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In this work, we consider two spins initially prepared in a product of coherent states and study
their entanglement dynamics due to a general interacting Hamiltonian. We adopt an approach
that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density
operator, assumed as an entanglement quantifier. The resulting expression depends on sets of four
trajectories, originated from the underlying classical description, and having mutually connected
final phase-space points. Such classical elements, which are capable to reproduce the quantum
entanglement even for long values of propagation time, arise when we assume a proper analytical
continuation of the classical phase space onto a complex domain. We apply this theory to a particular
physical system, showing that taking into account only a few sets of complex trajectories is enough to
get an excellent agreement between the semiclassical linear entropy of the reduced density operator
and its quantum counterpart.
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I. INTRODUCTION

In 1935, Einstein, Podolsky, and Rosen [1] shook the
structures of the quantum mechanics—which was just a
newborn theory at that time—, asserting that the phys-
ical description provided by its formalism was not com-
plete. The crisis generated by the authors had rapid an-
swers given by the scientific community, among which
we highlight an article written by Schrödinger [2], where
he coins the term entanglement and announces it as the
phenomenon causing that surprising conclusion. In that
contribution, Schrödinger was incisive about the non-
classical nature of entanglement, an idea that counter-
poses any attempt to readjust the quantum formalism
with classical elements.

Thirty years later, this discussion was re-expressed in
solid mathematical grounds by Bell [3], who formulated
the notion of local hidden variables, a construction that
naturally emerges from the paper of Einstein and his col-
laborators [1], and demonstrated that the quantum for-
malism cannot be supplemented by such a classical expe-
dient. This result clearly favors Schrödinger’s argument
expressing entanglement as [2] “the characteristic trait
of quantum mechanics, the one that enforces its entire
departure from classical lines of thought.” Another im-
portant point that should be mentioned is the fact that
Bell’s work has inaugurated the studies concerning the
quantum statistical correlations, in which entanglement
has a crucial role, culminating with the emergence of the
quantum information theory [4–6].

While a significant part of researchers has made efforts
to unravel entanglement inside the quantum formalism,
many others have been interested in understanding as-
pects of the quantum-classical connection involving this
concept [7–33]. Despite the previous arguments, which
disconnect entanglement from the classical mechanics,
notice that this question is still legitimate: For systems
prepared in the semiclassical regime, where both quan-

tum and classical theories can give accurate predictions
of their behavior, it is expected that two different en-
tanglement manifestations appearing in the quantum de-
scription have distinct symptoms in the respective clas-
sical treatment. In this scenario, it is remarkable that
almost the totality of the aforementioned papers deals,
to some extent, with quantum-chaos approaches. Very
shortly, this kind of investigation aims to associate the
regime of the underlying classical dynamics—regularity
or chaos—with properties of the quantum entanglement.

Were we extracting from all these papers [7–33] the
most typical result, it would be the statement that the
rate of entanglement growth for a given initial quantum
state, due to the action of an interacting Hamiltonian,
is greater when its classical counterpart experiments a
chaotic dynamics, compared with a regular regime. It is
implied in this sentence that the quantum state should be
initially well-localized in order to be eligible for a proper
classical treatment. Meanwhile, we also need to point
out that some works have questioned this characteriza-
tion [28–33], showing that some states, whose classical
counterparts do present regular dynamics, have entan-
glement growth which would be compatible with chaotic
behavior.

In the present paper, we semiclassically investigate the
entanglement dynamics between two spins, adding new
elements in this research field. Our work can be seen
as an extension of another contribution [24], where only
canonical degrees of freedom were considered. Here, we
contemplate spin variables. The approach consists of
taking the linear entropy of the time-dependent reduced
density operator to characterize entanglement and de-
riving its approximated expression. The starting point
for this calculation is the semiclassical forward and back-
ward propagators in the spin-coherent-state representa-
tion. The resulting formula only depends on the trajecto-
ries originated from the underlying classical description
of the problem. If we restrict the classical phase space
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to (ordinary) real coordinates, then the semiclassical en-
tropy will be an exclusive function of the trajectory de-
parting from the centroid of the initial state, assumed
as a spin-coherent state. In this case, our result agrees
with the most common conclusion seen in the literature,
as it implies that entanglement behaves according to the
inverse of the stability of that classical trajectory. This
partial result was already published by one of us around
ten years ago [17], and satisfactorily reproduces the exact
calculation just for short evolution times.

The novelty here, besides the treatment of spin vari-
ables, is analytically extending the real phase-space to
the complex domain, so that we were able to identify new
(complex) trajectories contributing to the semiclassical
linear entropy. More precisely, we found that sets of four
classical trajectories with final coordinates mutually con-
nected are involved in the semiclassical computation. We
also show, for a particular Hamiltonian, that the consid-
eration of just a few sets of trajectories produces excellent
results when compared with the quantum calculation.

We organize the paper as follows. In Sect. II, while
important preliminary results are introduced—as the
coherent-state representation (Sect. II A), the semiclas-
sical forward and backward propagators (Sect. II B), and
the saddle point method (Sect. II C)—, we derive the for-
mula for the semiclassical linear entropy. After that, in
Sect. III, we make a first attempt to understand what
is behind the new contributing trajectories, looking for
them in the vicinity of real trajectories. At last, a nu-
merical application of the theory is performed in Sect. IV
and our final remarks are presented in Sect. V.

II. SEMICLASSICAL LINEAR ENTROPY

Taking ρ̂ as a pure density operator representing a
state consisting of two parts, A and B, we can evalu-
ate their entanglement by calculating the linear entropy
of the reduced state ρ̂A = TrB(ρ̂), expressed by

S(ρ̂A) = 1− P (ρ̂A). (1)

This quantity is symmetric, in the sense that S(ρ̂A) =
S(ρ̂B), and P (ρ̂A) = TrA[ρ̂2

A] is the purity of ρ̂A. Es-
sentially, if the total state ρ̂ is separable, then the purity
of its reduced states is always equal to 1. On the other
hand, for the case of entangled states, the purity lies in
the range 0 ≤ P (ρ̂A) < 1. Clearly, these properties pro-
mote S(ρ̂A) to a kind of entanglement sensor for pure
bipartite states: it returns 0, for separable states, and a
value such that 0 < S(ρ̂A) ≤ 1, for the entangled ones.

In the present paper, we are interested in describ-
ing entanglement as a function of time T , so that it
is convenient to write the state under investigation as

ρ̂T = ÛT ρ̂0Û
†
T , where ÛT is a general time-evolution

operator. Concerning the initial state ρ̂0, one reminds
that it must be considered as a pure state, that is,
ρ0 = |ψ0〉〈ψ0|. For the sake of clearness, we will initially
consider a discrete basis {|nA〉 ⊗ |nB〉}, where {|nA〉}

spans HA, the Hilbert space assigned to part A, and the
same for part B. Given all these points, in order to de-
rive a semiclassical formula for Eq. (1), notice that we
simply need to deal with

PT =
∑

nA,...,mB

〈nA, nB |ÛT |ψ0〉〈ψ0|Û†T |mA, nB〉

× 〈mA,mB |ÛT |ψ0〉〈ψ0|Û†T |nA,mB〉,
(2)

which is an explicit formula for the purity of a reduced
state obtained from |ψ0〉, evolved in time according to a

general ÛT .
As our goal is studying spin systems in a semiclassical

approach, the next step is rewriting Eq. (2) in terms of a
more appropriate basis. We will adopt the spin-coherent-
state representation, introduced in the following.

A. Spin coherent states

For simplicity, we will begin the present discussion re-
stricted to only one part of the bipartite system. Later
on, results will be straightforwardly extended to the
whole state. We also need to comment that there are
several references dealing with this subject [34–38], from
which this subsection was written.

Essentially, a spin coherent state |s〉 is interpreted as
the most classical spin state, in the sense that it saturates
the uncertainty relation [39] for the angular momentum

operator Ĵ = (Ĵx, Ĵy, Ĵz),

〈∆Ĵ2
a〉〈∆Ĵ2

b 〉 ≥
1

4
|〈[Ĵa, Ĵb]〉|2 +

1

4
|〈{∆Ĵa,∆Ĵb}〉|2,

where a and b can assume x, y, or z. For the (2j + 1)-
dimensional case, |s〉 is explicitly given by

|s〉 =
exp

{
sĴ+

}
(1 + |s|2)

j
| − j〉, (3)

where Ĵ+ = Ĵx + iĴy is the raising spin operator and

the ket | − j〉 is the extremal eigenstate of Ĵz with eigen-

value −j. Notice that Ĵ and the complex number s, used
to label the state, are dimensionless quantities.

An interesting and useful way to represent a coherent
state can be reached from its mean value

〈Ĵ〉 = jn,

where n is a unitary vector conveniently written in spher-
ical coordinates as n = (sin θ cosφ, sin θ sinφ, cos θ). The
connection between the label s and n becomes particu-
larly simple when a stereographical projection involving
the complex plane s and the unitary sphere is consid-
ered. Making the south pole correspond to s = 0, while
the north pole corresponds to s→∞, we find that

s = |s|e−iφ, with |s| = cot(θ/2). (4)
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Since |s〉 are minimum-uncertainty states, it becomes

natural to connect 〈Ĵ〉 with a classical angular momen-
tum jn, which justifies the appeal to use them in semi-
classical approaches.

In practice, we can say that the wide use of coher-
ent states in many research fields is somehow due to
their capacity of generating a basis for the states in
Hilbert’s space. In particular, it allows for defining an
over-complete unity resolution∫

|s〉〈s|dµ(s) = 1̂, dµ(s) ≡ 2j + 1

π

ds(R)ds(I)

(1 + |s|2)
2 , (5)

where s(R) and s(I) are, respectively, the real and the
imaginary part of s, and the integral runs from −∞ to
+∞. In addition, it is important to mention that spin
coherent states are non-orthogonal,

〈s|s̃〉 =
(1 + s∗s̃)

2j

(1 + |s̃|2)
j

(1 + |s|2)
j
,

where s∗ (s̃∗) is the complex conjugate of s (s̃).
We can now return to the original problem of entan-

glement in bipartite states, constraining the initial state
as a product of two coherent states, that is,

|ψ0〉 = |s0〉 = |s0A〉 ⊗ |s0B〉 ≡ |s0A, s0B〉, (6)

where both |s0A〉 and |s0B〉 are given by Eq. (3). More-
over, according to Eq. (5), we can rewrite Eq. (2) in the
spin-coherent-state representation, finding

PT =

∫
〈sA, sB |ÛT |s0〉 × 〈s0|Û†T |s̃A, sB〉

× 〈s̃A, s̃B |ÛT |s0〉 × 〈s0|Û†T |sA, s̃B〉 dµ,

(7)

where dµ ≡ dµ(sA) dµ(s̃A) dµ(sB) dµ(s̃B). In the inte-
grand, we identify four quantum propagators, defined by

Kξ (sη, sµ, T ) = 〈sηA, sηB |e−iξĤT/~|sµA, sµB〉, (8)

where Ĥ is the Hamiltonian, ÛT = e−iĤT/~, sη =
(sηA, sηB), and sµ = (sµA, sµB). The label ξ refers to
forward (ξ = +) or backward (ξ = −) propagators.

Equation (7) is proper to apply our semiclassical ap-
proximation, replacing each quantum propagator Kξ

with their respective semiclassical formulas Kξ. For this
reason, in the next subsection, we briefly discuss such
approximated expressions.

B. Semiclassical propagator

There is a vast literature concerning the application
of semiclassical approximations to the forward quan-
tum propagator K+, for both canonical and spin de-
grees of freedom [40–53]. On the other hand, concern-
ing the backward propagator K−, we point out that we

have worked with its semiclassical version in the last
decade [17, 19, 24, 54]. Very shortly, to deduce a semi-
classical expression for K±, one starts from its path inte-
gral formulation, identifying, under proper assumptions
(j → ∞ and/or ~ → 0), certain classical trajectories
as the critical paths of integration. Thus, to conclude
the approximation, the integrand is expanded up to the
second order around them, and the resulting Gaussian
integral is computed.

The classical trajectory involved in this kind of calcu-
lation has initial and final boundary conditions mandato-
rily related to the labels of the ket and the bra appearing
in Eq. (8). Such constraints are simplified when a new
set of classical variables u = (uA, uB) and v = (vA, vB)
is introduced, according to

H̃(u,v) = H̃(s, s∗) ≡ 〈s|Ĥ|s〉. (9)

Using it, the mentioned boundary conditions become

u′ = sµ and v′′ = s∗η, for ξ = +,
u′′ = sµ and v′ = s∗η, for ξ = −, (10)

where (here and in the rest of the paper) we use the
notation that a single (double) prime stands for initial
(final) time. Classical equations of motion in the new
variables are

∂H̃

∂uA
=
−2i~jv̇A

(1 + uAvA)
2 and

∂H̃

∂vA
=

2i~ju̇A
(1 + uAvA)

2 , (11)

and the equivalent for the variables assigned to part B.
The peculiarity of the semiclassical propagators in co-

herent states resides in the fact that the boundary con-
ditions (10) are generally overdetermined, provided that
one keeps the natural assumption that u is the complex
conjugate of v, and vice-versa. In other words, Eq. (10)
implies the complete knowledge of both initial and fi-
nal phase-space points. As a trajectory is determined by
only one of them, the possibility of finding one that satis-
fies (10) is reduced to the very singular case where sη and
sµ are fortuitously connected by the classical dynamics.

This problem is surpassed by realizing that the theory
allows for the analytical continuation of the (real) classi-
cal phase space onto the complex domain. In this case, u
and v are seen as independent variables and the searching
for trajectories, which are now complex, becomes possi-
ble, in general. From this scenario, we emphasize the im-
portance of distinguishing real and complex trajectories.
While the former lives in the ordinary classical phase
space, having the property u∗ = v, for all instants of
time, the last one inhabits an extended (complex) phase
space and u∗ 6= v. We should also comment that more
than one trajectory satisfying Eqs. (10) and (11) may
exist, and all of them in principle should be used in the
calculation of Kξ.

The stability of the complex trajectories presented
above is explicitly involved in the semiclassical calcula-
tions here studied. For this reason, it is important to
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define the stability matrix M through the expression(
δu′′

δv′′

)
=

(
Muu Muv

Mvu Mvv

)(
δu′

δv′

)
. (12)

Essentially, M is responsible for the evolution of suffi-
ciently small initial displacements δu′ and δv′ until the
final time T . As we will show [see Eq.(15) below], the ele-
ments of M can be written in terms of the second deriva-
tives of the complex action Sξ = Sξ(s∗η, sµ, T ), which is
given by

Sξ = ξ

∫ T

0

[
i~jχ− H̃

]
dt− i~jΛ̃, (13)

where χ ≡ χA + χB and Λ̃ ≡ Λ̃A + Λ̃B , with

χA ≡
u̇AvA − uAv̇A

1 + uAvA
,

Λ̃A ≡ ln [(1 + u′Av
′
A)(1 + u′′Av

′′
A)] ,

and the same for part B. By differentiating Sξ, we get
the relations

∂S+

∂u′A
=
−2i~jv′A
1 + u′Av

′
A

,
∂S−
∂u′′A

=
−2i~jv′′A
1 + u′′Av

′′
A

,

∂S+

∂v′′A
=
−2i~ju′′A
1 + u′′Av

′′
A

,
∂S−
∂v′A

=
−2i~jv′A
1 + u′kv

′
A

,

(14)

and the analog for part B, which will be also very useful
later. Now, if we differentiate Eq. (14) and properly rear-
range the terms (for details, see Appendix A of Ref. [19]),
we have

i
~S

(+)
u′v′′ = (A′ + B′) M−1

vv ,
i
~S

(−)
v′u′′ = (A′ + B′) M−1

uu,
i
~S

(+)
v′′v′′ = (A′′ + B′′) MuvM−1

vv −C′′,
i
~S

(−)
u′′u′′ = (A′′ + B′′) MvuM−1

uu −D′′,

(15)

where

S
(ξ)
αβ ≡

(
∂2Sξ

∂αA∂βA

∂2Sξ
∂αA∂βB

∂2Sξ
∂αB∂βA

∂2Sξ
∂αB∂βB

)
.

In Eq. (15), we also define the auxiliary matrices C′′ ≡
u′′A

2
A′′ + u′′B

2
B′′ and D′′ ≡ v′′A

2
A′′ + v′′B

2
B′′, with

A ≡ 2j

(1 + uAvA)2
IA and B ≡ 2j

(1 + uBvB)2
IB ,

where

IA ≡
(

1 0
0 0

)
and IB ≡

(
0 0
0 1

)
.

To write the semiclassical formula of Kξ, we still need
to define Gξ = Gξ(s∗η, sµ, T ) and Dξ = Dξ(s∗η, sµ, T ), such
that

Gξ =
i~ξ
4

∫ T

0

[
∂u̇A
∂uA

− ∂v̇A
∂vA

+
∂u̇B
∂uB

− ∂v̇B
∂vB

]
dt,

Dξ =
eΛ̃

4j2
det

(
i

~
S

(ξ)
sµs∗η

)
.

(16)

Given all these functions, we finally write

Kξ
(
s∗η, sµ, T

)
=
∑
c.t.

√
Dξ e

i
~ (Sξ+Gξ)−Λ, (17)

where the term Λ ≡ ΛA + ΛB is originated from the
normalization of the states |sη〉 and |sµ〉, with ΛA ≡
j ln

[
(1 + |sηA|2)(1 + |sµA|2)

]
and the equivalent for ΛB .

The sum runs over all complex trajectories as defined
earlier.

C. Saddle point method

As already announced, we will now replace each quan-
tum propagator seen in Eq. (7) with its semiclassical ver-
sion (17). For clearness, we list below the replacements
that we want to do,

〈sA, sB |ÛT |s0〉 → K1(s∗A, s
∗
B ; s0;T ),

〈s0|Û†T |s̃A, sB〉 → K2(s∗0; s̃A, sB ;T ),

〈s̃A, s̃B |ÛT |s0〉 → K3(s̃∗A, s̃
∗
B ; s0;T ),

〈s0|Û†T |sA, s̃B〉 → K4(s∗0; sA, s̃B ;T ).

(18)

Notice that K1 and K3 refer to semiclassical forward
propagators, while K2 and K4 are the backward ones.
From this point on, we will refer to the trajectory in-
volved in the calculation of Kk simply as [uk(t),vk(t)],
for k = 1, . . . , 4. In accordance with the (extended) com-
plex phase space discussed in the last subsection, we will
consider the pair (sA, s

∗
A) as independent variables, and

the same for (s̃A, s̃
∗
A), (sB , s

∗
B), and (s̃B , s̃

∗
B). Thus, tak-

ing into account the boundary conditions (10), we rewrite
the integration variables of Eq. (7) as

s∗A → v′′1A, s
∗
B → v′′1B , s̃A → u′′2A, sB → u′′2B ,

s̃∗A → v′′3A, s̃
∗
B → v′′3B , sA → u′′4A, s̃B → u′′4B .

(19)

Following this approach, it is also important to revisit
Eq. (5), defined as an integration over the whole com-
plex plane s. By considering s and s∗ as independent
variables, this integral is reinterpreted as two path in-
tegrals, one along the s-plane and the other along the
s∗-plane. In this case, we have

dµ(s) =
2j + 1

2πi

ds ds∗

(1 + s s∗)2
,

a result that should be joined to our calculation. When
we accomplish all these tasks, Eq. (7) becomes

PT ≈
∫ √

D1

√
D2

√
D3

√
D3 exp

[
Φ
]

dµ, (20)

where

Φ ≡
4∑
k=1

[
i

~
(Sk + Gk)

]
− ln

[
(1 + |s0A|2)(1 + |s0B |2)

]4j
− ln (1 + u′′4Av

′′
1A)

2j − ln (1 + u′′2Av
′′
3A)

2j

− ln (1 + u′′2Bv
′′
1B)

2j − ln (1 + u′′4Bv
′′
3B)

2j
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and

dµ ≡
(

2j + 1

2πi

)4
du′′4Adv′′1A

(1 + u′′4Av
′′
1A)2

du′′2Adv′′3A
(1 + u′′2Av

′′
3A)2

× du′′2Bdv′′1B
(1 + u′′2Bv

′′
1B)2

du′′4Bdv′′3B
(1 + u′′4Bv

′′
3B)2

.

(21)

Functions Dk, Sk, and Gk clearly refer to their respec-
tive semiclassical propagator Kk. Notice that the sum
over complex trajectories was omitted in Eq. (20), for
simplicity. This point will be resumed later.

We are now ready to deduce a semiclassical expression
for the linear entropy, attacking Eq. (20) through the
saddle point method (or steepest descent method) [55].
To start the computation, we first recognize that the line
integral (20) is defined in a space of eight complex vari-
ables, which we will rewrite as

rT ≡ (v′′1A, v
′′
1B , u

′′
2A, u

′′
2B , v

′′
3A, v

′′
3B , u

′′
4A, u

′′
4B), (22)

where rT indicates the transpose of the column vector r.
For each point of the integration path, the input parame-
ters of all Kk are automatically determined, which define
the four trajectories needed to evaluate the integrand.
Then, the direct prescription to compute integral (20) is
following the path of integration and summing the con-
tribution of each point.

However, it happens that the integrand of Eq. (20)
fastly oscillates around zero along any generic path. It
occurs because of the semiclassical regime assumed here:
as j → ∞ (with ~ ∼ 1/j), a simple inspection in the
function Sk, present in Φ, assures this behavior. There-
fore, one can say that the integral vanishes along generic
paths, which is actually the reason why we have so far ne-
glected any information about paths of integration. The
purpose of the steepest descent method consists of find-
ing the saddle points of the integrand and, supported by
Cauchy’s integral theorem, performing the integral along
its steepest descents. By doing so, the rapid oscillations
are dropped out because the imaginary part of Φ is con-
stant along this particular path [55]. Moreover, in the
regime considered, in general, it is enough to replace Φ
with its second order expansion around the saddle point,
so that solving Eq. (20) simply becomes computing a
Gaussian integral.

The saddle point r̄ is given by the solution of ∇Φ = 0,
where the derivatives are taken with respect to the com-
ponents of r. In the semiclassical limit, the derivatives
of Gk can be disregarded in comparison to other terms
of Φ. Therefore, with the help of Eq. (14), we find that
the saddle point should satisfy

v̄′′1A = v̄′′4A, v̄
′′
1B = v̄′′2B , ū

′′
2A = ū′′3A, ū

′′
2B = ū′′1B ,

v̄′′3A = v̄′′2A, v̄
′′
3B = v̄′′4B , ū

′′
4A = ū′′1A, ū

′′
4B = ū′′3B .

(23)

Notice that these relations imply that the final points of
the four critical trajectories are mutually connected. For
instance, the final point (ū′′1A, ū

′′
1B , v̄

′′
1A, v̄

′′
1B) of the trajec-

tory entering in K1 must be equal to (ū′′4A, ū
′′
2B , v̄

′′
4A, v̄

′′
2B),

which represents a joint constraint with the final points of
the trajectories 2 and 4 (analogous relations can be found
for other trajectories). Because of this property, we also
call these four trajectories, used to evaluate the semiclas-
sical linear entropy, as entangled-boundary-condition tra-
jectories, in accordance with the nomenclature adopted
in Ref. [24].

The eight equalities of Eq. (23), in addition to the ini-
tial conditions

ū′1 = ū′3 = s0 and v̄′2 = v̄′4 = s∗0, (24)

give all prescriptions needed to find contributing sets of
four complex trajectories. In particular, when v̄′1 = v̄′3 =
s∗0 and ū′2 = ū′4 = s0, all trajectories are the same and
real, as dicussed in Sect. II B. As studied in Refs. [17,
19], these trajectories also satisfy Eq. (23), leading to a
semiclassical approximation for the linear entropy which
agrees with the quantum result only for short evolution
time. As previously mentioned, here we will get a better
accuracy by including the complex trajectories.

Once the saddle point of the integrand is understood,
we proceed with the calculation, performing the expan-
sion of the integrand around it. As usual, functions Gk
and prefactors Dk are just calculated at the saddle point,
so that

PT ≈
(

2j + 1

2πi

)4
(

4∏
k=1

√
D̄k
J̄k

)
eΦ̄IG, (25)

where J̄k = (1 + ū′′kAv̄
′′
kA)(1 + ū′′kB v̄

′′
kB) and IG is the

Gaussian integral

IG ≡
∫

d8r exp

[
−1

2
rT Q̄ r

]
=

√
(2π)8

det Q̄
.

The bar over the functions indicates that they should be
evaluated with the saddle point r̄, and Q̄ is the 8 × 8
matrix

Q̄ ≡ −


R̄

(1)
vv −B̄(2) 0 −Ā(4)

−B̄(1) R̄
(2)
uu −Ā(3) 0

0 −Ā(2) R̄
(3)
vv −B̄(4)

−Ā(1) 0 −B̄(3) R̄
(4)
uu

 , (26)

where

R̄(k)
vv ≡ C̄(k) +

i

~
S̄

(k)
v′′v′′ and R̄(k)

uu ≡ D̄(k) +
i

~
S̄

(k)
u′′u′′ .

The definition of Ā(k), B̄(k), C̄(k), D̄(k), and S̄
(k)
αβ are pre-

sented right below Eq. (15), provided with information
about the trajectory number k.

Equation (25) can be substantially simplified if we re-
place the second derivatives of the complex action with
the elements of the stability matrix M, according to
Eq. (15). Using this strategy, we finally get the semi-
classical linear entropy of the reduced state derived from
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the pure state |ψ0〉, given by Eq. (6), as a function of the
time evolution T

Ssc(T ) = 1−
∑
sets

√
A

det F
e
i
~ [F1−F2+F3−F4]. (27)

Here, for simplicity, we remove the bar over the symbols
and define the matrix

F ≡


−M

(1)
uv IBM

(2)
uu 0 IAM

(4)
uu

IBM
(1)
vv −M

(2)
vu IAM

(3)
vv 0

0 IAM
(2)
uu −M

(3)
uv IB M

(4)
uu

IAM
(1)
vv 0 IBM

(3)
vv −M

(4)
vu

 ,

and the functions

Fk ≡
∫ T

0

(
i~jχk − H̃

)
dt+ Gk

and A ≡ AAAB , with

AA ≡
4∏
k=1

1 + u′′kAv
′′
kA

1 + u′kAv
′
kA

(
1 + u′kAv

′
kA

1 + |s0A|2

)2j

,

and the equivalent for AB .

Equation (27) is the main result of the present paper
and an example of its application will be presented in
Sect. IV. The sum in Ssc(T ) indicates that all sets of clas-
sical trajectories respecting the boundary conditions (23)
and (24) are, in principle, important to approach the
quantum linear entropy (1). Notice that this consider-
ation recovers the arbitrary exclusion of the summation
in Eq. (20). However, we need to comment that numeri-
cal evidence shows that some sets of trajectories furnish
unphysical results which give origin to unexpected di-
vergent behaviors, for example. These contributions will
be arbitrarily excluded from the calculation. Although
we do not mathematically prove this argument, we asso-
ciate this issue with those saddle points of Eq. (20) whose
steepest descents cannot be deformed from the original
path of integration. We remind that this kind of problem
is very common in applications of coherent state propa-
gators [44, 56].

The derivation of Ssc(T ) assumes the semiclassical
regime, as we have considered large values of j. Work-
ing with the extremal case j → ∞ and based on the
correspondence principle, we can say that real trajecto-
ries are enough to reproduce the quantum behavior. By
relaxing this condition, we expect that complex trajecto-
ries become important to the approximation. Then, we
can think that the complex contributions closer to the
real one should be among the most important to eval-
uate Ssc(T ). For this reason, in the next section, we
investigate general conditions needed for finding sets of
quasi-real trajectories, as an attempt to understanding
their origin.

III. SETS OF QUASI-REAL TRAJECTORIES

A natural question that arises from the present theory
concerns the investigation of the physical mechanism be-
hind the emergence of complex classical trajectories con-
tributing to Eq. (27). The comprehension of this process
will clarify aspects of the quantum-classical connection
related to the entanglement phenomenon. As an effort to
unravel this issue, in the present section, we will explore
the vicinity of the real contributing trajectory, searching
for complex trajectories satisfying the boundary condi-
tions (23) and (24).

To follow this idea, we remind that, for any input pa-
rameters s0 and T , we know that the set of four real
and identical trajectories starting from ū′ = s0 and
v̄′ = s∗0 contributes to Eq. (27). In this section, a bar
over the symbol refers to the real trajectory. We will
look for four complex trajectories wk(t) ≡ [uk(t),vk(t)],
for k = 1, . . . , 4, close to the real one and constrained to
Eqs. (23) and (24), with the former rewritten here as

w′′1 =

(
IA 0
0 IA

)
w′′4 +

(
IB 0
0 IB

)
w′′2 ,

w′′3 =

(
IA 0
0 IA

)
w′′2 +

(
IB 0
0 IB

)
w′′4 .

(28)

As all these trajectories are in the vicinity of the real one,
we have

wk(t) = w̄(t) + δwk(t), for k = 1, . . . , 4. (29)

where δwk(t), by construction, are small complex num-
bers. Notice that, if we were able to calculate all δw′k
through the imposition of the initial and final boundary
conditions, we get a new set of four contributing trajec-
tories. Imposing the initial constraints implies

δu′1A = δu′3A = δv′2A = δv′4A = 0, (30)

and the same for part B. Notice that δv′1A, δv′1B , δv′3A,
δv′3B , δu′2A, δu′2B , δu′4A, and δu′4B are still undetermined.
To solve these variables we need to work with condi-
tions (28). Summing and subtracting them, we get, re-
spectively,

δw′′1+3 = δw′′2+4,

δw′′1−3 =

(
IB − IA 0

0 IB − IA

)
δw′′2−4,

(31)

where δw1±3 ≡ δw1 ± δw3 and δw2±4 ≡ δw2 ± δw4.
The next step is to write the final displacements

as functions of the initial ones using the stability ma-
trix (12), finding

M̄uvδv
′
1+3 = M̄uuδu

′
2+4,

M̄vvδv
′
1+3 = M̄vuδu

′
2+4,

M̄uvδv
′
1−3 =

(
−1 0
0 1

)
M̄uuδu

′
2−4,

M̄vvδv
′
1−3 =

(
−1 0
0 1

)
M̄vuδu

′
2−4.

(32)
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By manipulating the first two equations, we get[
M̄vv − M̄vuM̄−1

uuM̄uv

]
δv′1+3 ≡ M̄+

13δv
′
1+3 = 0,[

M̄uu − M̄uvM̄−1
vvM̄vu

]
δu′2+4 ≡ M̄+

24δv
′
2+4 = 0,

(33)

where the former (latter) assumes that M̄uu (M̄vv) is
invertible. The other two equations of (32) furnish[

M̄vv − M̄?
vuM̄−1

uuM̄?
uv

]
δv′1−3 ≡ M̄−

13δv
′
1−3 = 0,[

M̄uu − M̄?
uvM̄−1

vvM̄?
vu

]
δu′2−4 ≡ M̄−

24δv
′
2−4 = 0,

(34)

where we define

M̄?
uv ≡

(
−1 0
0 1

)
M̄uv,

and the equivalent for M̄?
vu. Using the identities

det M̄ =

{
det
[
M̄uuM̄+

13

]
, for det M̄uu 6= 0,

det
[
M̄vvM̄+

24

]
, for det M̄vv 6= 0,

(35)

according to Eq. (33), we conclude that non-trivial so-
lutions of δv′1+3 and δv′2+4 will exist only if det M̄ = 0.
However, it can be shown (see Ref. [19], appendix C) that

det M̄ =
(1 + ū′′Av̄

′′
A)

2
(1 + ū′′B v̄

′′
B)

2

(1 + ū′Av̄
′
A)

2
(1 + ū′B v̄

′
B)

2 6= 0, (36)

as M̄ is the stability matrix of a real trajectory, that is,
ū = v̄∗. Therefore, the solution of Eq.(32) is

δv′1+3 = δv′2+4 = 0 =⇒
{
δv′1 = −δv′3,
δv′2 = −δv′4.

(37)

Concerning the other two variables δv′1−3 and δv′2−4, in
analogy to Eq. (35), we notice that

det M̄? =

{
det
[
M̄uuM̄−

13

]
, for det M̄uu 6= 0,

det
[
M̄vvM̄−

24

]
, for det M̄vv 6= 0,

(38)

where we define

M̄? ≡
(

M̄uu M̄?
uv

M̄?
vu M̄vv

)
. (39)

Therefore, according to Eq. (34), the condition for finding
non-trivial solutions of δv′1−3 and δv′2−4 is det M̄? = 0.

Contrarily to M̄, for matrix (39) we have not found a
general result for its determinant, so that we should an-
alyze this point for each application. For the particular
case of a non-singular M̄?, we have

δv′1−3 = δv′2−4 = 0 =⇒
{
δv′1 = δv′3,
δv′2 = δv′4.

(40)

Then, according to Eq. (37), we find δw′k = 0 for all k,
implying the absence of complex contributing trajectories
arbitrarily close to the real one. This will be the case of
the system studied in the next section.
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FIG. 1. The gray solid line illustrates the quantum linear
entropy (42) as a function of the dimensionless time τ . We
also show results for the semiclassical entropy (27): the red
dashed line illustrates Ssc when we take into account only
real trajectories, while the blue dotted line contemplates the
inclusion of a few dozens of complex sets. The numerical
parameters used to build this figure are given by Eq. (43).

At last, we highlight that our efforts to probe the vicin-
ity of a real contributing trajectory are justified because
it is expected to be the most important phase-space re-
gion, provided that the semiclassical regime is assumed.
Although we still have no clear understanding of how
complex contributing trajectories could be continuously
originated from the real phase space, we found the con-
dition for it occurs, which is det M̄? = 0.

IV. PHASE COUPLING HAMILTONIAN

Our first application of the present semiclassical theory
concerns a system of two particles, A and B, whose spins
interact with each other according to the Hamiltonian

Ĥpc = λ~[Ĵ
(z)
A ⊗ Ĵ (z)

B ], (41)

where ĴA = (Ĵ
(x)
A , Ĵ

(y)
A , Ĵ

(z)
A ) is the spin operator acting

on A (the same for part B) and λ is the coupling con-
stant. This example was already used in Ref. [19], but
limited to the case where only real trajectories were used
to compute the semiclassical linear entropy (27).

By considering the initial state (6), the quantum en-
tropy (1) for this system becomes

Spc = 1−
∑

c(2j)nA c(2j)mA c
(2j)
nB c(2j)mB e−iλTδAδB , (42)

where δA ≡ nA −mA and

c(2j)nA ≡
(

2j

nA

)
|s0A|σA

(1 + |s0A|2)2j
,

with σA ≡ nA−mA, and the analog for part B. The sum
is over nA, mA, nB , and mB , running from 0 to 2j. As
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(c) τ=0.5

FIG. 2. Contour plots of f(xA1 ) in the xA1 -complex plane. Black lines refer to the curve where Re[f(xA1 )] = 0, while the red
ones refer to Im[f(xA1 )] = 0. The blue curve represents the unitary circle. Solutions of Eq. (46) are given by the intersections
of black and red lines. In panels (a)-(c), the value of τ was chosen to be 0.01, 0.1, and 0.5, respectively. The other numerical
parameters are shown in Eq. (43). A magnification of structures St1,. . . , St4, seen in panel (c), is shown in Fig. 3.

Eq. (42) is clearly periodic in T , with a period Tr ≡ 2π/λ,
it is convenient to define the dimensionless time

τ ≡ T/Tr,

and restrict our study to the interval 0 < τ < 1. In
Fig. 1, for numerical values chosen as

j = 4.5 and s0A = s0B = λ = 1, (43)

we illustrate (black solid line) the behavior of the quan-
tum entanglement dynamics (42) during a period Tr. As
expected, for the initial separable state, Spc is null, grow-
ing up as time increases. Then, after some oscillations for
intermediate values of time, it returns to zero for τ = 1.

In order to obtain the semiclassical linear entropy to
compare with the quantum calculation, we need to con-
sider the equivalent classical description, whose Hamilto-
nian function (9) is given by

H̃pc(u,v) = λ~j2

(
1− uAvA
1 + uAvA

)(
1− uBvB
1 + uBvB

)
.

Therefore, the equations of motion (11) can be eas-
ily solved, so that the trajectories, written in terms of
generic initial conditions u′ and v′, are given by

uA(t) = u′A e+λBt, uB(t) = u′B e+λAt,
vA(t) = v′A e−λBt, vB(t) = v′B e−λAt,

(44)

where

λA ≡ iλj
(

1− u′Av′A
1 + u′Av

′
A

)
,

and the same for λB . We point out that, if one differen-
tiates Eq. (44), the stability matrix (12), which is an im-
portant ingredient of Eq. (27), can be easily achieved [19].

After this brief presentation of the classical descrip-
tion of the problem, we can finally look for the sets
of four entangled trajectories [uk(t),vk(t)], with k =

1, . . . , 4, which contribute to Ssc. Notice that the ini-
tial boundary conditions (24) are easily imposed to the
trajectories (44). The application of the eight final con-
straints (23), on the other hand, requires extensive but
straightforward algebra. The strategy to deal with this
point consists of writing the unknown initial variables as

v′1A = xA1 s
∗
0A, u′2A = xA2 s0A,

v′3A = xA3 s
∗
0A, u′4A = xA4 s0A,

(45)

and the equivalent for B. With these expressions, by
imposing Eq. (23), we get a system of eight variables
(xA1 , . . . , x

A
4 , x

B
1 , . . . , x

B
4 ), and the same number of equa-

tions. By manipulating them, one can show that the
variable xA1 should be a solution of the transcendental
equation

f(xA1 ) ≡ fB
[
fA(xA1 )

]
− xA1 = 0, (46)

where fA (analogously for fB) is a function defined ac-
cording to

fA(x) = exp

[
−2ijλ|s0A|2T (x2 − 1)

(1 + |s0A|2x)(x+ |s0A|2)

]
.

Once Eq. (46) is numerically solved for xA1 , the variable
xB1 can be obtained from xB1 = fA(xA1 ), and the other six
variables are given by

xA2 = 1/xA1 , xA3 = 1/xA1 , xA4 = xA1 ,
xB2 = xB1 , xB3 = 1/xB1 , xB4 = 1/xB1 .

With the values of all these variables in hand, we return
to Eq. (45) to get the rest of the information needed to
find the initial points, u′k and v′k, of the four trajectories
belonging to a contributing set.

In practice, to each solution of the transcendental
equation, we assign a set of trajectories which, in princi-
ple, should be included in Ssc. That is, for the present
application, the task of finding contributing trajectories
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FIG. 3. In panels (a)-(d), we show, respectively, the enlarged
image of the structures St1,. . . ,St4, identified in Fig. 2(c).
Small black circles are placed over some roots of f(xA1 ) to in-
dicate that they are considered in the calculation of Eq. (27).
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FIG. 4. Linear entropy as a function of τ . In panel (a), the red
dashed curve represents the semiclassical entropy exclusively
based on real trajectories, while the blue dotted line shows
the result of Eq. (27) when the roots marked in Fig. 3(a) are
used. This result, for comparison purposes, is reproduced as
the red dashed line in panel (b), where the blue dotted line
represents Ssc, improved by the inclusion of the roots marked
in Fig. 3(b). The same logic is applied to panels (c) and (d),
where the red dashed curve is copied from the previous plot,
and the blue dotted curve shows the result of Ssc when the
roots of Figs. 3(c) and 3(d), respectively, are included. The
gray solid line appearing in all panels shows the quantum
entropy (42). The numerical parameters used here are shown
in Eq. (43).

is equivalent to get solutions of (46). Then, given its im-
portance, we now focus on some properties of this equa-
tion. First, we point out that xA1 = 1 is a solution, for any
value of T . In this case, notice that all four trajectories
have the same initial conditions u′k = s0 and v′k = s∗0,
implying that they are real and identical. If we consider
only this set of trajectories to evaluate Eq. (27), as we
already said, we get the same results as Ref. [19], which
are illustrated in Fig. 1 through the red dashed curve.
Clearly, real trajectories provide a good approximation
for the entropy (42), but only for the first stage of the
time evolution.

Extending the accuracy of the semiclassical entropy to
longer values of time necessarily involves other solutions
of Eq. (46). For T = 0, however, it can be easily shown
that the only solution is xA1 = 1. Fortunately, when T
increases, other solutions arise, part of them from the
region around the origin while others arise from infinity.
This behavior is illustrated in Figs. 2(a)-2(c), where we
show some contours of f(xA1 ) in the complex plane xA1 .
There, black and red curves refer to the Re[f(xA1 )] = 0
and Im[f(xA1 )] = 0, respectively. Intersection points of
these two curves are, therefore, the roots of f(xA1 ). In
Fig. 2(a), built for a short value of time τ = 0.01, no-
tice that only the solution xA1 = 1 appears. The others
cannot be seen because either they are too close to the
origin or too far from it, and their contribution to Ssc

was numerically proven to be negligible. These observa-
tions justify the fact that real trajectories are enough to
approach Eq. (42), as τ → 0. In Figs. 2(a) and 2(b),
for τ = 0.1 and 0.5, respectively, other roots of f(xA1 )
start to appear in the plots, indicating that new sets of
complex trajectories become important to calculate Ssc.

Before picking up each solution of the transcendental
equation shown in the plots, it is important to system-
atize this procedure. We first notice that, for a given
root x̄A1 , a simple inspection of Eq. (46) shows us that
its complex conjugate (x̄A1 )∗ and their inverse, 1/x̄A1 and
1/(x̄A1 )∗, are also roots of f(xA1 ). Therefore, we only need
to look for these solutions in the region inside the uni-
tary circle, with Im[xA1 ] ≥ 0. Each observed root effec-
tively represents four sets of four complex trajectories,
and all of them should be considered, in principle. Of
course, when a root lies exactly over the real axis or the
unitary circle, this conclusion should be reconsidered be-
cause x̄A1 = (x̄A1 )∗, in the first case, and 1/x̄A1 = (x̄A1 )∗,
in the second.

Given these arguments, we first identify in Fig. 2(c)
the structures named as St1, St2, . . . , St5, and reproduce
their magnified image (except for St5) in Figs. 3(a)-3(d).
In each plot, we mark five roots of f(xA1 ) with circles,
in order to calculate Ssc. Other intersection points seen
in the search region were not considered because their
contribution is negligible or unphysical. Of course, by
varying τ , all these points change. Therefore, to find the
roots for all values of time, we recursively apply a proper
routine based on the the Newton-Raphson method, to
get a solution for τ + δτ , given that we know the root
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FIG. 5. The same as Fig. 2, but with imaginary dimensionless time: (a) τ = 0.999τc, (b) τ = τc, and (c) τ = 1.001τc.

for τ .
Finally, in Fig. 4(a), we evaluate the contribution of

the sets of complex trajectories indicated by the circles
of Fig. 3(a). The gray solid line is the quantum result Spc

[this curve also appears in Figs. 3(b)-3(d), for the sake of
comparison], while the red dashed one is obtained from
the inclusion of the real trajectories only. When the five
new solutions are taken into account, the semiclassical
approximation is clearly improved (blue dotted curve),
but both the oscillatory behavior of Spc and its return
to zero when τ → 1 are not reproduced. In Fig. 4(b),
new trajectories associated with the roots marked in St2

of Fig. 3(b) are considered, as represented by the blue
dotted curve. Again, the inclusion of these new sets of
complex trajectories substantially improves the semiclas-
sical approximation for values of time until τ ≈ 0.5. Giv-
ing continuity, notice in Fig. 4(c) that the interval where
quantum and semiclassical results (blue dotted curve)
agree with each other increases to τ ≈ 0.7 when St3

of Fig. 3(c) is considered. Moreover, by using also the
roots of St4 shown in Fig. 3(d), the accuracy seen in
Fig. 4(d) becomes still better. At last, with the inclusion
of the roots of St5, whose magnification is not shown in
Fig. 3, all oscillatory behavior of Spc and also the return
to zero at the end of the period are very satisfactorily
reproduced, as shown by the blue dotted curve of Fig. 1.

With this example, we demonstrate that the semiclas-
sical theory used to deduce Ssc can be quite successful.
However, before finishing this section, we still have to
develop the ideas presented in Sect. III. Here, we can
calculate the determinant of the matrix (39), finding

det M̄? = 1 +
16j2|s0A|2|s0B |2T 2

(1 + |s0A|2)
2

(1 + |s0B |2)
2 6= 0. (47)

Therefore, we conclude that there is no set of complex
trajectories arbitrarily close to the real one for any value
of T . This result seems to be in contradiction to what is
shown in Fig. 3(a), where there is a root of f(xA1 ) very
close to xA1 = 1, the point representing the real trajec-
tory. In fact, Eq. (47) means that these two points cannot
coalesce, behavior that, numerically, we have really not

found. Just to illustrate a mathematical situation where
the sets of quasi-real trajectories exist, we will define the
complex time

Tc ≡ ±i
(
1 + |s0A|2

) (
1 + |s0B |2

)
4j|s0A||s0B |

, (48)

which amounts to the dimensionless τc ≡ Tc/Tr. For this
value of time, we have det M̄? = 0, indicating the ex-
istence of complex contributing trajectories close to the
real one. To check this conclusion, in Fig. 5, we plot the
curves Im[f(xA1 )] = 0 and Re[f(xA1 )] = 0 for three com-
plex values of τ . In Fig. 5(a), for τ = 0.999 τc, we see
two roots of f(xA1 ) over the unitary circle and very close
to xA1 = 1. When τ = τc, the three solutions coalesce, as
shown by Fig. 5(b). Right after, for τ = 1.001τc, we ver-
ify other two roots over the real axis, moving away from
the real contribution [Fig. 5(c)]. Finally, it is important
to comment that the calculation presented in Sect. III
have no influence in the calculation of Ssc, showed here,
but we decided to keep it in this work because it may be
important in other applications.

V. FINAL REMARKS

Starting from the formula of the quantum linear
entropy—given by Eqs. (1) and (7)—, which contem-
plates a system of two spins initially prepared in a prod-
uct of coherent states, we performed a semiclassical ap-
proximation resulting in Eq. (27)—the main product of
the present paper. According to this approach, the entan-
glement dynamics between the spins is a function of sets
of four mutually connected trajectories, originated from
the equivalent classical description of the system. These
entangled-boundary-condition trajectories live in an ex-
tended classical phase-space, obtained from the analyt-
ical continuation of the original one onto the complex
domain. Concerning our previous works [17, 19, 24], we
point out that the present contribution effectively dif-
fers from Refs. [17, 24], because we now deal with spin
degrees of freedom, as well as Ref. [19], which only con-
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siders the ordinary real trajectories. As we see in Fig. 1,
taking into account complex trajectories is incontestable
to achieve excellent accuracy between quantum and semi-
classical results. It is worth mentioning that, in similar
semiclassical approaches, the inclusion of complex tra-
jectories was already proven fundamental to mimic the
quantum behavior [56–58].

We emphasize that the boundary conditions (23)
and (24) characterizing the sets of contributing trajec-
tories consists of potentially useful information. For ex-
ample, it may help to clarify the questioning about the
situation where, in opposition to common sense, regular
classical dynamics is not directly associated with rapid
entanglement growth [28–33]. Moreover, scars of clas-
sical dynamics appearing in some plots of the quantum
entropy [22, 32] may also find some explanation using
the present results. We have to comment that these pos-
sible routes of investigation are still quite speculative,
also because our approach possesses an additional diffi-
culty to elucidate quantum-classical transition, which is
understanding the connection between real and complex
classical dynamics. Actually, this is the scenario that has
motivated the study presented in Sect. III.

At last, we report two straight future directions of our
work. First, we intend to apply the theory to a quantum

system whose classical counterpart is chaotic. The main
difficulty, in this case, is the search for contributing tra-
jectories. Due to the absence of analytical expressions for
the dynamics, it is not possible to proceed as we did in
Sect. IV, where this task was reduced to solving a system
of equations. To fill this gap, a possible solution is to de-
velop an algorithm to converge trial trajectories to those
satisfying the boundary conditions (23) and (24), a strat-
egy already used in a similar problem [44]. We emphasize
that a chaotic application would finally put this semiclas-
sical theory in a position to be compared to many other
works of the literature. The second direct continuation
is testing Bell-type inequalities using our approach, in
the same spirit as Ref. [59]. Given that such inequalities
cannot be violated by any local classical theory, it seems
that this is a fundamental test to theories pretending to
imitate quantum mechanics.
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