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Entanglement is considered as a purely quantum effect. The present paper, however, joins many
other works that pursue the idea of describing it using classical quantities. In particular, we are
interested in the entanglement dynamics of a pure state, composed of two parts, initially prepared
in a product of coherent states, and governed by a generic Hamiltonian. In this scenario, the linear
entropy of the reduced state, our entanglement quantifier, was shown to be written, in the short-
time regime, in terms of a real trajectory of the underlying classical dynamics. We extend this
semiclassical result by demonstrating that it is possible to include complex trajectories in the calcu-
lation. This strategy contributes to improving the previous approximation, extending its accuracy
for longer values of time. We also show, for a particular Hamiltonian, a first application of the
achieved formula, attesting its efficiency.

PACS numbers: 03.67.Bg, 03.65.Sq, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

The connection between quantum entanglement of a
given physical system and features present in its classi-
cal description has attracted an enormous attention from
researchers in the last twenty years. Such a fascination
is intensified because entanglement, which is one of the
main protagonists of the eminent quantum-information
theory [1, 2], is usually considered as a purely quantum
effect. Given the context, an interesting fundamental
question naturally arises concerning the possible classi-
cal mechanisms associated with entanglement dynamics.
Although there is a large number of approaches dealing
with this issue in the literature, in the present paper we
argue that it still deserves investigation.

Inspired by essential ideas of the quantum chaos the-
ory [3, 4], in which, for instance, certain properties of the
quantum energy spectrum crucially depend on the dy-
namical regime manifested by the classical description,
many approaches were developed to establish a correla-
tion between the behavior of the entanglement dynamics
and the presence of chaos in the correspondent classi-
cal system. Following this program, some researchers
have performed this characterization by directly com-
paring classical and quantum descriptions without defin-
ing a classical counterpart for entanglement [5–10], while
others developed such classical figures of merit in or-
der to quantitatively study the quantum-classical con-
nection [11–18].

Alternatively, other authors have deviated from the fo-
cus on quantum chaos studies and followed the strategy
of performing semiclassical approximations on a proper
quantum description, in order to force the emergence of
a classical connection with entanglement. This idea was
implemented by means of time-dependent perturbative
theories [19–21], for instance. In addition, it was also
reached by applying semiclassical methods to quantum
propagators written in the path-integral formalism, both
in the position [22, 23] and coherent-state [24, 25] rep-
resentations. In this case, the semiclassical formula for

entanglement becomes a functional of trajectories of the
corresponding classical system.

The present work can be seen as a substantial exten-
sion of Ref. [24], where one deduces a semiclassical ex-
pression for the reduced linear entropy, which is an entan-
glement quantifier for bipartite pure states. There, the
real classical trajectory departing from the phase-space
point defined by the center of the initial state is iden-
tified as the main ingredient to semiclassically evaluate
entanglement. This approach leads to a remarkably sim-
ple final formula, which is accurate only for short values
of time. By means of a case study, it was shown that the
semiclassical entropy according to this theory monotoni-
cally increases with time, while its quantum counterpart
has a much richer dynamical behavior; for the studied
system, it is periodic, having many oscillations during a
period. Here, we revisit that formalism, finding a way to
include complex trajectories in the calculation. We point
out that we do not introduce ad-hoc assumptions in this
new theory. Effectively, an analytic continuation in clear
consonance with the whole formalism — and unnoticed
in Ref. [24] — is now performed, so that complex trajec-
tories become crucial. Curiously, our new expression for
entanglement depends on sets of four generally complex
trajectories mutually connected through what we call en-
tangled boundary conditions. Considering the same nu-
merical example studied in Ref. [24], we also show that
the inclusion of these new ingredients means extending
the accuracy of the approximated formula for very long
times. Surprisingly, it faithfully reproduces even the os-
cillations seen in the quantum result.

We organize the paper as follows. In Sect. II, we will
present the basic formalism used to achieve our main re-
sult, namely, we will show the semiclassical formula for
the quantum propagator in the coherent-state represen-
tation, as well as its complex conjugate, and their relation
with the reduced linear entropy. Then, we will develop
our semiclassical approximation in Sect. III, which ba-
sically consists in solving the integral representation of
the reduced linear entropy through the steepest descent
method. We will illustrate our theory by applying their
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ideas to a specific Hamiltonian in Sect. IV, and, at last,
some important remarks will be done in Sect. V.

II. PRELIMINARY RESULTS

In this work we are concerned with entanglement dy-
namics of a pure bipartite state ρ̂ composed of the subsys-
tems x and y. It can be quantified by the linear entropy
of the reduced density matrix,

Slin(ρ̂y) = Slin(ρ̂x) = 1− P (ρ̂x), (1)

where ρ̂x,y = Try,xρ̂ and ρ̂ = ρ̂(T ) is the time-evolved
state. For the sake of simplicity, in our calculations we
will focus on the time-dependent purity PT of the reduced
density matrix ρ̂x, defined simply by

PT ≡ P (ρ̂x) = Trx{ρ̂2
x} = Trx

{
[Tryρ̂(T )]

2
}
. (2)

We also assume the initial separable state given by

|z0〉 = |z0x〉 ⊗ |z0y〉, (3)

where |z0r〉 (henceforward, the subscript r can assume
x or y) is a canonical one-dimensional coherent state,
exhaustively studied in Refs. [26–28]. Then, considering

a generic time-independent Hamiltonian Ĥ, by taking the
traces in Eq. (2) using the coherent-state basis, we have

PT =

∫
K+((w∗x, z

∗
y), z0, T ) K−(z∗0, (zx, zy), T )

×K+((z∗x, w
∗
y), z0, T ) K−(z∗0, (wx, wy), T )

× d2µ(zy) d2µ(wy) d2µ(zx) d2µ(wx),

(4)

where

d2µ(zr) ≡
d[Re(zr)]d[Im(zr)]

π
≡ dzr dz∗r

2πi
(5)

(and the equivalent for wr), implying that integration
should be done over the whole complex spaces zx, zy, wx,
and wy. The quantum forward propagator K+ and back-
ward propagator K− are expressed by

K±(z∗η, zµ, T ) ≡ 〈zη|e∓iĤT/h̄|zµ〉. (6)

Equation (4) is our starting point to perform a semiclas-
sical approximation. Basically, the strategy is to replace
the four quantum functions K± with their semiclassical
versions, and properly evaluate the integral. We empha-
size that, in the present approach, the quantum descrip-
tion is initially well established and, through the intro-
duction of approximative methods, an auxiliary equiva-
lent classical system naturally emerges. From the result-
ing scenario, one identifies crucial classical elements—
certain complex trajectories—and deduces their contri-
butions to the semiclassical calculation. This is ex-
actly the essence of the semiclassical approximation for

K+, derived many years ago for canonical [29–34] and
spin [35–39] degrees of freedom, and K−, achieved and
studied only recently [24, 25, 40]. In the next two subsec-
tions we simply present the useful results from these ref-
erences, suggesting, in particular, Refs. [24, 32] as sources
for further details.

A. Complex classical trajectories

Essentially, for both propagators defined by Eq. (6),
complex classical trajectories are the ingredients to cal-
culate their respective semiclassical approximations. For
convenience, such trajectories are expressed in terms of
unusual variables,

{u(t),v(t)} = {[ux(t), uy(t)], [vx(t), vy(t)]} . (7)

In addition, they are governed by Hamilton’s equation

∂H̃

∂ur
= −ih̄ v̇r and

∂H̃

∂vr
= ih̄ u̇r, (8)

where the classical auxiliary Hamiltonian H̃ is defined in
terms of the expectation value of the Hamilton opera-
tor Ĥ,

H̃ ≡ H̃(v,u), with H̃(z∗, z) ≡ 〈z|Ĥ|z〉. (9)

Concerning the boundary conditions that contributing
trajectories must satisfy, we point out that there exist
differences between those applied to the forward propa-
gator and those relative to the backward one:

u′ = zµ and v′′ = z∗η (for K+);

u′′ = zµ and v′ = z∗η (for K−).
(10)

Here, single (double) prime refers to initial (final) time.
The complex numbers zµ = (zµx, zµy) and z∗η = (z∗ηx, z

∗
ηy)

are the labels of the coherent states involved in K±, as
shown in Eq. (6).

At this point, some comments are opportune. First,
we should emphasize that Eqs. (8) to (10) completely de-
fine the trajectories to be considered in the semiclassical
version of K± as function of their independent variables
(z∗η, zµ, T ). However, more than one trajectory may be
found for a given set of these input parameters. A priori,
all of them should be included in the calculation, as we
will show later.

Second, we would like to justify why these trajectories
are generically classified as complex. Let variables u and
v be written as

u =
q + ip√

2h̄
and v =

q− ip√
2h̄

. (11)

This choice is convenient because Hamilton’s equation (8)
would assume, in this case, the familiar form

∂H̄

∂qr
= −ṗr and

∂H̄

∂pr
= q̇r, (12)
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where H̄ = H̃(v[q,p],u[q,p]). Additionally, let the co-
herent states |zµ〉 and |zη〉 in Eq. (6) be such that

zµ =
qµ + ipµ√

2h̄
and z∗η =

qη − ipη√
2h̄

. (13)

Then, first considering only K+ for simplicity, we con-
clude as follows. If q and p are real variables, u and v are
complex conjugate of each other, as shown by Eq. (11).
The initial boundary condition u′ = zµ of Eq. (10)
would, therefore, determine completely the contributing
trajectory, because it defines its initial phase space point
(q′,p′). In general, however, it would not naturally sat-
isfy the final constraint v′′ = z∗η, given the arbitrariness
of z∗η and T . In the very particular case where even the
final boundary condition is satisfied, such a trajectory
should contribute to the evaluation of the semiclassical
propagator, and it is classified as a real trajectory, since it
lives in an ordinary real phase space (q,p). Contrarily, in
the general case q and p are complex variables, so that
u and v are not complex conjugate of each other, and
the boundary conditions are no more over-determined.
Usually, Eq. (10) can be satisfied, sometimes by more
than one trajectory, and the solutions are called complex
trajectories, as they live in an extended complex phase-
space (q,p). The same arguments can be easily adapted
to reach the same conclusion for K−.

B. Semiclassical Propagators

The semiclassical formula for both forward and back-
ward coherent-state quantum propagators (6) is written
as

K±
(
z∗η, zµ, T

)
=
∑
c.t.

D± e
i
h̄ (S±+G±)−Λ, (14)

where the sum runs over all complex classical trajectories
presented in the last subsection. The complex action
S± = S±(z∗η, zµ, T ) is expressed in terms of them as

i

h̄
S± = ±

∫ T

0

[
1

2
(u · v̇ − v · u̇)− i

h̄
H̃

]
dt+ Λ̃ (15)

and the function G± = G±(z∗η, zµ, T ) as

G± = ±1

2

∫ T

0

(
i

h̄

∂2H̃

∂ux∂vx
+
i

h̄

∂2H̃

∂uy∂vy

)
dt. (16)

The element Λ, which accounts for the normalization, is
given by

Λ =
1

2

(
z∗η · zη + z∗µ · zµ

)
, (17)

while Λ̃ [see Eq. (15)] reads

Λ̃ =
1

2
(u′v′ + u′′v′′) . (18)

Finally, we write the prefactor D± as

D± =

[
det

(
i

h̄
S

(±)
zµz∗η

)]1/2

, (19)

where S
(±)
zµz∗η

is the 2× 2 matrix

S
(±)
zµz∗η

=


∂2S±

∂zµx ∂z∗ηx

∂2S±
∂zµx ∂z∗ηy

∂2S±
∂zµy ∂z∗ηx

∂2S±
∂zµy ∂z∗ηy

 . (20)

Differentiating S±, we obtain results that will be im-
portant for the present work:

i

h̄

∂S+

∂zµr
= v′r,

i

h̄

∂S−
∂zµr

= v′′r ,

i

h̄

∂S+

∂z∗ηr
= u′′r ,

i

h̄

∂S−
∂z∗ηr

= u′r.

(21)

Another important relation can be found by differentiat-
ing Eq. (21). Rearranging the expression obtained, we
conclude that

i
h̄S

(+)
zµz∗η

= M−1
vv ,

i
h̄S

(−)
zµz∗η

= M−1
uu,

i
h̄S

(+)
z∗ηz
∗
η

= MuvM
−1
vv ,

i
h̄S

(−)
zµzµ = MvuM

−1
uu.

(22)

Quantities at the right hand sides of these equalities are
2 × 2 blocks of the stability matrix M of the respective
trajectory, which is defined as(

δu′′

δv′′

)
= M

(
δu′

δv′

)
=

(
Muu Muv

Mvu Mvv

)(
δu′

δv′

)
,

(23)
where δu′ and δv′ are arbitrarily small initial displace-
ments around the classical trajectory, while δu′′ and δv′′

represent their propagation until the final time T .

III. SEMICLASSICAL LINEAR ENTROPY

We now focus on the evaluation of integral (4), replac-
ing the quantum propagators with their semiclassical for-
mulas (14),

K+((w∗x, z
∗
y), z0, T ) → K+((w∗x, z

∗
y), z0, T ),

K−(z∗0, (zx, zy), T ) → K−(z∗0, (zx, zy), T ),
K+((z∗x, w

∗
y), z0, T ) → K+((z∗x, w

∗
y), z0, T ),

K−(z∗0, (wx, wy), T ) → K−(z∗0, (wx, wy), T ).

(24)

As it will become clear soon, it is convenient to change
our notation in the following way

K+((w∗x, z
∗
y), z0, T ) → K1((v′′1x, v

′′
1y), z0, T ),

K−(z∗0, (zx, zy), T ) → K2(z∗0, (u
′′
2x, u

′′
2y), T ),

K+((z∗x, w
∗
y), z0, T ) → K3((v′′3x, v

′′
3y), z0, T ),

K−(z∗0, (wx, wy), T ) → K4(z∗0, (u
′′
4x, u

′′
4y), T ),

(25)
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where, induced by Eq. (10), we implicitly renamed the
integration variables of (4); in what follows, functions
Dj , Sj , and so on will be evidently related to the prop-
agator Kj (for j = 1, . . . , 4). Notice that the integral
with these replacements involves four semiclassical prop-
agators, each of them with possibly many contributing
trajectories. To avoid this difficulty at this point, we will
momentarily assume that there exists only one contribu-
tion for each propagator. Then, the semiclassical version
of PT is

PT =

∫
D1D2D3D4 e

E du′′2y dv′′1y
2πi

du′′4y dv′′3y
2πi

×du′′2x dv′′3x
2πi

du′′4x dv′′1x
2πi

,

(26)

where

E =
i

h̄

∑
j=1,4

(Sj + Gj)− 2|z0|2

−u′′2yv′′1y − u′′4yv′′3y − u′′2xv′′3x − u′′4xv′′1x.
(27)

Integrating expression (26) in a straightforward way
would effectively demand an enormous effort. For a given
point in the set of integration variables, in general four
different trajectories relative to their respective propaga-
tor should be found. Precisely, they should satisfy the
following boundary conditions

u′1 = z0, v′′1 = (v′′1x, v
′′
1y), for K1((v′′1x, v

′′
1y), z0, T );

v′2 = z∗0, u′′2 = (u′′2x, u
′′
2y), for K2(z∗0, (u

′′
2x, u

′′
2y), T );

u′3 = z0, v′′3 = (v′′3x, v
′′
3y), for K3((v′′3x, v

′′
3y), z0, T );

v′4 = z∗0, u′′4 = (u′′4x, u
′′
4y), for K4(z∗0, (u

′′
4x, u

′′
4y), T );

(28)
as predicted by Eq. (10). Once the four trajectories are
defined, the next step is evaluating the integrand with
them. Obviously, this procedure should be repeated for
all points of the integration variables set, summing each
contribution to evaluate PT .

In the present approach, instead of using the strat-
egy mentioned above, we will solve Eq. (26) using the
steepest descent method [41], in accordance with the
formalism adopted to derive the semiclassical expres-
sion (14). Such a method is proper to evaluate integrals
like

∫
C
g(z) exp [λf(z)] dz in the asymptotic limit λ→∞,

which is similar to integral (26) for h̄→ 0, except for the
number of integration variables. Basically, the method
consists of: finding the saddle point z̄ of f(z); changing
the path of integration C in order to coincide with the
steepest descents of z̄; expanding f(z) up to second order
around the saddle point; and performing the remaining
Gaussian integral. All these points will be done in the
following, adapted to Eq. (26), except for the discussion
about the possibility of deforming C, assumed here to be
true. Following Ref. [41], critical points to evaluate (26)
are the saddle points defined by eight equations,

∂Ē
∂ū′′2y

=
∂Ē
∂v̄′′1y

=
∂Ē
∂ū′′4y

= . . . =
∂Ē
∂v̄′′1x

= 0, (29)

where the bar over the symbols stands for the critical
point. As usual, derivatives of functions Gj are disre-
garded [32] in comparison with derivatives of Sj . Thus,
using Eq. (21), conditions for the saddle point become

v̄′′2y = v̄′′1y, ū′′1y = ū′′2y, v̄′′4y = v̄′′3y, ū′′3y = ū′′4y,

v̄′′2x = v̄′′3x, ū′′3x = ū′′2x, v̄′′4x = v̄′′1x, ū′′1x = ū′′4x.
(30)

Notice, at this point, that the saddle point definition (29)
has become a prescription for contributing trajecto-
ries (30), which will be interpreted below.

Take for instance the first two equalities of Eq. (30).
If we return to the original integration variables, they
will become v̄′′2y = z∗y and ū′′1y = zy. On the other hand,
from Eq. (28), we would have ū′′2y = zy and v̄′′1y = z∗y . It
implies that v̄′′2y and ū′′2y are complex conjugate of each
other, and the same for v̄′′1y and ū′′1y. When all expres-
sions of Eq. (30) are taken into account, by following
this reasoning, we conclude that v̄′′jr and ū′′jr are com-
plex conjugate of each other, for any j and r. Exactly
as asserted in Refs. [24, 25], it means that only real tra-
jectories contribute to the calculation. Furthermore, the
four trajectories can be easily proven to be the same,
depending only on the initial coherent-state label z0,

u′ = z0 and v′′ = z∗0 (real trajectory).

At this point, the present work takes a different route
from that of Refs. [24, 25]. Instead of returning to the
original integration variables, we will interpret Eq. (30)
as they are presented. Effectively, it is equivalent to treat
zr and z∗r (the same for wr and w∗r) as independent vari-
ables, strategy which is in clear consonance with the ap-
proach used to deduce Eq. (14). In fact, from this rea-
soning, Eq. (30) together with Eq. (28) finally establish
the conditions for the critical trajectories involved in PT

ū′1 = z0, v̄′′1 = (v̄′′1x, v̄
′′
1y), and ū′′1 = (ū′′4x, ū

′′
2y);

v̄′2 = z∗0, ū′′2 = (ū′′2x, ū
′′
2y), and v̄′′2 = (v̄′′3x, v̄

′′
1y);

ū′3 = z0, v̄′′3 = (v̄′′3x, v̄
′′
3y), and ū′′3 = (ū′′2x, ū

′′
4y);

v̄′4 = z∗0, ū′′4 = (ū′′4x, ū
′′
4y), and v̄′′4 = (v̄′′1x, v̄

′′
3y).

(31)
Notice that the final coordinates of the four trajectories
are mutually connected. That is, v̄′′1x = v̄′′4x, v̄′′1y = v̄′′2y,
and so on. In this sense, we say that the semiclassical
linear entropy depends on sets of four trajectories with
entangled boundary conditions at the final time. Clearly,
the set of four real trajectories described above also sat-
isfies conditions (31), and should be included in the cal-
culation. We emphasize that these boundary conditions
are by no means inserted by hand in the theory. They
naturally arise from the application of the steepest de-
scent method on integral (26), provided that we allow
a proper analytic continuation, as discussed above. At
last, we point out that this result is achieved without
assuming any consideration concerning the Hamiltonian.

With the conditions of critical trajectories well defined,
we assume that solutions of Eq. (31) can be generally
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found, and proceed with the evaluation of integral (26).
Following Ref. [41], we should expand the integrand up to
second order around the parameters of the critical set of
trajectories. Actually, as rigorously discussed in Ref. [32],
the expansion is not performed for functions Gj and pref-
actors Dj . They are simply evaluated at the saddle point,
without harming the accuracy of the approximation. We
get

PT =
∑
sets

D̄1 D̄2 D̄3 D̄4 e
Ē I. (32)

The sum spans all sets of critical trajectories and natu-
rally encompasses the hitherto neglected sum of Eq. (14).
Also,

I =

∫
exp

{
1

2
δrtĀ δr

}
d[δu′′2y ] d[δv′′1y ]

2πi

×d[δu′′4y ] d[δv′′3y ]

2πi
d[δu′′2x] d[δv′′3x]

2πi
d[δu′′4x] d[δv′′1x]

2πi ,

(33)

where δrt (t stands for transpose) is a line vector con-
taining the new integration variables ordered in a specific
way,

δrt ≡
(
δv′′1x, δv

′′
1y, δu

′′
2x, δu

′′
2y, δv

′′
3x, δv

′′
3y, δu

′′
4x, δu

′′
4y

)
,

with δv′′1x ≡ (v′′1x − v̄′′1x), δv′′1y = (v′′1y − v̄′′1y), and so on.
We now present the matrix

Ā =


i
h̄ S̄

(1)
v′′v′′ −1y 0 −1x
−1y i

h̄ S̄
(2)
u′′u′′ −1x 0

0 −1x i
h̄ S̄

(3)
v′′v′′ −1y

−1x 0 −1y i
h̄ S̄

(4)
u′′u′′

 ,

where

1x =

(
1 0
0 0

)
, 1y =

(
0 0
0 1

)
,

and the 2× 2 blocks in the diagonal of Ā are defined in
analogy to Eq. (20), and can be written in terms of the
tangent matrix M according to Eq. (22).

Our last step to reach an expression for quantum en-
tanglement in terms of classical ingredients is to solve in-
tegral I, which is simply a Gaussian integral [32], whose

result is 1/
√

det Ā. Finally, the linear entropy (1) can be
semiclassically expressed as

Slin = 1−
∑
sets

D1 D2 D3 D4 e
E

√
detA

. (34)

This is our final formula. Notice that we removed the
bars over the functions for the sake of clearness. We em-
phasize that sets of four trajectories contributing to Slin

should satisfy the entangled boundary conditions (31).
Once these trajectories are determined, all functions in-
volved in Eq. (34) can be evaluated. In the following, we
will check for a particular system that, although the set
of real trajectories is inefficient to accurately describe en-
tanglement for longer values of time [24], the inclusion of
a few sets of complex trajectories, as prescribed by (34),
leads to excellent results.

IV. APPLICATION

In this section we will apply the present formalism to
the same physical system used in Ref. [24]. Our intention
is to show that the improvement performed on that the-
ory gives rise to semiclassical results in excellent agree-
ment with the full quantum calculation, even for very
long values of time.

The Hamiltonian to be studied is given by

Ĥ = Ĥx ⊗ 1y + 1x ⊗ Ĥy + λĤx ⊗ Ĥy, (35)

where

Ĥr =
p̂2
r

2mr
+
mrω

2
r q̂

2
r

2
(36)

refers to the harmonic oscillator system. For our pur-
poses, we will assume the initial state as the coherent
state |z0〉 = |z0x〉⊗ |z0y〉, where |z0r〉 is associated to Ĥr.
In this scenario, we remind that the label of the initial
coherent state can be written in terms of

z0r =
1√
2

(
q0r

br
+
ip0r

cr

)
, (37)

where the pair (q0r, p0r) gives the center of the wave
packet |z0〉 in phase space, and (br, cr) its respective un-
certainties.

In terms of the annihilation and creation operators,

âr =
1√
2

(
q̂r
br

+
ip̂r
cr

)
and â†r =

1√
2

(
q̂r
br
− ip̂r

cr

)
,

respectively, with

br =

√
h̄

mrωr
and cr =

√
mrh̄ωr,

the Hamiltonian becomes

Ĥ = h̄Ωxâ
†
xâx + h̄Ωyâ

†
yây + h̄Γâ†xâx â

†
yây + ε0, (38)

where

Ωr = ωr +
Γ

2
, Γ = λh̄ωxωy, and ε0 =

h̄

2
(ωx + ωy).

The linear entropy (1) of the reduced density matrix for
this system can be straightforwardly evaluated, resulting
in

Slin = 1− PT , (39)

where

PT = e−2|z0x|2
∑
n,m

|z0x|2(n+m)

n!m!
e
−4|z0y|2 sin2

[
ΓT (n−m)

2

]
.

Equation (39) reveals that the entanglement dynamics
for this particular system is periodic, with period given
by Tr ≡ 2π/Γ, named as recoherence time. It can be eas-
ily checked that Slin(T = jTr) = 0, for j = 0, 1, . . .. For
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(c) ℏ = π/15 ≅ 0.21

FIG. 1. Black solid lines represent quantum linear entropy of the reduced state (39) as function of the dimensionless time τ ,

for (a) h̄ = 1, (b) h̄ = π/5, and (c) h̄ = π/15. Other numerical parameters are E0r = ω0r = λ = 1 and z0r =
√
E0r/(h̄ωr). In

panel (b), the black dashed curve shows the contribution of the set of real trajectories to Slin, while the red dotted one presents
the equivalent result when a few sets of complex trajectories are considered.

this reason, in what follows, we will adopt the dimension-
less time

τ ≡ T

Tr
=

ΓT

2π
, (40)

and restrict our study to the interval 0 ≤ τ < 1. Notice
that all the dynamics is present in this range.

Numerical parameters for the present application were
chosen according to the following reasoning. The label of
the initial state |z0〉 is such that

|z0r|2 =
1

h̄ωr

(
p2
r

2mr
+
mrω

2
rq

2
r

2

)
≡ E0r

h̄ωr
, (41)

which, roughly speaking, suggests that, to reach a semi-
classical regime, the harmonic oscillator energy E0r

should be much larger than h̄ωr. Then, we hold
E0r = ω0r = λ = 1 and define, for simplicity, z0r =√
E0r/(h̄ωr) = h̄−1/2, meaning that z0r is numerically

equivalent to h̄−1/2. By decreasing h̄ from 1, we for-
mally go, in principle, from quantum to semiclassical
limit. Besides, concerning the physical time-scale re-
lated to T , we notice that the harmonic oscillator period
now is Tho ≡ 2π/ωr = 2π and the recoherence time is
Tr = Tho/h̄. Then, decreasing h̄ means increasing Tr.

We have, therefore, the following dilemma. If we take
h̄ = 1, for instance, although the semiclassical regime is
not achieved, the entanglement dynamics during a cy-
cle is simple because it lasts a short time, equivalent to
only one period of the harmonic oscillator. On the other
hand, by taking very small values of h̄, the semiclassical
regime can be reached, but Tr can be much larger and
the dynamics much more evolved. Figure 1 clearly illus-
trates this discussion, while it shows (black solid line) the
behavior of Slin as function of τ , during a whole cycle,
for three values of h̄: approximately 1.0, 0.63, and 0.21
for Figs. 1(a), 1(b), and 1(c), respectively. Inversely, for
each plot, the recoherence time increases: 2π, 10, and 30,
respectively. Thus, as we intend to semiclassically study
a complete cycle Tr, we cannot adopt very small values

of h̄, neither the largest ones, so that, in the next calcu-
lations, we will use h̄ = π/5 ≈ 0.63, the value used in
Fig. 1(b).

A. Auxiliary Dynamics

In order to evaluate the semiclassical version of
Eq. (39), we need an underlying classical Hamiltonian,
which, according to our prescription (9), is

H(v,u) = h̄Ωxvxux+h̄Ωyvyuy+h̄Γvxux vyuy+ε0. (42)

The classical trajectories can be readily integrated ac-
cording to Eq. (8). In terms of the initial coordinates u′x,
v′x, u′y, and v′y, they are ux(t)

uy(t)
vx(t)
vy(t)

 =


u′xe
−λxt

u′ye
−λyt

v′xe
+λxt

v′ye
+λyt

 , (43)

where λx = i
(
Ωx + Γu′yv

′
y

)
and λy = i (Ωy + Γu′xv

′
x).

The tangent matrix (23) can be evaluated by differenti-
ating the last equation, so that

δu′′x
δu′′y
δv′′x
δv′′y

 = MBMA


δu′x
δu′y
δv′x
δv′y

 , (44)

where

MA =


1 −au′xv′y 0 −au′xu′y

−au′yv′x 1 −au′yu′x 0
0 av′xv

′
y 1 av′xu

′
y

av′yv
′
x 0 av′yu

′
x 1

 , (45)

with a = iΓT and

MB =


e−λxT 0 0 0

0 e−λyT 0 0
0 0 e+λxT 0
0 0 0 e+λyT

 . (46)
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From these classical results, we need to identify the tra-
jectories contributing to the semiclassical formula (34).

B. Contributing trajectories

Each term in the sum of Eq. (34) involves four
trajectories. All of them have the form presented
above (43), one differing from each other exclusively
through their boundary conditions. Initial boundary con-
ditions of Eq. (31) simply imply that u′1r = u′3r = z0r and
v′2r = v′4r = z∗0r. Final constraints, on the other hand,
are more evolved. In the present application, in terms of
the dimensionless time τ , they can be written as

e−iay(y1−y4)τ = x4, e−iax(x1−x2)τ = y2,
e+iay(y2−y3)τ = x3, e+iax(x2−x1)τ = y1,
e−iay(y3−y2)τ = x2, e−iax(x3−x4)τ = y4,
e+iay(y4−y1)τ = x1, e+iax(x4−x3)τ = y3,

(47)

where ax = 2π |z0x|2, ay = 2π |z0y|2, and

v′1x = x1z
∗
0x, u

′
2x = x2z0x, v

′
3x = x3z

∗
0x, u

′
4x = x4z0x,

v′1y = y1z
∗
0y, u′2y = y2z0y, v′3y = y3z

∗
0y, u′4y = y4z0y.

(48)
Manipulating Eq. (47) allows us to write the following
transcendental equation for x2,

x2 = e
+iayτ

[
e
+iax(x2−

1
x2

)τ−e−iax(x2−
1
x2

)τ
]
. (49)

Once we have found solutions for x2, other variables can
be solved as

y2 = e
+iax

(
x2− 1

x2

)
τ
, x3 = x2, y1 = y2,

x1 = x4 = 1
x2
, y3 = y4 = 1

y2
,

(50)

completing [see Eq. (48)] all the information needed to
define the set of contributing trajectories. For practical
reasons, to deal with this problem, we define the function

f(x2) = x2 − e
+iayτ

[
e
+iax(x2−

1
x2

)τ−e−iax(x2−
1
x2

)τ
]
, (51)

so that finding solutions of Eq. (49) is equivalent to find-
ing roots of f(x2).

At this point, notice that the crucial point of our
application is the search for solutions of points where
f(x2) = 0. We will show that, except for τ = 0, where
only one solution exists, there are infinitely many values
of x2 satisfying this equation. As already explained, each
solution gives origin to a set of four trajectories which,
in principle, contributes to the value of Slin.

When τ = 0, the only root of f(x2) is straightforwardly
found: x2 = 1, which clearly gives origin to the set of
real trajectories starting at u′j = z0 and v′j = z∗0, for
j = 1, 2, 3 , and 4 [see Eq. (48)]. Besides, notice that the
point x2 = 1 is a root, whatever is the value of τ . Keep-
ing only this set of contributing trajectories is therefore

equivalent to the approach of Ref. [24]. In Fig. 1(b) we
show (black dashed line) this specific contribution to our
numerical example. Notice that, as expected, it gives ac-
curate results only for short values of time. When time
runs, oscillations seen in the quantum curve are not re-
produced by the real trajectory.

Another important consideration should be done. A
simple inspection in Eq. (51) reveals that, if x2 = w is
a complex root, then w∗, 1/w, and 1/w∗ are also roots
of f(x2). As a consequence, we will look for roots lying
only at the unitary circle of the x2-complex plane, or
outside it, and restricted to Im[x2] ≥ 0, simplifying this
root search problem. Obviously, roots lying exactly over
the unitary circle (or the real axis) do not follow exactly
that rule; if |w| = 1 (or Im[w] = 0), then only w and w∗

(or 1/w) are roots.

Finally, in Fig. 2 we graphically look for the roots of
f(x2) in the x2-complex plane. For all plots, black solid
lines delimit the unitary circle. For the reason mentioned
above, no new information can be found inside this circle,
then nothing is shown there. Exceptions are Fig. 2(h) and
Fig. 2(i) where contour lines inside the circle are plotted
for a better understanding of their structure. In addition,
dashed lines refer to the curves where Im[f(x2)] = 0,
while the dotted ones indicate those where Re[f(x2)] = 0.
Roots of f(x2) are evidently given by intersections of
dashed and dotted lines.

In Fig. 2(a), plotted for τ = 0, we see that there is only
one root at x2 = 1. According to Fig. 2(b) to Fig. 2(e),
when τ increases, some structures coming from distant
regions rapidly approach the origin, bringing a large num-
ber of new roots with them. Actually, the intersection
points are barely seen in Fig. 2(d) and Fig. 2(e) because
they are much close to each other. However, they are
there as demonstrated by Fig. 2(f) to Fig. 2(l), where
magnified regions of Fig. 2(e) are plotted, showing its
details in the vicinity of the real axis.

Figure 2(e) shows the scenario for τ = 0.333, one third
of the recoherence time Tr, where the quantity of roots
seems to be intractable. Among so many solutions, it is
practically mandatory to get a criteria to select the rele-
vant points. Considering that the set of real trajectories,
represented by x2 = 1, is enough to reproduce the quan-
tum linear entropy for sufficiently short values of time,
and given that other unimportant roots lie in remote re-
gions in this case, it seems reasonable to neglect, at a
first attempt, intersection points which are not close to
the real axis. This is the motivation to plot, in Fig. 2(f)
to Fig. 2(l), magnified regions of Fig. 2(e) around the
real axis. Actually, they show details of its three struc-
tures positioned at the left of the origin [Figs. 2(f) to
Fig. 2(h)] and other four ones located at the right of this
point [Figs. 2(i) to Fig. 2(l)]. These seven structures are
named St1, St2, . . . , St7 for convenience, as shown in each
plot. From them we effectively start the selection of the
contributing sets of complex trajectories, as explained in
the following.
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FIG. 2. Searching roots of f(x2) in the x2-complex plane. For all plots, curves where Im[f(x2)] = 0 (Re[f(x2)] = 0) are shown
by dashed (dotted) lines and the unitary circle is represented by the solid line. Intersections of dashed and dotted curves are the
roots of f(x2). From panel (a) to (e), values of the dimensionless time τ assume 0, 0.035, 0.045, 0.065, and 0.333, respectively.
Panels (f) to (l) are magnified regions of panel (e), showing details of its seven structures around the real axis. Green, blue,
and red circles present at panels (i) to (l) identify the relevant roots for the evaluation of Slin. Other numerical parameters are

E0r = ω0r = λ = 1, h̄ = π/5, and z0r =
√
E0r/(h̄ωr).

C. Semiclassical Results

We first emphasize that, for the whole process of find-
ing sets of trajectories effectively contributing to Slin, we
only inspected the plots of Fig. 2(f) to Fig. 2(l). Even
for different values of τ , there is no need to find new
roots of f(x2) graphically. From a single root found for
τ = 0.333, for instance, we have iteratively got a family
of roots associated to this solution for the whole range
0 < τ ≤ 1, by means of a proper numerical procedure
based on the Newton-Raphson method.

Numerically, we verified that most of the families as-

sociated with the roots seen in Fig. 2(f) to Fig. 2(l) gives
origin to contributions to Slin which are negligible for
any value of τ . Then, they are simply disregarded. Ac-
tually, those intersections identified by colored circles in
Fig. 2(i) to Fig. 2(l) are the roots responding for rele-
vant contributions, i.e., only the analysis of structures
St4 to St7 produced useful results. In Fig. 3(a), for in-
stance, we show the effects of including families of the
three marked roots of Fig. 2(i). As already discussed,
the point identified by the green circle is that associated
with the set of real trajectories; its contribution is given
by the green solid line. If we include to this result the
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(b) St5 contribution
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(c) St6 contribution
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(d) St7 contribution

FIG. 3. Black solid lines represent the quantum linear entropy of the reduced state (39) as function of the dimensionless time τ .
Numerical parameters are chosen to be the same of those of Fig. 1(b). In panel (a), the solid green line refers to Slin, calculated
using exclusively the set of real trajectories, associated with the root inside the green circle of Fig. 2(i); including trajectories
associated with the root marked by the blue circle of Fig. 2(i) produces the blue dashed curve; and, including contributions
related to the root marked by the red circle of Fig. 2(i) generates the red dotted curve. Colored lines of panels (b), (c), and
(d) are built analogously to panel (a); by adding contributions to the semiclassical approach presented in Fig. 2(j), Fig. 2(k),
and Fig. 2(l), respectively. Black dashed lines in panels (b), (c), and (d) are the most complete curve of the preceding panel,
i.e., the red dotted curve of panels (a), (b), and (c), respectively.

family associated with the root inside the blue circle of
Fig. 2(i), we get the blue dashed curve of Fig. 3(a). Still,
adding the root marked by the red circle, the red dot-
ted curve is obtained. Clearly, the inclusion of new sets
of complex trajectories improves Slin based only on real
trajectories. However, oscillations presented in the fully
quantum linear entropy (black solid curves of Fig. 3) are
still not reproduced.

Only when the highlighted roots of Fig. 2(j) are consid-
ered, the oscillatory behavior of Slin starts to be mime-
tized by the semiclassical approach. In Fig. 3(b), we first
add the family of the root marked by the green circle
of St5, getting the green solid line, which does not show
oscillations but improves the approximation. Then, we
include the root inside the blue circle and arrive at the
blue dashed curve which shows a very good semiclassical
result, oscillating in accordance to the quantum result
until τ ≈ 0.5. At last, we show that including the family
of the root marked by the red circle produces improve-
ment only in the second half of the recoherence time (red
dotted line).

Following the same procedure, we show in Fig. 3(c)
and Fig. 3(d) the improvement gained by including roots
highlighted in structures St6 and St7 [Fig. 2(k) and
Fig. 2(l)], respectively. Now, Slin practically remains un-
changed for τ < 0.5. On the other hand, for τ > 0.5, the
semiclassical approximation becomes progressively bet-
ter. When structure St7 is considered, it can be seen
that Slin is practically improved only for τ > 0.9. In
order to analyze our final result, we return to Fig. 1(b),
where the exact Slin is plotted (black solid line) together
with the semiclassical Slin in two cases: when only real
trajectories are included (black dashed line) and when
complex trajectories associated to marked intersections
of Fig. 2(i) to Fig. 2(l) enter in the calculation (red dot-
ted line). Surprisingly, the inclusion of only a few sets
of complex trajectories is enough to reproduce the fully
quantum result during almost the whole period Tr.
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V. FINAL REMARKS

The present paper essentially revisits the theory pre-
sented in Ref. [24], and substantially improves its accu-
racy. In the adopted approach, we start from an inte-
gral expression for the linear entropy Slin of the reduced
density matrix of a pure bipartite system, initially pre-
pared in a product of coherent states [Eqs. (1) to (4)],
developing it by means of semiclassical approximations
based on the steepest descent method. According to this
treatment, a semiclassical formula for Slin is written in
terms of sets of four correlated trajectories of an under-
lying classical system (34). With respect to Ref. [24],
our novelty is to consider complex trajectories in the ap-
proach. We should comment that the present contribu-
tion involves a prescription, rigorously deduced from the
theory, in order to identify such trajectories.

While the contribution of real trajectories to Slin is
able to reproduce the short-time behavior of its quan-
tum counterpart Slin, we have verified for a particular
system that only a few sets of complex trajectories are
enough to produce accurate results even for very long val-
ues of time [these results are summarized in Fig. 1(b)].
We emphasize that a contributing set of trajectories is
characterized by the entangled boundary conditions (31).
It is worth to point out that our approach is completely
different from the entangled trajectory molecular dynam-
ics method [16, 42]. Differently from our formalism where
trajectories are entangled by means of final-time bound-
ary conditions, in Refs. [16, 42] classical dynamics is en-
tangled due to the inclusion of a non-local term in its
equations of motion, a procedure similar to that used on
Bohmian quantum mechanics. Problems of interest at-
tacked by the entangled trajectory molecular dynamics
method are typical of the chemical physics field, in which
the inclusion of quantum correlation phenomena has at-
tracted considerable attention [43]. We expected that the
theory presented here can also contribute to this area,
however this theme is beyond the scope of the present
paper.

Still referring to the set of contributing trajectories, we
remind that there are important works in the literature
based on the semiclassical time-evolution of the Wigner
function (and its Fourier conjugate) [44–46], whose ap-
proaches also identify sets of connected trajectories en-
tering in the calculation. The difference, in these cases, is
that they deal with pairs of trajectories, instead of four,
and their boundary conditions do not explicitly involve
constraints among different parts (x and y, in our case)
of the system, as shown in Eq. (31). Writing the linear
entropy in terms of the Wigner function is possible [16],
however further integrations should be done. Possibly,
this procedure would connect two pairs of trajectories
resulting in boundary conditions comparable to ours.

It is quite instigating to speculate about the concep-
tual role of the extended phase-space, which shelters the
contributing trajectories. By recognizing that there are
other works in different contexts clearly confirming that

genuinely quantum behaviors are reproduced by semi-
classical approaches only when complex trajectories are
included [47–49], one wonders if the complex-extension
procedure is a determinant factor to distinguish classi-
cal and quantum correlations. To develop this idea, sup-
ported by Refs. [11, 20], we first point out that the short-
time entanglement can be described by classical mecha-
nisms based on the Liouvillian theory. For greater val-
ues of time, on the other hand, no real classical strat-
egy seems to be able to mimic entanglement, corrob-
orating its quantum nature. The expedient used here
to overcome this evident semiclassical difficulty is to ex-
tend the real phase-space to a complex one. This, there-
fore, suggests that classical correlations in an extended
phase-space [50], a valid interpretation of boundary con-
ditions (31), are closely related to genuinely quantum
correlations. Notice that, in this case, in principle, sets of
trajectories defined here could be used to describe entan-
glement in other possibly classical approaches. However,
their complex nature seems to be unavoidable.

As far as we know, the present work is the first to define
specific properties of a classical system, given by Eq. (31),
which somehow carry information about quantum entan-
glement. Contrarily to other works which sum contribu-
tions over an ensemble of trajectories (e.g., Refs [14, 16]),
our approach allowed us to identify only a few classi-
cal trajectories relevant to mimic, to a certain extent,
the quantum behavior. We also understand that the an-
nounced entangled boundary conditions may encapsulate
useful information to better explain the connection be-
tween the classical dynamical properties and the growth
of entanglement, or, in other words, to investigate classi-
cal mechanisms associated to entanglement. By the way,
some authors have recently questioned the well accepted
conclusions pointing to a direct relation between chaos
and rapid growth of entanglement [9, 13, 17, 18]. We
consider that our work may shed some light over this
discussion, but it is an issue that we intend to develop in
a future work where we will also extend the formalism to
spin degrees of freedom.

At last, we would like to apply the present approach to
the scenario of Bell-type inequalities, in the same spirit of
Ref. [52]. Since we have got an excellent reproduction of
the quantum entanglement behavior by means of classical
elements, we wonder if it could violate those inequalities.
In the positive case, to be consistent with Bell’s work,
an amount of non-locality should be identified in the for-
malism.
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(INCT-IQ, 465469/2014-0). We also would like to thank



11

R. M. Angelo and F. Parisio for helpful discussions.

[1] M. A. Nielsen and I. L. Chuang, Quantum computation
and quantum information (Cambridge University Press,
U.K., 2000).

[2] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Rev. Mod. Phys. 81, 865 (2009).

[3] M. C. Gutzwiller, Chaos in Classical and Quantum Me-
chanics (Springer-Verlag, New York, 1990).

[4] M. Brack and R. Bhaduri, Semiclassical Physics (West-
view Press, Oxford, 2003).

[5] K. Furuya, M. C. Nemes, and G. Q. Pellegrino, Phys.
Rev. Lett. 80, 5524 (1998).

[6] S. Ghose and B. C. Sanders, Phys. Rev. A 70, 062315
(2004).

[7] L. F. Santos, G. Rigolin, and C. O. Escobar, Phys. Rev.
A 69 042304 (2004).

[8] M. Novaes, Ann. Phys. 318, 308 (2005).
[9] M. Lombardi and A. Matzkin, Laser Phys. 20, 1215

(2010).
[10] C. Neil et al, Nature Phys. 12, 1037 (2016).
[11] R. M. Angelo, S. A. Vitiello, M. A. M. de Aguiar, and

K. Furuya, Physyca A 338, 458 (2004).
[12] H. Han and P. Brumer, J. Phys. B 40, S209 (2007).
[13] M. Lombardi and A. Matzkin, Phys. Rev. E 83, 016207

(2011).
[14] G. Casati, I. Guarneri, and J. Reslen, Phys. Rev. E 85,

036208 (2012).
[15] C. T. Asplund and D. Berenstein, Ann. Phys. 366, 113

(2016).
[16] F. Xu, C. C. Martens, and Y. Zheng, Phys. Rev. A 96,

022138 (2017).
[17] J. B. Ruebeck, J. Lin, and A. K. Pattanayak, Phys. Rev.

E 95, 062222 (2017).
[18] M. Kumari and S. Ghose, Phys. Rev. A 99, 042311

(2019).
[19] J. Gong and P. Brumer, Phys. Rev. Lett. 90, 050402

(2003).
[20] R. M. Angelo and K. Furuya, Phys. Rev. A 71, 042321

(2005).
[21] M. Znidaric and T. Prosen, Phys. Rev. A 71, 032103

(2005).
[22] Ph. Jacquod, Phys. Rev. Lett. 92, 150403 (2004).
[23] Ph. Jacquod and C. Petitjean, Adv. Phys. 58, 67 (2009).
[24] A. D. Ribeiro and R. M. Angelo, Phys. Rev. A 82, 052335

(2010).
[25] A. D. Ribeiro and R. M. Angelo, Phys. Rev. A 85, 052312

(2012).

[26] J. R. Klauder and B. S. Skagerstan, Coherent States. Ap-
plications in Physics and Mathematical Physics (World
Scientific, Singapore, 1985).

[27] A. Perelomov, Generalized Coherent States and their Ap-
plications (Springer-Verlag, Berlim, 1986).

[28] W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod.
Phys. 62, 867 (1990).

[29] J. R. Klauder, Phys. Rev. D 19, 2349 (1979).
[30] Y. Weissman, J. Phys. A 16, 2693 (1983).
[31] E. A. Kochetov, J. Phys. A 31, 4473 (1998).
[32] M. Baranger, M. A. M. de Aguiar, F. Keck, H. J. Korsch,

and B. Schellaas, J. Phys. A 34, 7227 (2001).
[33] A. D. Ribeiro, M. A. M. de Aguiar, and M. Baranger,

Phys. Rev. E 69, 066204 (2004).
[34] C. Braun and A. Garg, J. Math. Phys. 48, 032104 (2007).
[35] H. Solari, J. Math. Phys. 28, 1097 (1987).
[36] V. R. Vieira and P. D. Sacramento, Nucl. Phys. B 448,

331 (1995).
[37] E. A. Kochetov, J. Math. Phys. 36, 4667 (1995).
[38] M. Stone, K. S. Park, and A. Garg, J. Math. Phys. 41,

8025 (2000).
[39] A. D. Ribeiro, M. A. M. de Aguiar, and A. F. R. de

Toledo Piza, J. Phys. A 39, 3085 (2006).
[40] A. L. Foggiatto and A. D. Ribeiro, Prog. Theor. Exp.

Phys. 10, 103A01 (2017).
[41] N. Bleistein and R. A. Handelsman, Asymptotic Expan-

sion of Integrals (Dover, New York, 1986).
[42] A. Donoso and C. C. Martens, Phys. Rev. Lett. 87,

223202 (2001).
[43] W. H. Miller, J. Chem. Phys. 136, 210901 (2012).
[44] P. P. de M. Rios and A. M. Ozorio de Almeida, J. Phys.

A: Math. Gen. 35, 2609 (2002)
[45] T. Dittrich, C. Viviescas and L. Sandoval, Phys. Rev.

Lett. 96, 070403 (2006).
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