1.2 A ATMOSFERA

        A atmosfera é uma camada relativamente fina de gases e material particulado (aerossóis) que envolve a Terra. De fato, 99% da massa da atmosfera está contida numa camada de ~0,25% do diâmetro da Terra (~32 km). Esta camada é essencial para a vida e o funcionamento ordenado dos processos físicos e biológicos sobre a Terra. A atmosfera protege os organismos da exposição a níveis arriscados de radiação ultravioleta, contém os gases necessários para os processos vitais de respiração celular e fotossíntese e fornece a água necessária para a vida.

Fig. 1.1 Composição do ar seco

        a) Composição da Atmosfera

        A composição do ar não é constante nem no tempo, nem no espaço. Contudo se removêssemos as partículas suspensas, vapor d'água e certos gases variáveis, presentes em pequenas quantidades, encontraríamos uma composição muito estável sobre a Terra, até uma altitude de ~ 80 km (Fig. 1.1 e Tab. 1.1).
 
 Gás
Porcentagem 
Partes por Milhão
Nitrogênio
78,08
780.000,0
Oxigênio
20,95
209.460,0
Argônio
0,93
9.340,0
Dióxido de carbono
0,035
350,0
Neônio
0,0018
18,0
Hélio
0,00052
5,2
Metano
0,00014
1,4
Kriptônio
0,00010
1,0
Óxido nitroso
0,00005
0,5
Hidrogênio
0,00005
0,5
Ozônio
0,000007
0,07
Xenônio
0,000009
0,09

Tabela 1.1 Principais gases do ar seco

        O nitrogênio e o oxigênio ocupam até 99% do volume do ar seco e limpo. A maior parte do restante 1% é ocupado pelo gás inerte argônio. Embora estes elementos sejam abundantes eles tem pouca influência sobre os fenômenos do tempo. A importância de um gás ou aerossol atmosférico não está relacionado a sua abundância relativa. Por exemplo, o dióxido de carbono, o vapor d'água, o ozônio e os aerossóis ocorrem em pequenas concentrações mas são importantes para os fenômenos meteorológicos ou para a vida.

        Embora constitua apenas 0,03% da atmosfera, o dióxido de carbono é essencial para a fotossíntese:

        Por ser um eficiente absorvedor de energia radiante (de onda longa) emitida pela Terra, ele influencia o fluxo de energia através da atmosfera, fazendo com que a baixa atmosfera retenha o calor, tornando a Terra própria à vida. O percentual de dióxido de carbono vem crescendo devido à queima de combustíveis fósseis tais como o carvão, petróleo e gás natural. Muito do dióxido de carbono adicional é absorvido pelas águas dos oceanos ou usado pelas plantas mas em torno de 50% permanece no ar. Projeções indicam que na 2ª metade do próximo século os níveis de  serão o dobro do que eram no início do século 20. Embora o impacto deste crescimento seja difícil de prever, acredita-se que ele trará um aquecimento na baixa troposfera e portanto produzirá mudanças climáticas globais.

        O vapor d'água é um dos mais variáveis gases na atmosfera e também tem pequena participação relativa. Nos trópicos úmidos e quentes constitui não mais que 4% do volume da baixa atmosfera, enquanto sobre os desertos e regiões polares pode constituir uma pequena fração de 1%. Contudo, sem vapor d'água não há nuvens, chuva ou neve. Além disso, o vapor d'água também tem grande capacidade de absorção, tanto da energia radiante emitida pela Terra (em ondas longas), como também de alguma energia solar. Portanto, junto com o , o vapor d'água atua como uma manta para reter calor na baixa atmosfera. Como a água é a única substância que pode existir nos 3 estados (sólido, líquido e gasoso) nas temperaturas e pressões existentes normalmente sobre a Terra, suas mudanças de estado absorvem ou liberam calor latente. Desta maneira, calor absorvido em uma região é transportado por ventos para outros locais e liberado. O calor latente liberado, por sua vez, fornece a energia que alimenta tempestades ou modificações na circulação atmosférica.

        O ozônio, a forma triatômica do oxigênio (), é diferente do oxigênio que respiramos, que é diatômico (). Ele tem presença relativamente pequena e distribuição não uniforme, concentrando-se entre 10 e 50 km (e em quantidades bem menores, no ar poluído de cidades), com um pico em torno de 25 km. Sua distribuição varia também com a latitude, estação do ano, horário e padrões de tempo, podendo estar ligada a erupções vulcânicas e atividade solar. A formação do ozônio na camada entre 10-50 km é resultado de uma série de processos que envolvem a absorção de radiação solar. Moléculas de oxigênio () são dissociadas em átomos de oxigênio após absorverem radiação solar de ondas curtas (ultravioleta). O ozônio é formado quando um átomo de oxigênio colide com uma molécula de oxigênio em presença de uma 3ª molécula que permite a reação mas não é consumida no processo . A concentração do ozônio nesta camada deve-se provavelmente a dois fatores:

(1) a disponibilidade de energia ultravioleta e

(2) a densidade da atmosfera é suficiente para permitir as colisões necessárias entre oxigênio molecular e oxigênio atômico.

        A presença do ozônio é vital devido a sua capacidade de absorver a radiação ultravioleta do sol na reação de fotodissociação . O átomo livre recombina-se novamente para formar outra molécula de ozônio, liberando calor. Na ausência da camada de ozônio a radiação ultravioleta seria letal para a vida. Desde os anos 70 tem havido contínua preocupação de que uma redução na camada de ozônio na atmosfera possa estar ocorrendo por interferência humana. Acredita-se que o maior impacto é causado por um grupo de produtos químicos conhecido por clorofluorcarbonos (CFCs). CFCs são usados como propelentes em 'sprays' aerosol, na produção de certos plásticos e em equipamentos de refrigeração e condicionamento de ar. Como os CFCs são praticamente inertes (não quimicamente ativos) na baixa atmosfera, uma parte deles eventualmente atinge a camada de ozônio, onde a radiação solar os separa em seus átomos constituintes. Os átomos de cloro assim liberados, através de uma série de reações acabam convertendo parte do ozônio em oxigênio. A redução do ozônio aumentaria o número de casos de certos tipos de câncer de pele e afetaria negativamente colheitas e ecossistemas.

        Além de gases, a atmosfera terrestre contém pequenas partículas, líquidas e sólidas, chamadas aerossóis. Alguns aerossóis - gotículas de água e cristais de gelo - são visíveis em forma de nuvens. A maior concentração é encontrada na baixa atmosfera, próximo a sua fonte principal, a superfície da Terra. Eles podem originar-se de incêndios florestais, erosão do solo pelo vento, cristais de sal marinho dispersos pelas ondas que se quebram, emissões vulcânicas e de atividades agrícolas e industriais. Alguns aerossóis podem originar-se na parte superior da atmosfera, como a poeira dos meteoros que se desintegram. Embora a concentração dos aerossóis seja relativamente pequena, eles participam de processos meteorológicos importantes. Em 1° lugar, alguns aerossóis agem como núcleos de condensação para o vapor d'água e são importantes para a formação de nevoeiros, nuvens e precipitação. Em 2° lugar, alguns podem absorver ou refletir a radiação solar incidente, influenciando a temperatura. Assim, quando ocorrem erupções vulcânicas com expressiva liberação de poeira, a radiação solar que atinge a superfície da Terra pode ser sensivelmente alterada. Em 3° lugar, a poeira no ar contribui para um fenômeno ótico conhecido: as várias tonalidades de vermelho e laranja no nascer e pôr-do-sol.

        b) Estrutura Vertical da Atmosfera

        b.1) Perfis Verticais de Pressão e Densidade

Fig. 1.2 Perfil vertical médio da pressão do ar

        Sabemos que o ar é compressível, isto é, seu volume e sua densidade são variáveis. A força da gravidade comprime a atmosfera de modo que a máxima densidade do ar (massa por unidade de volume) ocorre na superfície da Terra. O decréscimo da densidade do ar com a altura é bastante rápido (decréscimo exponencial) de modo que na altitude de ~5,6 km a densidade já é a metade da densidade ao nível do mar e em ~16 km já é de apenas 10% deste valor e em ~32 km apenas 1%.

        O rápido decréscimo da densidade do ar significa também um rápido declínio da pressão do ar com a altitude. A pressão da atmosfera numa determinada altitude é simplesmente o peso da coluna de ar com área de seção reta unitária, situada acima daquela altitude. No nível do mar a pressão média é de ou , que corresponde a um peso de 1kg de ar em cada . O perfil vertical médio da pressão do ar é mostrado na Fig. 1.2. O decréscimo da densidade do ar segue uma curva semelhante. Não é possível determinar onde termina a atmosfera, pois os gases se difundem gradualmente no vazio do espaço.

        Quando estudarmos a pressão atmosférica, discutiremos uma interpretação física da Fig. 1.2.

        b.2) Perfil Vertical de Temperatura

Fig. 1.3 - Perfil vertical médio de temperatura na atmosfera

        Por conveniência de estudo a atmosfera é usualmente subdividida em camadas concêntricas, de acordo com o perfil vertical médio de temperatura (Fig. 1.3).

        A camada inferior, onde a temperatura decresce com a altitude, é a troposfera, que se estende a uma altitude média de 12 km (~ 20 km no equador e ~ 8 km nos pólos). Nesta camada a taxa de variação vertical da temperatura tem valor médio de 6,5°C/km. Esta taxa na realidade, é bastante variável. De fato, algumas vezes a temperatura cresce em finas camadas, caracterizando uma inversão de temperatura. A troposfera é o principal domínio de estudo dos meteorologistas, pois é nesta camada que ocorrem essencialmente todos os fenômenos que em conjunto caracterizam o tempo. Na troposfera as propriedades atmosféricas são facilmente transferidas por turbulência de grande escala e mistura. O seu limite superior é conhecido como tropopausa.

        A camada seguinte, a estratosfera ,se estende até ~50 km. Inicialmente, por uns 20 km, a temperatura permanece quase constante e depois cresce até o topo da estratosfera, a estratopausa. Temperaturas mais altas ocorrem na estratosfera porque é nesta camada que o ozônio está concentrado. Conforme mencionamos, o ozônio absorve radiação ultravioleta do sol. Consequentemente, a estratosfera é aquecida.

        Na mesosfera a temperatura novamente decresce com a altura, até a mesopausa, que está em torno de 80 km, onde atinge ~ -90°C. Acima da mesopausa, e sem limite superior definido, está a termosfera, onde a temperatura é inicialmente isotérmica e depois cresce rapidamente com a altitude, como resultado da absorção de ondas muito curtas da radiação solar por átomos de oxigênio e nitrogênio. Embora as temperaturas atinjam valores muito altos, estas temperaturas não são exatamente comparáveis àquelas experimentadas próximo a superfície da Terra. Temperaturas são definidas em termos da velocidade média das moléculas. Como as moléculas dos gases da termosfera se movem com velocidades muito altas, a temperatura é obviamente alta. Contudo, a densidade é tão pequena que muito poucas destas moléculas velozes colidiriam com um corpo estranho; portanto, só uma quantidade insignificante de energia seria transferida. Portanto, a temperatura de um satélite em órbita seria determinada principalmente pela quantidade de radiação solar que ele absorve e não pela temperatura do ar circundante.

        Os perfis verticais de pressão e temperatura do ar (Figs. 1.2 e 1.3) aqui apresentados são baseados na atmosfera padrão, um modelo da atmosfera real. Representa o estado da atmosfera numa média para todas as latitudes e estações. Ela apresenta valores fixos da temperatura e pressão do ar ao nível do mar (15°C e 1013,25mb) e perfis verticais fixos de temperatura e pressão.

        c) A Ionosfera

        Entre as altitudes de 80 a 900 km (na termosfera) há uma camada com concentração relativamente alta de íons, a ionosfera. Nesta camada a radiação solar de alta energia de ondas curtas (raios X e radiação ultravioleta) tira elétrons de moléculas e átomos de nitrogênio e oxigênio, deixando elétrons livres e íons positivos. A maior densidade de íons ocorre próximo a 300 km. A concentração de íons é pequena abaixo de 80 km porque nestas regiões muito da radiação de ondas curtas necessária para ionização já foi esgotada. Acima de ~400 km a concentração é pequena por causa da extremamente pequena densidade do ar, possibilitando a produção de poucos íons.

        A estrutura da ionosfera consiste de 3 camadas de densidade variável de íons: as camadas D, E e F, com altitude e densidade de íons crescente. Como a produção de íons requer a radiação solar direta, a concentração de íons diminui do dia para a noite, particularmente nas camadas D e E, onde os elétrons se recombinam com íons positivos durante a noite. A taxa de recombinação depende da densidade do ar, isto é, quanto mais denso o ar maior a probabilidade de colisão e recombinação das partículas. Assim, a camada D desaparece à noite, a camada E se enfraquece consideravelmente, mas a camada F continua presente à noite, embora enfraquecida, pois a densidade nesta camada é muito pequena.

        A ionosfera tem pequeno impacto sobre o tempo, mas tem grande influência sobre a transmissão de ondas de rádio na banda AM. Durante o dia as ondas de rádio tendem a ser absorvidas nas dois camadas mais baixas, especialmente na camada D. A camada F reflete as ondas de rádio durante o dia e a noite. Contudo , mesmo que as ondas consigam atravessar as camadas D e E e ser refletidas na camada F, elas serão absorvidas no seu caminho de volta para a Terra. À noite, contudo, a camada absorvedora D desaparece e as ondas podem atingir a camada F mais facilmente e ser refletidas para a superfície da Terra. Isto explica porque à noite os sinais de rádio atingem grandes distâncias sobre a Terra (Fig. 1.4).

Fig. 1.4 - Influência da Ionosfera sobre a transmissão de ondas de rádio.

        Na ionosfera ocorre também o fenômeno da aurora boreal (no Hemisfério Norte) ou austral (no Hemisfério Sul). As auroras estão relacionadas com o vento solar , um fluxo de partículas carregadas, prótons e elétrons, emanadas do sol com alta energia. quando estas partículas se aproximam da Terra, elas são capturadas pelo campo magnético da Terra. Sob a ação da força exercida pelo campo magnético sobre cargas em movimento (), elas descrevem trajetórias espiraladas ao longo das linhas de indução  do campo magnético terrestre, movendo-se para frente e para trás entre os pólos magnéticos sul e norte, onde são "refletidas" devido ao aumento do campo magnético. Estes elétrons e prótons aprisionados constituem os chamados "cinturões radioativos de Van Allen". Algumas partículas acompanham o campo magnético da Terra em direção aos pólos geomagnéticos, penetrando na ionosfera, onde colidem com átomos e moléculas de oxigênio e nitrogênio, que são temporariamente energizados. Quando estes átomos e moléculas retornam do seu estado energético excitado, eles emitem energia na forma de luz, o que constitui as auroras. As zonas de maior ocorrência das auroras situam-se em torno de 20-30° ao redor dos pólos geomagnéticos (76°N, 102°W; 68°S, 145°E). A atividade auroral varia com a atividade do sol. Quando o sol está calmo, a zona auroral diminui; quando o sol está ativo (com explosões solares), intensificando o vento solar, a zona auroral se expande em direção ao equador.

        No próximo capítulo o maior objetivo é examinar a força motora do tempo. Para isto, é necessária a compreensão do fornecimento de energia pelo Sol e das conversões de energia na atmosfera.
 
 

Para saber mais sobre auroras e campo magnético terrestre:

BRIEN, J. O., 1963: Radiation belts, Scientific American, 208, 5, 84-96.

AKASOFU,S.I., 1989: The dynamic aurora, Scientific American, 260, 5, 54-63.
 
 

Próximo Tópico: Capítulo 2 - Radiação Solar e Terrestre. Balanço de Calor
Tópico Anterior: O que é Meteorologia?