other, one farther from Earth, they will migrate in seemingly strange ways relative to each other because 
they are in distinct orbits with different PEs. Gravity makes itself present to astronauts by secondary effects 
that are not directly related to weight. See the “Bob Biker” Practice Pages 49 and 50 for Chapter 8. 
 

CHECK QUESTION: Consider the tiny tidal forces that DO act on our bodies, as a result of parts 
of our bodies experiencing slightly different gravitational forces. What planetary body is most 
responsible for microtides in our bodies? [The Earth, by far. When we are standing, there is a 
greater difference in Earth gravity on our feet compared to our heads than the corresponding 
differences in gravity due to farther away planetary bodies.] 

 
Simulated Gravity in Space Habitats 
The tallness of people in outer space compared to the radius of their rotating space habitats is very 
important. A gravitational gradient is appreciable in a relatively small structure. If the rim speed is such 
that the feet are at Earth-normal one g, and the head is at the hub, then the gravitational gradient is a full 1-
g. If the head is halfway to the hub, then the gradient is 12-g, and so forth. Simulated gravity is directly 
proportional to the radius. To achieve a comfortable 1100-g gradient, the radius of the structure must be 100 
times that of one’s height. Hence the designs of large structures that rotate to produce Earth-normal gravity. 
 
Tidal forces reach an extreme in the case of a black hole. The unfortunate fate of an astronaut falling into a 
black hole is not encountering the singularity, but the tidal forces encountered far before getting that close. 
Approaching feet first, for example, his closer feet would be pulled with a greater force than his 
midsection, which in turn would be pulled with a greater force than his head. The tidal forces would stretch 
him and he would be killed before these forces literally pulled him apart.  
 
Gravitational Fields  
Introduce the idea of forcemass for a body, and the gravitational force field. Relate the gravitational field 
to the more visible magnetic field as seen via iron filings (Look ahead to Figures 24.2 and 22.4). Since the 
field strength of the gravitational field is simply the ratio of force per mass, it behaves as force—it follows 
an inverse-square relationship with distance. Pair this with student viewing of my screencast on Earth’s 
Gravity, where the field strength inside a planet is treated. Follow this with Tunnel Through Earth. 
 
It’s easy to convince your students that the gravitational force on a body located at the exact center of the 
tunnel would be zero—a chalkboard sketch showing a few symmetrical force vectors will do this. Hence 
the gravitational field at the Earth’s center is zero. Then consider the magnitude of force the body would 
experience between the center of the Earth and the surface. A few more carefully drawn vectors will show 
that the forces don’t cancel to zero. The gravitational field is between zero and the value at the surface. 
You’d like to easily show that it’s half for an Earth of uniform density, to establish the linear part of the 
graph of Figure 9.24. Careful judgment should be exercised at this point. For most classes I would think the 
geometrical explanation would constitute “information overload” and it would be best to simply say “It can 
be shown by geometry that halfway to the center the field is half that at the surface…” and get on with your 
lecture. For highly motivated students it may be best to develop the geometrical explanation (given earlier 
in this manual). Then the pedagogical question is raised; how many students profit from your display of the 
derivation and how many will not? 
 
Class time might better be spent on speculating further about the hole drilled through the Earth. Show with 
the motion of your hand how if somebody fell in such a tunnel they would undergo simple harmonic 
motion—and that this motion keeps perfect pace with a satellite in close circular orbit about the Earth. The 
time for orbit, nearly 90 minutes, is the time to make a to and fro trip in the tunnel. Consider going further 
and explain how ideally the period of oscillation of a body traveling in such a tunnel under the influence of 
only gravity would be the same for any straight tunnel—whether from New York to Australia, or from New 
York to Hawaii or China. You can support this with the analogy of a pendulum that swings through 
different amplitudes with the same period. In non-vertical tunnels, of course, the object must slide rather 
than drop without friction. But the period is the same, and timetables for travel in this way would be quite 
simple; any one-way trip would take nearly 45 minutes. See the screencast Tunnel Through Earth. 
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Gravitational Field Inside a Hollow Planet 
Consider the case of a body at the center of a completely hollow planet. Again, the field at the center is 
zero. Then show that the field everywhere inside is zero—by careful 
explanation of the following sketch. [Consider sample point P, twice as 
far from side A than side B. A solid cone defines area A and area B. 
Careful thought shows A has 4 times the area of B, and therefore has 4 
times as much mass as B. That would mean 4 times as much 
gravitational pull, but being twice as far has only 14 as much pull. 14 of 
4 gives the same gravitational pull as the pull toward B. So the forces 
cancel out (as they of course do in the center). The forces cancel 
everywhere inside the shell provided it is of uniform composition. If you 
stress this material (which will likely be on the heavy-duty side for 
many students) the following Check Question will measure the worth of 
your lecture effort.]  
 

CHECK QUESTION: Sketch a graph similar to that in Figure 9.24 to represent the gravitational 
field inside and outside a hollow sphere. (The graphical answers should look like the following: A 
thin shelled planet is on the left, a thick shelled one is on the right.) 

 
 
 
 
 
 
Speculate about the living conditions of a civilization inside a hollow planet. Expanding on Exercise 54 that 
considers a hollow planet, consider what happens to the g field inside when a massive spaceship lands on 
the outside surface of the hollow planet. The situation is interesting! 
 
Black Holes  
Begin by considering an indestructible person standing on a star, as in Figure 9.27. Write the gravitational 
equation next to your sketch of the person on the star, and show how only the radius changes in the 
equation as the star shrinks, and how the force therefore increases. Stress that the force on the person who 
is able to remain at distance R as the star shrinks experiences no change in force—the field there is constant 
as the star shrinks, even to a black hole. It is near the shrinking surface where the huge fields exist. 
 

CHECK QUESTION: Consider a satellite companion to a star that collapses to become a black 
hole. How will the orbit of the companion satellite be affected by the star’s transformation to a 
black hole? [Answer is not at all. No terms in the gravitation equation change. What does happen, 
though, is that matter streams from the visible star to the black hole companion, emitting x-rays as 
it accelerates toward the black hole, providing evidence of its existence.] 

 
Cosmological Constant 
It was long believed that gravity is only attractive. Newton worried that it would cause the universe to 
collapse and assumed God kept that from happening. Einstein sought a natural explanation and added a 
constant term to his gravity equation to give a repulsion to stabilize the universe. This was term called the 
cosmological constant. A few years later, after discovery that the universe is expanding, Einstein dropped 
it, calling it his “biggest blunder.” However, in 1998 it was discovered that the expansion of the universe is 
accelerating under the action of some yet unidentified energy field called dark energy, which carries about 
68 percent of the energy and mass of the universe. The cosmological constant is thought to be the source of 
the dark energy. However, calculations give a result that is fifty orders of magnitude greater than what is 
observed. This “cosmological constant problem” is one of the biggest unanswered questions in physics. 
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Answers and Solutions for Chapter 9  
 
Reading Check Questions 
1. Newton discovered that gravity is universal. 
2. The Newtonian synthesis is the union between terrestrial laws and cosmic laws. 
3. The Moon falls away from the straight line it would follow if there were no gravitational force acting on it. 
4. Every body in the universe attracts every other body with a force that, for two bodies, is directly 

proportional to the product of their masses and inversely proportional to the square of the distance 
between their centers: 

  
F  G

m1m 2

d
2

 

5. The gravitational force between is 6  10-11 N. 
6. The gravitational force is about 10 N, or more accurately, 9.8 N. 
7. Actually the mass of Earth could then be calculated, but calling it “weighing of Earth” seemed more 

dramatic. 
8. The force of gravity is one-fourth as much. 
9. Thickness is one-fourth as much. 

10. You’re closer to Earth’s center at Death Valley, below sea level, so you weigh more there than on any 
mountain peak. 

11. Springs would be more compressed when accelerating upward; less compressed when accelerating 
downward. 

12. No changes in compression when moving at constant velocity. 
13. Your weight is measured as mg when you are firmly supported in a gravitational field of g and in 

equilibrium. 
14. In an upward accelerating elevator your weight is greater than mg, in free fall your weight is zero. 
15. The occupants are without a support force. 
16. Tides depend on the difference in pulling strengths. 
17. One side is closer. 
18. Spring tides are higher.  
19. Yes, interior tides occur in Earth and are caused by unequal forces on opposite sides of Earth’s interior. 
20. At the time of a full or new moon, Sun, Moon, and Earth are aligned. 
21. No, for no lever arm would exist between Earth’s gravitational pull and the Moon’s axis. 
22. A gravitational field is a force field about any mass, and can be measured by the amount of force on a 

unit of mass located in the field. 
23. At Earth’s center, its gravitational field is zero. 
24. Half way to the center, the gravitational field is half that at the surface. 
25. Anywhere inside a hollow planet the gravitational field of the planet is zero. 
26. Einstein viewed the curve in a planet’s path as a result of the curvature of space itself.  
27. Your weight would increase. 
28. Field strength increases as the star surface shrinks. 
29. A black hole is invisible because even light cannot escape it. 
30. Perturbations of Uranus’ orbit not accounted for by any known planet led to the discovery of Neptune. 
 
Think and Do 
31. Open ended. 
32. Hold it half way from your eye and it covers the same area of eyesight as the unfolded bill, nicely 

illustrating the inverse-square law. 
 
Plug and Chug 

33. 

    
F  G

m1m 2

d
2  6 .67  10

11
N  m 2 /kg

2 
(1kg )(6  10 24 kg )

(6 .4  10 6 m)2  9 .8 N . 

 

34. 
    
F  G

m1m 2

d
2  6 .67    10

-11
 N m2

/kg
2

   
(1 kg )(6    10

24
 kg )

[2 (6 .4    10
6

 m )]
2  2 .5  N. 
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35. 

    
F  G

m1m 2

d
2

 6 .67    10
-11

 N m2
/kg

2
   

(6 .0    10
24

 kg )(7 .4    10
22

 kg )

(3 .8    10
8

 m)
2  2 .1   10

20
 N. 

 

36. 
    
F G

m
1
m

2

d
2  6 .67    10

-11
 N m2

/kg
2

   
(6 .0    10

24
 kg )(2 .0    10

30
 kg )

(1 .5    10
11

 m)
2  3 .6    10

22
 N. 

 

37. 
    
F  G

m
1
m

2

d
2

 6 .67    10
-11

 N m2
/kg

2
   

(3 .0  kg )(6 .4    10
23

 kg )

(5 .6    10
10

 m )
2  4 .1   10

-8
 N. 

 

38. 
    
F  G

m
1
m

2

d
2  6 .67    10

-11
 N m2

/kg
2

   
(3 .0  kg )(100  kg )

(0 .5  m)
2  8 .0    10

-8
 N. 

  The obstetrician exerts about twice as much gravitational force. 
 
Think and Solve 
39. From F = GmM/d2, three times d squared is 9 d2, which means the force is one ninth of surface weight. 
 
40. From F = GmM/d2, (2m)(2M) = 4 mM, which means the force of gravity between them is 4 times greater. 

 41. From F = G2m2M/(2d2) =  4/4 (GmM/d2), with the same force of gravitation. 

 
42. From F = GmM/d2, if d is made 10 times smaller, 1/d2 is made 100 times larger, which means the force is 

100 times greater. 

 

43.  g = 
  

GM

d
2 = 

  

(6 .67  10
11

)(6 .0  10
24

)

[(6380  200 )x10
3

]
2 = 9.24 N/kg or 9.24 m/s2; 9.24/9.8 = 0.94 or 94%. 

 

44. (a) Substitute the force of gravity in Newton’s second law: 
 
a 

F

m


GmM /d
2

m
 G

M

d
2

. 

 (b) Note that m cancels out. Therefore the only mass affecting your acceleration is the mass M of the 
planet, not your mass. 

 
Think and Rank 
45. B=C, A, D 
46. C, B, A 
47 a. B, A=C, D b. D, A=C, B 
48. C, B, A 
49. B, A, C 
 
Think and Explain 
 50. Nothing to be concerned about on this consumer label. It simply states the universal law of gravitation, 

which applies to all products. It looks like the manufacturer knows some physics and has a sense of 
humor. 

 
 51. This goes back to Chapter 4: A heavy body doesn’t fall faster than a light body because the greater 

gravitational force on the heavier body (its weight), acts on a correspondingly greater mass (inertia). 
The ratio of gravitational force to mass is the same for every body—hence all bodies in free fall 
accelerate equally.  

 
 52. In accord with the law of inertia, the Moon would move in a straight-line path instead of circling both 

the Sun and Earth. 
 
 53. The force of gravity is the same on each because the masses are the same, as Newton’s equation for 

gravitational force verifies. 
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 54. The force of gravity is the same on each because the masses are the same, as Newton’s equation for 
gravitational force verifies. When dropped the crumpled paper falls faster only because it encounters 
less air resistance than the sheet. 

 
 55. The force decreases as the square of increasing distance, or force increases with the square of 

decreasing distance. 
 
 56. The forces between the apple and Earth are the same in magnitude. Force is the same either way, but 

the corresponding accelerations of each are different. 
 
 57. In accord with Newton’s 3rd law, the weight of the Earth in the gravitational field of Larry is 300 N; the 

same as the weight of Larry in Earth’s gravitational field. 
 
 58. Less, because an object there is farther from Earth’s center. 
 
 59. Letting the equation for gravitation guide your thinking, twice the diameter is twice the radius, which 

corresponds to 1/4 the astronaut’s weight at the planet’s surface. 
 
 60. Letting the equation for gravitation guide your thinking, twice the mass means twice the force, and 

twice the distance means one-quarter the force. Combined, the astronaut weighs half as much.  
 
 61. Your weight would decrease if the Earth expanded with no change in its mass and would increase if 

the Earth contracted with no change in its mass. Your mass and the Earth’s mass don’t change, but 
the distance between you and the Earth’s center does change. Force is proportional to the inverse 
square of this distance. 

 
 62. A person is weightless when the only force acting is gravity, and there is no support force. Hence the 

person in free fall is weightless. But more than gravity acts on the person falling at terminal velocity. In 
addition to gravity, the falling person is “supported” by air resistance. 

 
 63. The high-flying jet plane is not in free fall. It moves at approximately constant velocity so a passenger 

experiences no net force. The upward support force of the seat matches the downward pull of gravity, 
providing the sensation of weight. The orbiting space vehicle, on the other hand, is in a state of free 
fall. No support force is offered by a seat, for it falls at the same rate as the passenger. With no 
support force, the force of gravity on the passenger is not sensed as weight. 

 64. Gravitational force is indeed acting on a person who falls off a cliff, and on a person in a space shuttle. 
Both are falling under the influence of gravity. 

 
 65. In a car that drives off a cliff you “float” because the car no longer offers a support force. Both you and 

the car are in the same state of free fall. But gravity is still acting on you, as evidenced by your 
acceleration toward the ground. So, by definition, you would be weightless (until air resistance 
becomes important). 

 
 66. The two forces are the normal force and mg, which are equal when the elevator doesn’t accelerate, 

and unequal when the elevator accelerates. 
 
 67. The pencil has the same state of motion that you have. The force of gravity on the pencil causes it to 

accelerate downward alongside of you. Although the pencil hovers relative to you, it and you are falling 
relative to the Earth. 

 
 68. The jumper is weightless due to the absence of a support force. 
 
 69. You disagree, for the force of gravity on orbiting astronauts is almost as strong as at Earth’s surface. 

They feel weightless because of the absence of a support force. 
 
70. In a rotating habitat (as discussed in Chapter 8) rotation provides the required support force. The weight 

experienced would be a centrifugal force. 
 
71. Your weight equals mg when you are in equilibrium on a horizontal surface and the only forces acting on 

you are mg downward and an equal-and-opposite normal force N upward. 
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72. The scale shows the normal force acting on you, which on an incline is less than the normal force that 
occurs on a firm horizontal surface. The force of gravity on you is mg whatever the support force. But 
for mg to align with the normal force, the scale must be supported on a horizontal surface. If you want 
to know how strongly gravity is pulling on you, you need to put your scale on a horizontal surface. 

 
73. The force due to gravity, mg, does not vary with jouncing. Variations in the scale reading are variations 

in the support force N, not in mg.  
 
 74. Just as differences in tugs on your shirt will distort the shirt, differences in tugs on the oceans distort 

the ocean and produce tides. 
 
 75. The gravitational pull of the Sun on the Earth is greater than the gravitational pull of the Moon. The 

tides, however, are caused by the differences in gravitational forces by the Moon on opposite sides of 
the Earth. The difference in gravitational forces by the Moon on opposite sides of the Earth is greater 
than the corresponding difference in forces by the stronger pulling but much more distant Sun. 

 
76. No torque occurs when the Moon’s long axis is aligned with Earth because there is no lever arm. A lever 

arm exists when the Moon’s CG and CM are not aligned with Earth. 
 
 77. No. Tides are caused by differences in gravitational pulls. If there are no differences in pulls, there are 

no tides. 
  
78.Ocean tides are not exactly 12 hours apart because while the Earth spins, the Moon moves in its orbit 

and appears at its same position overhead about every 25 hours, instead of every 24 hours. 
So the two-high-tide cycle occurs at about 25-hour intervals, making high tides about 12.5 hours apart. 

 
 79. Lowest tides occur along with highest tides, spring tides. So the tide cycle consists of higher-than-

average high tides followed by lower-than-average low tides (best for digging clams!). 
 
 80. Whenever the ocean tide is unusually high, it will be followed by an unusually low tide. This makes 

sense, for when one part of the world is having an extra high tide, another part must be donating water 
and experiencing an extra low tide. Or as the hint in the exercise suggests, if you are in a bathtub and 
slosh the water so it is extra deep in front of you, that’s when it is extra shallow in back of you—
“conservation of water!” 

 
 81. Because of its relatively small size, different parts of the Mediterranean Sea and other relatively small 

bodies of water are essentially equidistant from the Moon (or from the Sun). So one part is not pulled 
with any appreciably different force than any other part. This results in extremely tiny tides. Tides are 
caused by appreciable differences in pulls. 

 
 82. Tides are produced by differences in forces, which relate to differences in distance from the attracting 

body. One’s head is appreciably closer than one’s feet to the overhead melon. The greater 
proportional difference for the melon out-tides the more massive but more distant Moon. One’s head is 
not appreciably closer to the Moon than one’s feet. 

 
 83. In accord with the inverse-square law, twice as far from the Earth’s center diminishes the value of g to 

1/4 its value at the surface or 2.5 m/s2. 
 
 84. For a uniform-density planet, g inside at half the Earth’s radius would be 5 m/s2. This can be 

understood via the spherical shell idea discussed in the chapter. Halfway to the center of the Earth, the 
mass of the Earth in the outer shell can be neglected—the gravitational contribution of all parts of the 
shell cancels to zero. Only the mass of the Earth “beneath” contributes to acceleration, the mass in the 
sphere of radius r/2. This sphere of half radius has only 1/8 the volume and only 1/8 the mass of the 
whole Earth (volume varies as r3). This effectively smaller mass alone would find the acceleration due 
to gravity 1/8 that of g at the surface. But consider the closer distance to the Earth’s center as well. This 
twice-as-close distance alone would make g four times as great (inverse-square law). Combining both 
factors, 1/8 of 4 = 1/2, so the acceleration due to gravity at r/2 is g/2. 

 
 85. Your weight would be less down in the mine shaft. One way to explain this is to consider the mass of 

the Earth above you which pulls upward on you. This effect reduces your weight, just as your weight is 
reduced if someone pulls upward on you while you’re weighing yourself. Or more accurately, we see 
that you are effectively within a spherical shell in which the gravitational field contribution is zero; and 
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that you are being pulled only by the spherical portion below you. You are lighter the deeper you go, 
and if the mine shaft were to theoretically continue to the Earth’s center, your weight moves closer to 
zero. 

 
 86. The increase in weight indicates that the Earth is more compressed—more compact—more dense—

toward the center. The weight that normally would be lost when in the deepest mine shafts from the 
upward force of the surrounding “shell” is more than compensated by the added weight gained due to 
the closeness to the more dense center of the Earth. (Referring to our analysis of Exercise 49, if the 
mine shaft were deep enough, reaching halfway to the center of the Earth, you would, in fact, weigh 
less at the bottom of the shaft than on the surface, but more than half your surface weight.) 

 
 87. Open-ended. 
Think and Discuss 
 88. Your friend’s misconception is a popular one. But investigation of the gravitational equation shows that 

no matter how big the distance, force never gets to zero. If it were zero, any space shuttle would fly off 
in a straight-line path! 

 
 89. The force of gravity on Moon rocks at the Moon’s surface is considerably stronger than the force of 

gravity between Moon distant Earth. Rocks dropped on the Moon fall onto the Moon’s surface. (The 
force of the Moon’s gravity is about 1/6 of the weight the rock would have on Earth; but the force of the 
Earth’s gravity at that distance is only about 1/3600 of the rock’s Earth-weight.) 

 
 90. If gravity between the Moon and its rocks vanished, the rocks, like the Moon, would continue in their 

orbital path around the Earth. The assumption ignores the law of inertia. 
 
 91. Nearer the Moon, because of its smaller mass and lesser pull at equal distances. 
 
 92. The Earth and Moon equally pull on each other in a single interaction. In accord with Newton’s 3rd law, 

the pull of the Earth on the Moon is equal and opposite to the pull of the Moon on the Earth. An elastic 
band pulls equally on the fingers that stretch it. 

  
93.Earth and Moon do rotate around a common point, but it’s not midway between them (which would 

require both Earth and Moon to have the same mass). The point around which Earth and Moon rotate 
(called the barycenter) is within the Earth about 4600 km from the Earth’s center. 

 
 94. For the planet half as far from the Sun, light would be four times as intense. For the planet ten times as 

far, light would be 1/100th as intense. 
 
 95. By the geometry of Figure 9.4, tripling the distance from the small source spreads the light over 9 times 

the area, or 9 m2. Five times the distance spreads the light over 25 times the area or 25 m2, and for 10 
times as far, 100 m2. 

 
96. The gravitational force on a body, its weight, depends not only on mass but distance. On Jupiter, this is 

the distance between the body being weighed and Jupiter’s center—the radius of Jupiter. If the radius 
of Jupiter were the same as that of the Earth, then a body would weigh 300 times as much because 
Jupiter is 300 times more massive than Earth. But the radius of Jupiter is about 10 times that of Earth, 
weakening gravity by a factor of 100, resulting in 3 times its Earth weight. (The radius of Jupiter is 
actually about 11 times that of Earth).  

  
97.If Earth gained mass you’d gain weight. Since Earth is in free fall around the Sun, the Sun contributes 

nothing to your weight. Earth gravitation presses you to Earth; solar gravitation doesn’t press you to 
Earth. 

 
 98. First of all, it would be incorrect to say that the gravitational force of the distant Sun on you is too small 

to be measured. It’s small, but not immeasurably small. If, for example, the Earth’s axis were 
supported such that the Earth could continue turning but not otherwise move, an 85-kg person would 
see a gain of 1/2 newton on a bathroom scale at midnight and a loss of 1/2 newton at noon. The key 
idea is support. There is no “Sun support” because the Earth and all objects on the Earth—you, your 
bathroom scale, and everything else—are continually falling around the Sun. Just as you wouldn’t be 
pulled against the seat of your car if it drives off a cliff, and just as a pencil is not pressed against the 
floor of an elevator in free fall, we are not pressed against or pulled from the Earth by our gravitational 
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interaction with the Sun. That interaction keeps us and the Earth circling the Sun, but does not press 
us to the Earth’s surface. Our interaction with the Earth does that. 

 
 99. The gravitational force varies with distance. At noon you are closer to the Sun. At midnight you are an 

extra Earth diameter farther away. Therefore the gravitational force of the Sun on you is greater at 
noon. 

 
 100. As stated in question 98, our “Earth weight” is due to the gravitational interaction between our mass 

and that of the Earth. The Earth and its inhabitants are freely falling around the Sun, the rate of which 
does not affect our local weights. (If a car drives off a cliff, the Earth’s gravity, however strong, plays no 
role in pressing the occupant against the car while both are falling. Similarly, as the Earth and its 
inhabitants fall around the Sun, the Sun plays no role in pressing us to the Earth.) 

  
101. The Moon does rotate like a top as it circles Earth. It rotates once per revolution, which is why we 

see only the same face. If it didn’t rotate, we’d see the back side every half month. 
 
 102. Tides would be greater if the Earth’s diameter were greater because the difference in pulls would be 

greater. Tides on Earth would be no different if the Moon’s diameter were larger. The gravitational 
influence of the Moon is just as if all the Moon’s mass were at its CG. Tidal bulges on the solid surface 
of the Moon, however, would be greater if the Moon’s diameter were larger—but not on the Earth. 

 
 103. Earth would produce the largest microtides in your body. Microtides are greatest where the difference 

between your head and feet is greatest compared with the distance to the tide-pulling body, Earth. 
 
 104. Tides occur in Earth’s crust and Earth’s atmosphere for the same reason they occur in Earth’s oceans. 

Both the crust and atmosphere are large enough so there are appreciable differences in distances to 
the Moon and Sun. The corresponding gravitational differences account for tides in the crust and 
atmosphere. 

 
 105. More fuel is required for a rocket that leaves the Earth to go to the Moon than the other way around. 

This is because a rocket must move against the greater gravitational field of the Earth most of the way. 
(If launched from the Moon to the Earth, then it would be traveling with the Earth’s field most of the 
way.) 

 
 106. On a shrinking star, all the mass of the star pulls in a noncanceling direction (beneath your feet)—you 

get closer to the overall mass concentration and the force increases. If you tunnel into a star, however, 
there is a cancellation of gravitational pulls; the matter above you pulls counter to the matter below 
you, resulting in a decrease in the net gravitational force. (Also, the amount of matter “above” you 
decreases.) 

 
 107. F ~ m1 m2/d

2, where m2 is the mass of the Sun (which doesn’t change when forming a black hole), m1 
is the mass of the orbiting Earth, and d is the distance between the center of mass of Earth and the 
Sun. None of these terms change, so the force F that holds Earth in orbit does not change.  

 
 108. Letting the gravitational force equation be a guide to thinking, we see that gravitational force and 

hence one’s weight does not change if the mass and radius of the Earth do not change. (Although 
one’s weight would be zero inside a hollow uniform shell, on the outside one’s weight would be no 
different than if the same-mass Earth were solid.) 

 109. Astronauts are weightless because they lack a support force, but they are well in the grips of Earth 
gravity, which accounts for them circling the Earth rather than going off in a straight line in outer space. 

 
110. The misunderstanding here is not distinguishing between a theory and a hypothesis or conjecture. 

A theory, such as the theory of universal gravitation, is a synthesis of a large body of information 
that encompasses well-tested and verified hypotheses about nature. Any doubts about the theory 
have to do with its applications to yet untested situations, not with the theory itself. One of the 
features of scientific theories is that they undergo refinement with new knowledge. (Einstein’s 
general theory of relativity has taught us that in fact there are limits to the validity of Newton’s 
theory of universal gravitation.) 
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