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Factorization is the most fundamental way to determine if a number n is prime or composite.
Yet, this approach becomes impracticable when considering large values of n, a difficulty that is
exploited by cryptographic protocols. We propose an alternative method to decide the primality of
a natural number, that is based on the analysis of the evolution of the linear entanglement entropy.
Specifically, we show that a singular behavior in the amplitudes of the Fourier series of this entropy is
associated with prime numbers. We also discuss how this idea could be experimentally implemented
and examine possible connections between our results and the zeros of the Riemann zeta function.

Prime numbers have captured the attention of re-
searchers for centuries. In pure mathematics, given the
prominent role of primes in factorizing a positive inte-
ger n, much effort has been made to unravel patterns in
their distribution over the set of natural numbers N [1].
Remarkable results in this direction involve the counting
function π(n), which gives the number of primes less than
or equal to n. The complete knowledge of π(n) would
imply being able to determine the position of each prime
number p, since jumps of this function expose their pres-
ence. However, achieving the counting function with sat-
isfactory accuracy for large values of n has been shown to
be practically impossible. In applied mathematics, this
lack of knowledge is exploited for cryptographic proto-
cols [2], such as the RSA (Rivest-Shamir-Adleman) algo-
rithm. To break the RSA protocol, one needs to find the
prime factors of a huge n, which would require the imple-
mentation of Shor’s algorithm in a quantum computer.

Another fascinating result involving primes is their
connection with the zeros of the Riemann zeta func-
tion ζ(s), where s is a complex variable, defined as [3]

ζ(s) ≡
∞∑
n=1

1

ns
=
∏
p

1

1− p−s
=

Γ(1− s)
2πi

∫
γ

(−x)s

ex − 1

dx

x
.

(1)
The summation and the product above converge when
the real part of the variable s satisfies <[s] > 1. The first
equality in Eq. (1) is due to Euler and makes evident
the relation between p and ζ(s). In 1859 [4], Riemann
achieved the expression shown on the right side of Eq. (1),
which involves a line integral along a particular path γ [5]
and the Gamma function Γ(1− s) ≡

∫∞
0
x−se−xdx. The

expression is analytic for all values of s, except for a sim-
ple pole at s = 1. In the region <[s] > 1, the term
with the integral recovers the other two expressions in
Eq. (1), so one considers it as their analytic continua-
tion. Using these ideas, Riemann [4] demonstrated how
the complex zeros s0 of ζ(s) encode the distribution of p.
Specifically, he showed that a certain convergent series,
running over all s0, recovers the function π(n). But for
large values of n, the number of zeros required to accu-
rately get the counting function is so large that the use of

the series to identify p becomes intractable. This sophis-
ticated connection between ζ(s) and primes is but one
of the impressive results of Ref. [4]. Arguments in that
work also gave origin to the Riemann hypothesis, which
conjectures that <[s0] = 1

2 for all nontrivial zeros of ζ(s).
The almost mystical status of prime numbers has also

reached the physics community, especially researchers
working with quantum mechanics [6, 7]. A particularly
inspiring idea is the Hilbert-Pólya conjecture that could
lead to the proof of the Riemann hypothesis. The con-
jecture proposes that the nontrivial zeros of the Riemann
zeta function, which supposedly fall on the critical line
<[s0] = 1

2 , correspond to the eigenvalues of a Hermi-
tian Hamiltonian operator. The first substantial evidence
supporting this conjecture arose in the semiclassical stud-
ies carried out by Berry and Keating [8]. They compared
the distribution of s0 over the critical line with the equiv-
alent function for the eigenvalues of a given Hamiltonian
achieved through the Gutzwiller trace formula. In this
way, they were able to identify a Hamiltonian operator
that fulfills the conjecture. The operator is obtained by
quantizing the classical Hamiltonian Hcl = xp, where x
and p are the particle position and momentum, respec-
tively.

Inspired by the Hilbert-Pólya conjecture and the Berry
and Keating xp-model, several works [9–15] have aimed
at interpreting, extending and circumventing technical
difficulties of Ref. [8]. Other contributions looked for al-
ternative physical systems, where the properties of ζ(s)
could be identified. This has been done using quantum
graph theory [16], many-body systems [17], wave-packet
dynamics [18], statistical mechanics of random energy
landscapes [19], random matrix theory [20, 21], quantum
entanglement [22], and there is also an experiment based
on a periodically driven single qubit [23]. In addition to
these works, where the Riemann zeta function is the pro-
tagonist to link prime numbers and quantum physics,
other quantum approaches deal directly with primes,
studying, for instance, number factorization [24, 25] and
the properties of prime states [26, 27], which are super-
positions of states corresponding to prime numbers.

In the present paper, we show that the dynamics
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of the linear entanglement entropy encodes prime and
semiprime numbers. Specifically, we demonstrate that
the Fourier modes cn of this evolving function have am-
plitudes that present a singular behavior when n corre-
sponds to a prime, and we find curves cfn for the location
of families f of semiprimes. This is shown for a system
of two coupled harmonic oscillators and a system of two
coupled spins. We discuss a possible experimental real-
ization of this idea and speculate on how to link cn and
the counting function π(n).
Entanglement dynamics.— We consider a system con-

sisting of two interacting parts, A and B, to which we
assign distinct Hilbert spaces, HA and HB , respectively.
The system is isolated and prepared in a pure state,
ρ(0) = |Ψ(0)〉〈Ψ(0)|, which evolves according to the total
Hamiltonian

H = HA ⊗ 1B + 1A ⊗HB + λHA ⊗HB , (2)

where λ is the coupling strength between the two subsys-
tems. The linear entanglement entropy,

SL(t) = 1− Tr
[
ρ2
A(t)

]
, (3)

where ρA(t) ≡ TrB [ρ(t)] is the reduced density matrix of
system A, measures the bipartite entanglement in time
between A and B. When ρ(t) is separable, SL(t) = 0,
otherwise 0<SL(t)<1.
Coupled oscillators.— The first Hamiltonian that we

consider describes two coupled harmonic oscillators,
where HA is the Hamiltonian for part A with eigenvalues
~ω0(nA + 1

2 ) and eigenstates |nA〉, and equivalently for
part B. The initial state is the product of two canonical
coherent states [28],

|Ψ(0)〉 = |αA αB〉 ≡ e−u/2
∞∑

nA,nB=0

αnAA√
nA!

αnBB√
nB !
|nA nB〉,

where we chose |αA|2 = |αB |2 = u
2 . Defining ω ≡ ~λω2

0 ,

SoscL (t) = 1−e−2u
∑
j,k,l,m

(u2 )j+k+l+m

j! k! l!m!
e−iωt(j−k)(l−m). (4)

The sum above runs from 0 to ∞ for all indexes. Since
the entropy in Eq. (4) is periodic in time, with period
T = 2π/ω, we use the Fourier series and arrive at

SoscL (t) = c0(u)−
∞∑
n=1

cn(u) cos(nωt), (5)

where the coefficients cn(u) are given by

cn(u) = 4 e−2u
∑
k,m

∑
j>k

∑
l>m

(u2 )j+k+l+m

j! k! l!m!
δn(j−k)(l−m), (6)

representing the amplitude of the mode with fre-
quency nω. In Eq. (6), the Kronecker delta function,

δba for integers a and b, prompts the analysis of how n
decomposes as a product of two integers. We introduce
the set Λn composed of all distinct positive divisors of n
and note that the non-null terms in Eq. (6) are those for
which (j−k) and (l−m) belong to Λn and their product
equals n. Therefore,

cn(u) = 4 e−2u
∑
µ∈Λn

Iµ(u) In
µ

(u), (7)

where Iχ(w) ≡
∑∞
k=0[k!(χ + k)!]−1(w2 )2k+χ is the modi-

fied Bessel function of the first kind. As we show next,
cn(u) is very sensitive to the primality of n.
Identifying primes.—To show that the entanglement

dynamics quantified by SoscL (t) is a prime identifier, we
first assume that n is prime, so that Λn = {1, n} and
Eq. (7) yields cn(u) = c(p)n (u), where

c(p)n (u) ≡ 8 e−2uI1(u) In(u). (8)

In contrast, when n is as a composite number, Λn nec-
essarily consists of 1, n, and, at least, one more integer.
By defining the set Λ′n = Λn − {1, n}, Eq. (7) becomes

cn(u) = c(p)n (u) + 4 e−2u
∑
µ∈Λ′

n

Iµ(u) In
µ

(u) ≥ c(p)n (u), (9)

which holds only for n > 1.
Inequality (9) is a main result of this work. It shows

that the coefficients cn(u) coincides with c(p)n (u) in Eq. (8)
if, and only if, n is prime, while for composite numbers,
the amplitudes are strictly lower bounded by c(p)n (u).
This means that if we have a way to determine the val-
ues of cn(u), other than through the construction of Λn,
the application of Eq. (9) can reveal the primality of n.
Indeed, cn(u) can be evaluated theoretically via Eq. (4)
and possibly experimentally.

In Fig. 1, we mark the values of cn(u) with blue dots.
For each n identified as a prime, the dots are encircled
with a black circle. All values of cn(u) corresponding to
primes coincide with the red dotted line that represents
the lower bound c(p)n (u) and can, therefore, be clearly
distinguished. In Fig. 1 (a), we show results for u =
1, but cn(1) becomes too small when n is large, so in
Fig. 1 (b), we use u = 103 and larger values of n.
Semiprimes.— Figure 1 also reveals the square-free

semiprimes, including the integer 2, which we denote by
family f2. For these numbers, Λn = {1, 2, Pn, n}, where
Pn = n/2 6= 2 is a prime, and cn(u) = c(f2)

n (u), where

c(f2)

n (u) ≡ 8 e−2u
[
I1(u) In(u) + I2(u) In

2
(u)
]
. (10)

For a composite n that presents the divisors: 1, 2, n/2,
n, and at least one more integer,

c(2)n (u) ≡ c(f2)

n (u) + 4 e−2u
∑

µ∈Λ
′(2)
n

Iµ(u) In
µ

(u) > c(f2)

n (u),
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lo
g
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n
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n
0 20 40 60 80 100

-1
5
0

-1
0
0

-5
0

0
(a)

3 9 15 21 27

-20

-10
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g
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n
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n
100 180 260 340 420 500

-5
0

-3
5

-2
0

-5

(b)

100 130 160 190 220

-12

-9

-6

-3

FIG. 1. Logarithm of the coefficients cn(u) as a function of n
for (a) u = 1 and (b) u = 103. The blue dots, connected with
a blue solid line to guide the eye, represent cn(u), and the red
points indicate the lower bound c(p)n (u). For each prime n, the
blue dots are encircled with black circles and touch the red
dotted line. Green and cyan lines are for c

(f2)
n (u) and c

(f3)
n (u),

respectively. Black squares [triangles] enclose the coefficients
of the family f2 [f3]. Inset plots show a magnified region of
the respective main graph.

where Λ
′
(2)
n = Λn − {1, 2, n/2, n}. The semiprimes of

family f2 are identified with black squares in Fig. 1 and
they all fall on the curve c(f2)

n (u), indicated with a green
line. This line consists of a lower bound for any integer
composed by 2, except for 2, 22, and 23.

It is straightforward to extend the analysis above to
any other family of semiprimes. The particular case of
the square-free semiprimes containing the number 3, de-
noted by f3, is shown in Fig. 1. The components of family
f3 are marked with black triangles and they are exactly
located over the cyan curve c(f3)

n (u) [29].

Interacting spins.— Analogously to the system of cou-
pled harmonic oscillators, we now show that two inter-
acting spins with a large quantum number S is another
physical system that can be used to identify primes. In
the Hamiltonian of Eq. (2), we assume that HA = ~ω0S

z
A,

where SzA is the z-component of the spin operator of
part A and SzA|mA〉 = mA|mA〉, and equivalently for

part B. The initial state is the product of spin coherent
states [28], |Ψ(0)〉 = |sA sB〉, where

|sA sB〉 ≡ Ns
2S∑

nA,nB=0

snAA snBB
nA!nB !

√(
2S
nA

)(
2S
nB

)
|nA − S, nB − S〉,

where Ns = (1 + u2)−2S and we chose |sA|2 = |sB |2 = u.
The evolving linear entanglement entropy (3) becomes

SspinL (t) = 1−
2S∑

j,k,l,m=0

ξj,k,l,m u
j+k+l+me−iωt(j−k)(l−m),

(11)
where ξj,k,l,m ≡

(
2S
j

)(
2S
k

)(
2S
l

)(
2S
m

)
(1+u)−8S . The Fourier

series of Eq. (11) has the same structure as Eq. (5), but
with the coefficients

c̄n(u) = 4

2S−1∑
k,m=0

2S∑
j>k

2S∑
l>m

ξj,k,l,m u
j+k+l+mδn(j−k)(l−m).

The nonvanishing terms in the equation above are again
those for which µ ≡ (j−k) and ν ≡ (l−m) belong to the
set Λn of divisors of n. However, this system is bounded,
so the upper limits of the above summations add new
constraints to µ and ν. Given a value for k and m, we
have that µ ∈ Ik ≡ [1, 2S − k] and ν ∈ Im ≡ [1, 2S −m].
In addition, since δnµν implies that ν = n/µ, we also get
that µ ∈ Im,n ≡ [ n

2S−m , n]. Therefore,

c̄n(u) = 4

2S−1∑
k,m=0

∑
µ∈Λ̄

(k,m)
n

ξ̄ u2k+2m+µ+n/µ, (12)

where ξ̄ ≡ ξk+µ,k,m+n
µ ,m

and Λ̄(k,m)
n is the set of divisors

of n that satisfies all constraints commented above,

Λ̄(k,m)

n ≡ Λn ∩ Ik ∩ Im,n. (13)

Contrary to SoscL (t) in Eq. (5), there is a finite number

of Fourier modes in SspinL (t) due to the finite Hilbert
space for the spin system. For n > 4S2, we have that
Ik ∩ Im,n = ∅ for any value of k and m, so Λ̄(k,m)

n = ∅
and c̄n(u) = 0. In what follows, to assess the primality
of n, we conveniently divide the interval 1 < n ≤ 4S2 in
two regions of interest, region I (1 < n ≤ 2S) and region
II (2S < n ≤ 4S). In the complementary range 4S <
n ≤ 4S2, one cannot find a behavior that distinguishes
primes from composite numbers. There, even though all
amplitudes of the Fourier modes for a prime n vanish,
the same can also happen to some composite numbers.

Region I (1 < n ≤ 2S): A careful inspection of Eq. (13)

reveals that 1 ∈ Λ̄
(k,m)
n for all values of k and 0 ≤ m ≤

2S − n, while n ∈ Λ̄
(k,m)
n for all values of m and 0 ≤ k ≤

2S − n. Applying these results to Eq. (12), we find that,
for n prime, c̄n(u) = c̄(p)n,I(u), where

c̄(p)n,I(u) ≡ 8 (1 + u)−8SG1(u)Gn(u), (14)
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FIG. 2. Setup for the identification of prime numbers. The
symbols BS, HWP, PBS, M, KM, and PD refer to beam split-
ter, half-wave plate, polarizing beam splitter, mirror, Kerr
medium, and photodiode, respectively. See text for details.

with Gχ(w) ≡
∑2S−χ
k=0

(
2S
k

)(
2S
k+χ

)
w2k+χ. On the other

hand, for a composite number n > 1 inside region I, we
have that c̄n(u) = c̄(p)n (u) + d̄n,I(u), where

d̄n,I(u) ≡ 4
2S−1∑
k,m=0

∑
µ∈Λ̄

′(k,m)
n

ξ̄ u2k+2m+µ+n/µ (15)

and Λ̄′(k,m)
n ≡ Λ′n∩Ik∩Im,n, where Λ′n was defined above

Eq. (9). One can show that at least for k = m = 0, there
is a positive non-null term in Eq. (15). Therefore, for a
composite number, we necessarily have c̄n(u) > c̄(p)n,I(u)
and this inequality can be employed in the search for
prime numbers in region I.

Region II (2S < n ≤ 4S): In this case, prime modes
are not included in the Fourier series of Eq. (11). Indeed,
for a prime number n, we now have that 1 6∈ Im,n and
n 6∈ Ik, which implies that Λ̄(k,m)

n = ∅ and c̄n(u) = 0. For
a composite n in the same interval, similarly to region I,
there is at least one integer in Λn, in addition to 1 and
n, so that c̄n(u) > 0. So we can distinguish primes from
composite numbers by checking if c̄n(u) = 0 or c̄n(u) 6= 0.
Experimental proposal.— The Hamiltonian for the two

coupled harmonic oscillators studied above also describes
the interaction between two optical fields via a Kerr non-
linear medium [30, 31]. In Fig. 2, we show the sketch
of an experimental setup for implementing this optical
system. A laser beam of frequency ω0 and linear polar-
ization at 45◦ is sent to a polarizing beam splitter (PBS).
The vertically polarized (l) component goes directly to
the homodyne detection scheme [32], shown in the lower
right corner of the figure, to act as the local field. The
horizontally polarized (↔) component passes through a
half waveplate (HWP), which rotates the polarization to
45◦, and enters an unbalanced Mach-Zehnder interfer-
ometer, identified in Fig. 2 with dashed lines. In the
interferometer, after the PBS, the l component beam
propagates through the short path, and the ↔ one goes
through the long course. The path difference is longer
than the coherence length, so that the recombined↔ and
l beams at the interferometer output PBS are separable
and no longer result in a pure mode with linear diago-
nal polarization. Next, these two beams are injected in

the nonlinear Kerr medium (KM) of length L and Kerr
optical nonlinearity χ(3). During the propagation time
inside the KM, each beam will experience a modified in-
dex of refraction due to the action of the other beam.
This is how the coupling between the oscillators is physi-
cally implemented. By varying the length L, one changes
the interaction time t. After passing KM, the ↔ and l
beams are split again. To identify the prime numbers, we
measure one of the beams and ignore the other, which is
equivalent to performing the trace over one of the in-
teracting systems. We can analyze any of the two beams
because of the interaction symmetry. In Fig. 2, we choose
the l beam, which goes to the homodyne detector, where
quantum state tomography is performed to reconstruct
the density matrix ρA. With the reduced density matrix,
we calculate the linear entanglement entropy. After sev-
eral experimental realizations spanning the needed values
of t, curves like those in Fig. 1 can be generated.
Conclusion.— This paper shows that by analyzing the

bipartite entanglement in time, one can identify prime
and semiprime numbers in N. The main ingredient is
a Hamiltonian composed of two parts, A and B, with
equidistant energy levels for HA and HB . We discussed
how this idea could be implemented taking advantage of
an existing experimental setup.

Our work resonates with the Hilbert-Pólya conjecture
in the sense of proposing a physically measurable quan-
tity to determine prime numbers. We speculate that
there may be a way to connect our results with ζ(s). In
fact, by definingA(n, u) ≡ cn(u)−c(p)n (u) for a fixed u, the
task of counting primes along N is equivalent to counting
the zeros of A(n, u). This alternative method to build
π(n) could be used to study the zeros of ζ(s) by means,
for example, of a hypothetical inversion of the Riemann
series that connects s0 with π(n), shedding new light on
the Riemann hypothesis.

Our last remark concerns the semiclassical approaches
originated from the ideas of Berry and Keating [8]. The
semiclassical version of the linear entanglement entropy
was addressed in [33, 34] for the same two physical sys-
tems treated here. In those papers, entanglement is
reproduced by summing over sets of classical trajecto-
ries determined by the solutions of a given transcenden-
tal equation. The purely quantum formalism presented
here encourages the re-examination of those works aim-
ing at connecting those solutions with the distribution of
primes.
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