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Abstract

Thought experiments based on the double-slit interferometer had a crucial role to develop ideas concerning the wave-particle
duality and the Bohr’s complementarity principle. Ideally, a slit with a sufficiently low mass recoils due to the passage of the
photon. This motion denounces the path taken by the light and suppresses any attempt to observe an interference pattern. In real
life, however, available which-way information in such a setup is significantly impaired by the typical magnitudes of photons and
slits, making the verification of the effect almost impossible. Here, we extend this discussion by applying similar ideas to the Mach-
Zehnder interferometer. That is, we study the consequences of the beam-splitter recoil, during the passage of the photon, over the
interference pattern produced by the device. Unlike the double-slit experiment, this recoil can now be encoded in the wavelength of
the photon itself, which, in principle, is more easily accessed. Fortuitously, the model used to describe the interaction between the
idealized beam-splitter and the photon clearly indicates that an interferometer based on Compton’s effect could be build to study
wave-particle duality. We follow this hint, finding realistic experimental parameters needed to observe the trade-off between wave
and corpuscular behaviors in such a modified interferometer.
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1. Introduction

At the end of the XIX century, scientists had a very well es-
tablished notion indicating that light behaved as a wave. Such
a solid thought was built during a long time. In fact, almost
a hundred years had been passed since the last paradigm shift
involving this subject, when the observation of diffraction and
interference phenomena was decisive for reprobating Newton’s
corpuscular theory of light, prevailing by that time. Crucial ex-
periments performed in the beginning of the XX century, con-
cerning, for instance, black-body radiation, photoelectric ef-
fect, and Compton scattering, unsettled that scenario because
their satisfactory theoretical descriptions necessarily involved
the hypothesis that light behaved as particles. Given the evi-
dent conflict, the term wave-particle duality was coined to refer
to this coexistence of classically antagonistic behaviors: while
wave properties are fundamental to understand some light phe-
nomena, particle features are necessary to describe others. Be-
sides, wave and particle behaviors were not simultaneously ver-
ified in the same experimental realization, an observation which
is formalized by the Bohr’s complementarity principle.

Quantum Mechanics, as it stands nowadays, accommodates
this duality in a reasonable way. However, during the first years
of the theory development, this issue was hotly debated by Al-
bert Einstein and Niels Bohr [1]. Essentially, while Bohr de-
fended his complementarity principle, Einstein confronted him
with a series of thought experiments where both manifestations
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could be brought out. Taking the emblematic double-slit exper-
iment as an example, Bohr’s complementarity basically implies
that the interference pattern — a wave signature — cannot be
observed together with the measurement of the slit by the which
the photon travels — a particle signature. It agrees with our
classical physics sense because interference demands superpo-
sition of at least two sources (paths, in this case) of light. That
is, if one observes the photon traveling through a given slit,
there is no reason to get interference. Nevertheless, arguing
that the interaction between photons and slits could produce a
possibly detectable recoil of the latter in a sufficiently accurate
experimental setup, Einstein challenged this principle. In fact,
such a recoil could denounce, by means of the imparted mo-
mentum, the path traveled by the photon without disturbing the
interference pattern (a priori), producing a counterexample for
Bohr’s statement.

In his reply, Bohr used the Heisenberg uncertainty relation to
successfully argue that it is impossible to determine the slit that
the light passes through without creating an uncertainty on its
location. As the interference pattern is sensitive to the slits posi-
tion, one concludes that the fringes would be eliminated by the
which-way measurement, recovering what is stated in Bohr’s
principle. In 1979, Wootters and Zurek [2] reexamined this
discussion in detail, favoring Bohr’s argument. Their novelty,
however, was to introduce an information-theoretic approach to
this problem, in which the correlation between slit and photon,
generated by their interaction, was announced as a fundamental
quantity to understand the issue. Around a decade later, in a pa-
per authored by Scully, Englert and Walther [3], using an alter-
native strategy which avoids the uncertainty relation argument,
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an experiment was proposed where Einstein’s goal is achieved.
In this new proposal, they deal with atom interferometry instead
of light, and the crucial point is to reveal the path traveled by
the atom using a cavity placed along each path. By means of
the interaction between the atom and the field inside the cavity,
which-way information can be obtained and one cannot effec-
tively appeal to the uncertainty relation to explain the expected
loss of the interference fringes. Interestingly, as suspected by
Wootters and Zurek [2], the fundamental mechanism support-
ing the principle of complementarity was definitively changed
to be the entanglement between the interfering object and the
physical system responding by the which-way information. It
is worth emphasizing that these ideas stimulated other possibil-
ities to observe the traveled path, overcoming the almost im-
possible task to measure the recoil of a macroscopic object (a
slit), when interacting with a microscopic particle (an atom or
a photon).

Given this scenario, a number of works on duality and com-
plementarity based on similar approaches have been devel-
oped [4, 5, 6, 7, 8, 9]. In particular, in some of them [8, 9],
the role of the path informer is curiously assumed by an inter-
nal degree of freedom of the interfering photon itself (i.e., its
polarization). More recently, provided by fascinating experi-
mental advances, realizations much more similar to Einstein’s
proposal have been performed [10, 11, 12, 13, 14], where a
physical recoil of the slits really happens. Indeed, these works
have somehow measured the momentum transferred from the
scattered particle to the slits. Basically, their strategies consists
of replacing slits by controlled molecules [10, 11, 12], or mak-
ing an array of single-layer graphene nanoribbons take the role
of a diffraction grating [13, 14]. All these events reported so far
reveal that the great scientific interest attracted by the subject
persists for almost one century. For completeness, we should
mention that other important contributions around the theme
were developed as, for instance, a necessary formalism in or-
der to quantify wave and corpuscular behaviors [15, 16, 17]
or a study involving a possible application to general relativ-
ity [18, 19].

In the present paper, we study wave-particle duality using
a Mach-Zehnder interferometer [Fig. 1(a)], which essentially
manifests the same phenomena as those seen in the double-
slit device. In the figure, the interfering quantum system (light
in our case) is sent to the interferometer, reaching the beam-
splitter B1; the two possible different paths after B1 are rep-
resented by the dotted (path 0) and dot-dashed (path 1) lines.
Then, after receiving a relative phase ϕ, the two paths are re-
combined by the beam-splitter B2. A detector D placed at path
0 observes the light obtained from this process. Clearly, in the
case of a laser beam entering in the device, the intensity de-
tected by D is a function of ϕ, oscillating between zero and a
certain maximum value. Such an interference pattern attests
the wave behavior of the light. On the other hand, perform-
ing the experiment with photons individually sent to the de-
vice, and following Einstein’s ideas [1], one questions about
the possibility of getting which-way information from the in-
teraction between the photon and B1. In order to explore this
point and check the equivalence with the double-slit experi-

ment, we use an artificial but pedagogical model, where B1 is
assumed as a single particle initially at rest, which absorbs the
photon, and immediately re-emits it, as illustrated in Fig. 1(b)
and Fig. 1(c). To faithfully represent the Mach-Zehnder inter-
ferometer, the photon should be emitted into only two directions
with the same probability: either θ = 0 or θ = π/2 [for future
convenience, in Fig. 1(c) we represent a generic angle θ]. In
principle, the announced equivalence is clear: considering that
energy and momentum are conserved during the interaction, if
we were able to measure the recoil of B1, then we would obvi-
ously get path information for the photon and the annihilation
of the interference pattern should be observed. A last comment
should be done: except for the restriction concerning the values
assumed by θ, this model of photon-particle interaction is ex-
actly the same used to explain the photon-electron interaction
in the Compton effect [20].

There is no conceptual novelty in the discussion presented in
the last paragraph. It is entirely contained in the debates of Ein-
stein and Bohr [1]. Including the similarities with the Compton
work are identified there. We already know that, by measuring
the imparted momentum of B1, its position would get uncer-
tain, causing the loss of the interference pattern. But we remind
that the crucial point to not experimentally explore this idea is
the lack of accuracy of measuring the recoil of a macroscopic
object, due to the interaction with a microscopic one, in a re-
alistic interferometer. Here enters our contribution. Compton
taught us in his model that, when the photon deviates, the target
particle necessarily recoils, and this information is embedded
in the photon wavelength, which could be considered as one
of its internal degrees of freedom. We intend, therefore, to de-
velop a theory in order to evaluate the possibility of using the
photon wavelength as an indirect measurement of the B1 re-
coil, and, consequently, as a which-way informer. In this sense,
our study resembles the approaches [8, 9] where photon polar-
ization codifies which-way information. Notice that the use of
these ideas in the double-slit interferometer discussed by Ein-
stein and Bohr [1] does not directly apply to because both paths
in this case generate a similar changing in the photon wave-
length. Although the above approach can be considered artifi-
cial since the physical beam-splitter is taken as a single particle,
we intend to explore the fact that this interaction model is ex-
actly the same used in the Compton scattering, where the role
of the particle is played by a free electron. As a result, we will
determine some parameters for a Compton-effect-based inter-
ferometry where wave-particle duality can be observed. Curi-
ously, almost one hundred years after its appearance to consol-
idate corpuscular aspects of light, here we develop a way to use
Compton’s model to also reveal its wave behavior.

We organize the paper as follows. In Sect. 2 we present the
artificial Mach-Zehnder interferometer considering that its first
beam-splitter is a single particle. Then, in Sect. 3, we show the
connection between this description and the Compton scatter-
ing, finding a more realistic model to determine the parameters
needed to observe the two regimes manifested by the light. Our
final remarks are presented in Sect. 4.
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Figure 1: (a) Mach-Zehnder interferometer. A light beam (represented by the solid line) is sent to a beam-splitter B1, dividing it into two others (dotted and dot-
dashed lines) with the same intensity. Each beam travels different paths; one passing through the mirror M1, and the other by M2. As a consequence, right before
the beam-splitter B2, it is assigned a phase ϕ between the beams. They are recombined by B2 and measured by a detector D. Panels (b) and (c) illustrate a model
where B1 is replaced by a single particle of mass m. Before absorbing the photon [panel (b)], the particle is assumed to be at rest. After emitting the photon [panel
(c)], considering energy and momentum conservation, the particle may receive a recoil in the direction θm. Eventually, the emitted photon changes its direction with
respect to the initial situation, as represented by the angle θ [for the interferometer of panel (a), θ should be 0 or π/2, exclusively].

2. Idealized beam-splitter model

In this section we develop the idea of assuming the beam-
splitter B1 of Fig. 1(a) as a single particle of mass m (B2 con-
tinues as an ordinary beam-splitter). In this case, a photon with
wavelength λ0 enters in the interferometer, and is absorbed by
B1, initially at rest [Fig. 1(b)]. Then, it immediately emits the
photon along two possible directions with equal probabilities
[Fig. 1(c), with θ = 0 or θ = π/2]. If the photon is sent to path 1
(dot-dashed line; θ = π/2), the process is equivalent to a reflec-
tion under the action of B1. If it is emitted in path 0 (dotted line;
θ = 0), we say that it simply passed through the beam-splitter.

Concerning the interaction process between the photon and
B1, we will assume that relativistic energy and momentum are
conserved. Initially, energy and momentum of the photon are,
respectively,

E(i)
p =

hc
λ0

and ~p(i)
p =

h
λ0

k̂, (1)

where k̂ is a unitary vector denoting the horizontal direction (to
the right), h is the Planck constant, and c is the speed of light in
vacuum. In addition, at the initial time, B1 has null momentum
and energy E(i)

m = mc2. After the emission, the energy and
momentum of the photon are given by

E( f )
p =

hc
λθ

and ~p( f )
p =

h
λθ
θ̂, (2)

respectively, where θ̂ denotes the direction and λθ the wave-
length of the emitted photon. The beam-splitter energy and
momentum are, at the final time,

E( f )
m =

√
p2

mc2 + m2c4 and ~pm = pmθ̂m, (3)

respectively, where θ̂m is unitary vector denoting the direction
into the which B1 recoils. Clearly, according to momentum con-
servation, if the initial direction of the photon propagation is

changed (θ = π/2), then B1 necessarily recoils, as illustrated in
Fig. 1(c). Even though the direct measurement of the motion of
B1 be impracticable, we emphasize that it is also encoded in the
wavelength of the scattered photon,

λθ = λ0 +
h

mc
(1 − cos θ) =⇒ λ π

2
= λ0 +

h
mc

, (4)

result which is achieved by manipulating the conservation laws.
Returning to the Mach-Zehnder interferometer, we conclude
that, after the beam-splitter B2, when the paths are recombined
to reach D, path information is contained in the photon itself.
Naturally, the question concerning the real possibility of distin-
guishing λ0 and λ π

2
arises at this point, because the wavelength

difference is very small,

δλ ≡ λ π
2
− λ0 =

h
mc
≈ 2.4 pm. (5)

However, we will discuss this point later, when we examine the
feasibility of the model as a whole.

So far the interaction model between photon and beam-
splitter was presented. Now we proceed with the description
of the device shown in Fig. 1(a). The (pure) state of the pho-
ton entering in the interferometer is denoted by |ψ0〉 = |0, λ0〉,
where the label 0 is included to refer to its initial path of prop-
agation (path 0). After the idealized beam-splitter, according
to the above theory, we consider that the state of the photon is
given by the superposition

|ψ1〉 =
|0, λ0〉 + i|1, λ π

2
〉

√
2

, (6)

meaning that the photon can go up (path 1) with wavelength
λ π

2
or continue to right (path 0) keeping its original wavelength.

Notice that a phase eiπ/2 = i due to the reflection is assigned
to the second ket. More importantly, the state |ψ1〉 is entangled:
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Figure 2: Probability pD of a photon to reach detector D as function of the relative phase ϕ and the ratio ζ ≡ δλ/σ. For small values of ζ, function pD oscillates
with maximum amplitude by varying ϕ; in the opposite limit, pD is a flat function, insensitive to ϕ.

degrees of freedom related to the path taken and wavelength are
now correlated. Following the same reasoning and including
the phase ϕ gained by traveling in path 1, we conclude that the
state right after B2 is

|ψ2〉 =
1
√

2

[
|0, λ0〉 + i|1, λ0〉

√
2

+ eiϕ
i|0, λ π

2
〉 + |1, λ π

2
〉

√
2

]
. (7)

Given the fact that the detector does not measure photon wave-
lengths, the theoretical description should define a density op-
erator ρ2 ≡ |ψ2〉〈ψ2| and take the partial trace over the degree
of freedom corresponding to the photon wavelength. Assuming
that |λ0〉 and |λ π

2
〉 may not be orthogonal to each other, i.e., that

|λ0〉 and |λ π
2
〉 do not represent strictly monochromatic states, the

reduced density operator in the path basis {|0〉, |1〉} becomes

ρred
2 =

1
2

(
1 − |A| sin(ϕ + δ) |A| cos(ϕ + δ)
|A| cos(ϕ + δ) 1 + |A| sin(ϕ + δ)

)
. (8)

Here, we also define 〈λ0|λ π
2
〉 ≡ A = |A|eiδ and assume that

〈λ0|λ0〉 = 〈λ π
2
|λ π

2
〉 = 1. By projecting ρred

2 to path 0, where
the detector is placed, we find the probability of the photon be
measured by D,

pD =
1
2

[
1 − |A| sin(ϕ + δ)

]
. (9)

Clearly, when the two wavelengths are totally distinguish-
able, |λ0〉 is orthogonal to |λ π

2
〉 and A = 0, implying that

pD →
1
2 . That is, the photon entering in the interferometer

has 50% chance of being detected in D. Obviously, it has the
same probability to be detected in another detector, if placed
in path 1, after B2. Notice that, for the case A = 0, clicks in
the detector D do not depend on ϕ, indicating corpuscular be-
havior, as expected since which-way information is available,
even if it is not accessed. In the opposite case, when the two
wavelengths are completely undistinguishable, A = 1 and the
probability of a click be observed on D depends on the phase
ϕ: pD → sin2

[
1
2

(
ϕ − π

2

)]
, attesting the wave behavior. Again,

the lack of wich-way information retains the observation of an
interference pattern.

To illustrate the intermediate case where 0 < |A| < 1, it is
convenient to consider a model in which

A ≡ 〈λ0|λ π
2
〉 =

∫ ∞

0
Λ0(λ) Λ π

2
(λ) dλ. (10)

The wavelength distribution Λξ(λ) depends on a number of fac-
tors that affect the light source, such as quantum uncertainties
in the emission process (homogeneous line broadening), the
Doppler effect due to the motion of the emitter, and interaction
with the environment (inhomogeneous line broadening) [21].
As our intention is just to illustrate the phenomenon, we will
simply consider the wavelength distribution as a normalized
Gaussian centered at λξ, with variance σ2,

Λξ(λ) =

(
1

σ
√
π

)1/2

exp
[
−

1
2σ2 (λ − λξ)2

]
. (11)

From this expression, provided that λ0 and λ π
2

are sufficiently
far from λ = 0, we can straightforwardly evaluate A = |A|eiδ,
finding

δ = 0 and |A| = exp
[
−

1
4

(
δλ

σ

)2]
, (12)

where δλ is given by Eq. (5). Notice that the ratio ζ ≡ δλ/σ
is a measure for the distinguishability between the states |λ0〉

and |λ π
2
〉; broader and closer distributions imply small values of

ζ and indistinguishable states, while sharper and distant ones
imply large ζ and distinguishable states. In Fig. 2, we illustrate
the trade-off between wave and particle behaviors. Notice that,
when ζ ≡ δλ/σ is negligible, the states |λ0〉 and |λ π

2
〉 are indis-

tinguishable, which means absence of which-way information.
Function pD , therefore, is ϕ-dependent as light were a wave. On
the other hand, when ζ ≡ δλ/σ is large (ζ ≈ 5 in Fig. 2), the two
states are effectively orthogonal, so that information about the
path traveled is available. In this case, there is no dependence
on ϕ, a manifestation of a corpuscular behavior.

Clearly, the inclusion of the electron state in the present de-
scription does not change the conclusions presented above. It
can be easily verified by replacing |0, λ0〉 → |0, λ0, ~p

(0)
m 〉 and

|1, λ π
2
〉 → |0, λ π

2
, ~p (π/2)

m 〉 in Eq. (6), where ~p (θ)
m refers to the elec-

tron recoil when the photon is emmited in the θ direction. Then,

4



following the calculation, and taking the trace also over the ~p (θ)
m

variable, because it is also unaccessible, we recover the same
reduced operator of Eq. (8), from the which our conclusions
were deduced.

The physical system presented in this section indicates how
the photon wavelength could be used as a which-way informer.
However, we still did not discuss the possibility to observe these
predictions in a real experiment, which is the task of the next
section.

3. Compton-scattering-assisted duality

An updated view of Compton’s work [20], supported by
quantum theory, indicates that the state of the photon, after be-
ing scattered by the electron, consists of a continuous super-
position of states relative to all possible scattering directions θ.
Besides, each term of this summation represents a state where
propagation direction and wavelength λθ are correlated. That
is,

|scattered state〉 =

∫
c(θ)|θ, λθ〉 dθ. (13)

Therefore, in order to fit the ideas presented in the last section
to a more realistic scenario, we will argue that we can use a
device drawn to observe the Compton effect and select two dis-
tinct scattering directions (θ0 and θ1) to constitute paths 0 and 1
of a Mach-Zehnder interferometer [see Fig. 3(a)]. In our theo-
retical description, it basically means that we should apply the
projector |θ0〉〈θ0| + |θ1〉〈θ1| to Eq. (13), getting a state similar
to |ψ1〉 of Eq. (6). However, to guarantee a correct equivalence
between the two approaches after passing through B1, our first
task is to choose equiprobable directions, i.e., we should have
c(θ0) = c(θ1). By doing so, a minor difference between |ψ1〉

and the resulting state remains: the phase gained by one of the
paths due to reflection in the original setup. However, notice
that this discrepancy can be ignored because it can be included
in the relative phase ϕ.

To find the equiprobable angles, we can look at the differen-
tial cross section of the scattered (unpolarized) photons derived
by Klein and Nishina [22, 23], and obtained via quantum elec-
trodynamics,

dσ(θ)
dΩ

=
r2

0

2

(
λ0

λθ

)2 [
λ0

λθ
+
λθ
λ0
− sin2 θ

]
, (14)

where λθ and λ0 are expressed in Eq. (4), r0 = e2/(4πε0 mc2)
is the classical electron radius, θ is the polar angle in spherical
coordinates, and dΩ is an infinitesimal element of solid angle.
Notice that the notation adopted here is consistent with the de-
scription of the last section; the incident photon is assumed to
travel along the z-direction, and θ refers to the deviation from
this path. Here, the term λθ/λ0 also respects Eq. (4), written as

λθ
λ0

= 1 + ε(1 − cos θ), (15)

and depends exclusively on the angle θ and the dimensionless
parameter ε ≡ (hc/λ0)/(mc2), which is the ratio between the
energy of the incident photon and the electronic rest energy.

It should be noticed that the deduction of Eq. (14) is per-
formed in the framework of the Quantum Field Theory, using
a reference system where the electron is initially at rest. As ar-
gued in Weinberg’s book [23], this is a reasonable assumption
because electrons move non-relativiscally in atoms, while the
described phenomenon is essentially relativistic. A huge advan-
tage arises by considering this point. It states that there exists a
plausible scenario where the thermal behavior of electrons can
be neglected, fact which is also confirmed by Compton in his
experiment. Therefore, in the present paper, we work with this
hypothesis, and we do not deal with a thermal description for
electrons.

In Fig. 4(a), we illustrate the behavior of the dimensionless
differential cross section (1/r2

0)(dσ/dΩ) as function of the scat-
tering angle θ, for some values of ε: from the lowest to the
highest curve, we have ε = 10εA , ε = 7εA , ε = 4εA , ε = 2εA ,
ε = 1εA (dashed line), ε = 0.5εA , and ε = 0.1εA . Here, εA is
chosen as the factor ε for the case of an incident photon whose
wavelength is 1Å, which amounts to εA ≈ 0.0243. Such a ref-
erence number was taken because, in typical experiments, we
have λ0 ∼ 1Å. Clearly, for any value of ε shown in the figure,
one can find two angles θ0 and θ1 that correspond to the same
scattering probability density. However, these values are not
given by 0 and π/2 as required by the original interferometer,
implying that both path 0 and path 1 should be really changed
to other directions.

In order to help us in the decision about which pairs (θ0, θ1)
would be better suited for an experiment, in Fig. 4(b), using
ε = 0.1εA , we plot, in the (θ0, θ1)-plane, the equiprobable curve
(black solid line), composed by the points where

dσ(θ0)
dΩ

=
dσ(θ1)

dΩ
. (16)

Were the purpose solely to choose equiprobable angles, then
any point over the black solid curve of Fig. 4(b) could be used in
the device, provided that the energy of the incident photon was
such that ε = 0.1εA . However, in our study, it is also important
to evaluate the distinguishability between the wavelengths λθ0

and λθ1 , assigned to each direction. To this end, we define the
relative difference as

∆λrel ≡
|λθ1 − λθ0 |

1
2
(
λθ1 + λθ0

) , (17)

and plot some of its contour lines superimposed in Fig. 4(b).
To define a simple criterion concerning the experimental ca-
pability of discriminating two close wavelengths, we calculate
the relative difference between λ0 and λ π

2
[see Eq. (4)], with

ε = εA , getting ∆λref
rel ≡ 0.0240. These parameters resemble

those adopted in the original Compton experiment, so that we
can infer that a typical device can distinguish two wavelengths,
λθ0 and λθ1 , for which ∆λrel & ∆λref

rel . We should clarify that
the action of distinguishing two wavelengths, at this point of
the discussion, means to be able to identify their two distinct
peaks in the spectrum, which is independent of any assumption
concerning spectral widths.

Notice that, in Fig. 4(b), there is no pair (θ0, θ1) over the
equiprobable curve whose relative difference satisfies ∆λrel &
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Figure 3: (a) A modified setup for the Mach-Zehnder interferometer. A light beam (represented by the solid line) reaches the device B1, and suffers an inelastic
scattering modeled according to the Compton effect (CE). Two scattering angles θ0 and θ1 are selected to compose the paths 0 and 1 of the original Mach-Zehnder
setup [Fig. 1(a)]. After B1, the modified interferometer is similar to the original one. In panel (b), for the interferometer of panel (a), we show the probability pD of
a photon reaches detector D as function of the relative phase ϕ and θ1. The value of θ0, for each θ1, is determined by the condition of equiprobability, expressed by
the black solid line of Fig. 4(d). While wave behavior (ϕ-dependence) is manifested when θ1 < 2, particle behavior (ϕ-independence) appears for θ1 > 3.

∆λref
rel . Then, according to the adopted criterion of distinguisha-

bility, we need to move to other experimental parameters, since
the role of path-informer, which is expected to be played by
the wavelengths, risks to be hidden in this configuration. This
is done in Fig. 4(c) and 4(d), which show results equivalent
to Fig. 4(b), but for ε = 1εA and ε = 10εA , respectively. Fi-
nally, in both figures, we can clearly find pairs of equiproba-
ble directions for which the distinguishability criterion is re-
spected. Although Fig. 4(c) also presents potentially appropri-
ate parameters to study wave-particle duality, from now on, we
will restrict ourselves to the case in which the expected effect
tends be more expressive. This is the situation contemplated by
Fig. 4(d), where the incident light is such that ε = 10εA .

Returning to the Mach-Zehnder interferometer, now assisted
by the Compton effect, we suggest the following experimental
setup in order to testify the trade-off between corpuscular and
wave behaviors of the light. We can first select the pair of angles
(θ0, θ1) as (θ(i)

0 , θ
(i)
1 ) = (1.075, 3.072) = (61.59◦, 176.01◦) to in-

dicate the new directions of paths 0 and 1, as shown in Fig. 3(a).
This pair refers to the point of Fig. 4(d) highlighted by a red cir-
cle, where the relative difference is ∆λ(i)

rel = 0.27. Given that
these parameters imply peak-distinguishability between their
respective λ(i)

θ0
and λ(i)

θ1
, measurements on the detector D are ex-

pected to denounce particle behavior, that is, the intensity of
light reaching D should be insensitive to the relative phase ϕ.
As we will show soon, even considering a spectral width of 10%
of λ0, this behavior is still predicted. Starting from (θ(i)

0 , θ
(i)
1 ), we

can conclude that an option to continuously recover the wave
behavior consists of changing the angles θ0 and θ1, still re-
stricted to the equiprobable line of Fig. 4(d), but going to the
direction of (θ( f )

0 , θ
( f )
1 ) = (1.590, 1.882) = (91.10◦, 107.83◦),

which is the point marked by the blue circle. At these coordi-
nates, we have ∆λ

( f )
rel = 0.01, which may indicate indistinguish-

able λ( f )
θ0

and λ
( f )
θ1

, implying lack of path-information and the
resurgence of the interference pattern.

In Fig. 3(b), we illustrate the results obtained from all this
analysis. The probability pD [see Eq. (9)] of a photon reach-

ing the detector D is plotted as function of the relative phase
ϕ and also the angle θ1. The value of θ0, for each θ1, is de-
termined by the equiprobability condition, and, therefore, can
be found using the black solid line of Fig. 4(d). We emphasize
that, to calculate pD , a model for the wavelength distribution
should be considered. Here, we also use the Gaussian function
of Eq. (11), with σ = 0.1λ0. Concerning the incident photon,
to be consistent with Fig. 4(d), we keep ε = 10εA . Using these
numerical parameters, in Fig. 3(b), it is shown that the trade-
off between particle and wave behaviors can be observed in this
modified experimental setup of the Mach-Zehnder interferom-
eter. The interferometer arms, when configured according to
the point marked by the blue circle of Fig. 4(d), give rise to a
result where “waviness” is manifested (ϕ-dependence). It can
be seen in Fig. 3(b) for θ1 < 2. Contrarily, when the arms are
determined by red circle of Fig. 4(d), the ϕ-dependence is prac-
tically suppressed, revealing the particle behavior. This regime
is manifested in Fig. 3(b) for θ1 > 3. By comparing Fig. 2 and
Fig. 3(b), it should be pointed out that, while in the former plot
pD effectively oscillates between 0 and 1, in the latter, the am-
plitude of the oscillation is smaller. Also, the equivalent of the
flat limiting surface seen Fig. 2 (for ζ ≈ 5) now presents an
almost undetectable oscillation. Essentially, these differences
mean that, in this realistic configuration, we did not reach the
situation where the two paths are completely distinguishable,
neither the regime where they are totally indistinguishable. In
spite of that, parameters adopted to plot Fig. 3(b) are clearly
appropriate to observe wave-particle duality in this Compton-
based Mach-Zehnder interferometer.

4. Final Remarks

In the present paper, we study wave-particle duality of light
using an approach where the photon wavelength itself plays the
role of a path-informer. We have conceptually developed this
idea considering a Mach-Zehnder interferometer where the first
beam-splitter is ideally assumed as a single particle. By iden-
tifying the interaction model between photon and beam-splitter
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Figure 4: (a) The dimensionless differential cross section (1/r2
0)(dσ/dΩ) as function of θ. From the lowest to the highest curve, we have ε = 10εA , ε = 7εA , ε = 4εA ,

ε = 2εA , ε = 1εA (black dashed line), ε = 0.5εA , and ε = 0.1εA , with εA ≈ 0.0243. Panel (b) shows, in the (θ0, θ1)-plane, for ε = 0.1εA , the equiprobable curve
(black solid line) and some contours where ∆λrel is constant. As all these curves are invariant when θ0 and θ1 are interchanged, we present only results in the region
θ1 > θ0. Panels (c) and (d) are equivalent to panel (b), for ε = 1εA and ε = 10εA , respectively.

as the same used do describe the Compton effect, we started
to combine its physical description with that of the interfer-
ometer. Then, assuming realistic parameters, we proposed an
original route to observe wave-particle duality in the resulting
Compton-based Mach-Zehnder interferometer.

We adopted here a delicate but ordinary assumption, which
is to neglect the electronic motion before its interaction with the
photon. The absence of this property in an experiment clearly
invalidates our description. However, according to Ref. [23], as
we deal with a high-energy photon-electron scattering, where
the electron is usually moving non-relativistically, it is a rea-
sonable approximation to consider the electron initially at rest.
Therefore, in the proposed experimental setup, we point out that
this condition should be carefully studied and fulfilled.

Certainly some experimental difficulties were neglected in
the present paper. For instance, it is well known that the Comp-
ton scattering simultaneously happens with an elastic scatter-
ing. That is, there are photons leaving B1 with unchanged wave-
length to all directions that could destroy our predictions. We
believe that optical filters can be used to avoid their presence in
the paths 0 and 1. In addition, choosing the arm angles θ0 and

θ1 necessarily implies to consider a finite solid angle around the
directions, which may demand some adjustments. In spite of
these (and probably others) technical difficulties, it seems that
an experiment could be performed to confirm the predictions.
Interestingly, after almost one century from its publication, the
Compton effect could be again involved in fundamental issues
of quantum mechanics, but now with a different perspective.

At last, two comments deserve attention. First, leaving the
Compton scattering aside for a while, we just speculate that an
attempt to build low-massive beam-splitters could be done in
the framework of optomechanical systems [24], similarly, for
instance, to the idea of the quantum mirror treated in Ref. [25].
In this case, the photon wavelength would also play the role of
quantum-informer, according to the discussion of Sec. 2. Sec-
ond, it should be noticed that the connection between the two
themes, duality and Compton scattering, have already been con-
sidered in another approach [26]. In that paper, cross sections
of light scattered by different targets are calculated, and, when
compared with certain patterns, the radiation behavior can be
evaluated.
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