```
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This program considers a mass m1 with initial velocity v1 = 1, %
% colliding with a mass m2 with initial velocity v2 = 0. %
% The mass ratio is mr = m1/m2 = 100^n. After the first elastic collision,%
% m2 collides (also elasticly) with a wall. The question is: given n %
%(exponent) of the mass ratio, how many collisions there are between the %
% masses and between m2 and the wall?
% THE ANSWER IS THE FIRST n DIGITS OF PI!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

clear all;
clc;
$\% \% \% \% \% \% \% \% \% \% \% \% \%$
\% Parameters \%
$\% \% \% \% \% \% \% \% \% \% \% \% \% \%$
tic
$n=[0: 1: 7] ; \quad$ exponent of mass ratio
for $r=1:$ length (n)
$\mathrm{v} 1=1 ; \quad$ \% m1 initial velocity
$\mathrm{v} 2=0 ; \quad \% \mathrm{~m} 2$ initial velocity
$m r=100^{\wedge} \mathrm{n}(\mathrm{r}) ; \quad$ \% mass ratio
colcount(r) $=0 ; \quad \%$ collision counter
while not(v1 <=0 \&\& v2 <=0 \&\& abs(v1) > abs(v2)) \% stop counting collision久
if...
vlaux $=(m r-1) /(m r+1) * v 1+2 /(m r+1) * v 2 ; \quad \% m 1$ velocity after collision
v2aux $=2 * m r /(m r+1) * v 1+(1-m r) /(m r+1) * v 2 ; ~ \% m 2$ velocity after collision
colcount(r) $=$ colcount(r) +1 ;
if v2aux > 0 \% collision of m2 with wall
v2 = - v2aux;
colcount(r) $=\operatorname{colcount(r)}+1$;
else
v2 = v2aux;
end
$\mathrm{v} 1=\mathrm{vlaux} ;$
end
end
[n' colcount']
toc

