```
% This program considers a mass m1 with initial velocity v1 = 1,
% colliding with a mass m2 with initial velocity v2 = 0.
% The mass ratio is mr = m1/m2 = 100^n. After the first elastic collision,%
% m2 collides (also elasticly) with a wall. The question is: given n %
%(exponent) of the mass ratio, how many collisions there are between the %
% masses and between m2 and the wall?
% THE ANSWER IS THE FIRST n DIGITS OF PI!
clear all;
clc;
응응응응응응응응응응응응응
% Parameters %
응응응응응응응응응응응응응
tic
n = [0:1:7];
              % exponent of mass ratio
for r = 1: length(n)
   v1 = 1;
                    % m1 initial velocity
   v2 = 0;
                   % m2 initial velocity
   mr = 100^n(r); % mass ratio
   colcount(r) = 0; % collision counter
   while not(v1 <=0 && v2 <=0 && abs(v1) > abs(v2)) % stop counting collision \checkmark
if...
      vlaux = (mr - 1)/(mr + 1)*v1 + 2/(mr + 1)*v2; % m1 velocity after collision
      v2aux = 2*mr/(mr + 1)*v1 + (1 - mr)/(mr + 1)*v2; % m2 velocity after collision
      colcount(r) = colcount(r) + 1;
      if v2aux > 0
                                                 % collision of m2 with wall
          v2 = - v2aux;
          colcount(r) = colcount(r) + 1;
      else
          v2 = v2aux;
      end
      v1 = v1aux;
   end
end
[n' colcount']
toc
```