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We present a general strategy to derive entanglement criteria which consists in performing a
mapping from qudits to qubits that preserves the separability of the parties and SU(2) rotational
invariance. Consequently, it is possible to apply the well known positive partial transpose criterion to
reveal the existence of quantum correlations between qudits. We discuss some examples of entangled
states that are detected using the proposed strategy. Finally, we demonstrate, using our scheme, how
some variance based entanglement witnesses can be generalized from qubits to higher dimensional
spin systems.
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A necessary and sufficient condition to assert the sep-
arability of a given general quantum state is an open
problem. For bipartite quantum systems formed by two
2-level systems (qubits) or a 2-level system and a 3-level
system (qutrit), the Peres-Horodecki criterion [1, 2], that
is the positivity of the partial transpose (PPT) of the
quantum system density matrix, provides such a condi-
tion for separability. We still lack such a criterion to
fully characterize separability in higher dimensional or
in multipartite quantum systems. Although the PPT
test constitutes a sufficient condition for detecting bipar-
tite entanglement in the case of systems of arbitrary di-
mension, it requires not only local manipulation of each
party, but also a full reconstruction of the state density
matrix. Such requirements may be prohibitive from an
experimental perspective. This is why entanglement wit-
nesses [3], which are sufficient criteria for detecting bi-
partite or even multipartite entanglement based on less
demanding measurements, have attracted so much inter-
est lately [4].

In this Letter, we present a general scheme to detect
entanglement in systems of arbitrary (finite) dimension
based on the mapping of qudits to qubits. The proposed
mapping, which actually constitutes a general and op-
erational formulation for dichotomization, preserves the
separability of the subsystems, ensuring that it does not
create entanglement that did not exist in the original
system. Therefore, if the mapped qubits system is en-
tangled, we can assert that the corresponding qudits are
also entangled. In this way, the proposed mapping en-
ables the application of entanglement criteria originally
derived for qubit systems to qudit ones.

We start by defining the mappingMU of a density op-
erator ρ acting on the d-dimensional Hilbert spaceH(d) to
a density operator σ =MU (ρ) acting on a 2-dimensional

Hilbert space H(2):

MU : B(H(d))→ B(H(2))

ρ→MU (ρ) = TrD
[
U (ρ⊗ |0〉〈0|)U†

]
.
(1)

|0〉 is an arbitrary fiducial state in H(2), U is a linear
operator from the tensor product space H(d) ⊗ H(2) to
another Hilbert space H(D) ⊗H(2) with D ≥ d, and TrD
means a partial trace over the H(D) part only. B(H) de-
notes the space of the bounded operators acting onH. To
preserve hermiticity, positivity and trace of the density
matrix, it is enough to require that U is an isometry, that
is U†U = 12d , where 12d is the identity on H(d)⊗H(2)[5].

Since we are interested in detecting bipartite entangle-
ment in the state described by ρ acting on H(d1)⊗H(d2),
we define a mapping MU1U2

as follows:

MU1U2
: B(H(d1) ⊗H(d2))→ B(H(2) ⊗H(2))

ρ→ r =MU1U2
(ρ), (2)

with:

MU1U2(ρ) = TrD1D2

[
U1 ⊗ U2 (ρ⊗ |0〉〈0| ⊗ |0〉〈0|)U†1 ⊗ U

†
2

]
,

(3)
where Ui is an isometric operator acting fromH(di)⊗H(2)

to H(Di)⊗H(2) (for i = 1, 2) and TrD1D2
means a partial

trace over H(D1)⊗H(D2) states. Analogously to the case
with MU , the mapping MU1U2 preserves positivity and
trace of the density operator. Furthermore, it also pre-
serves separability: indeed, if ρ is a 2-qudit product state
ρ = ρ1⊗ρ2, then r =MU1U2

(ρ) =MU1
(ρ1)⊗MU2

(ρ2) is
also a product state. This property can be extended to all
separable states, pure or mixed, by convexity. Therefore
if r is an entangled state, we are sure that the original
2-qudit state ρ ∈ B(H(d1) ⊗ H(d2)) is entangled. As all
entangled states in B(H(2) ⊗H(2)) have one nonpositive
eigenvalue for the partially transposed matrix, two nat-
ural questions arise: given an entangled density matrix
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r, what type of entanglement is present in the original
2-qudit state defined in B(H(d1) ⊗ H(d2)) ? And how
does the set of detectable entangled states depend on
the isometries U1 and U2 that are used to implement the
mapping?

In the present Letter, we provide some answers to these
questions in the operationally relevant case where the
isometries U1,2 correspond to a mapping which preserves
the SU(2) rotational invariance and, in addition, lead
to an entanglement witness which can be easily imple-
mented experimentally.

We start by remarking that the isometry U which char-
acterizes the mappingMU can be parametrized by 4 lin-
ear operators Ai (i = 0, 1, 2, 3) from H(d) to H(D) as fol-
lows:

U =

3∑
i=0

Ai ⊗ σi, (4)

where σi’s, for i = 1, 2, 3, are the Pauli matrices and
σ0 = 1 is the identity operator in H(2). The isometric
property U†U = 1 implies that:

~A† · ~A+A0
†A0 = 1,

~A†A0 +A0
† ~A+ i ~A† ∧ ~A = ~0. (5)

With the parametrization Eq. (4) the mapping Eq. (1)
can be written as:

MU (ρ) =

3∑
i,j=0

〈Aj†Ai〉ρ σi|0〉〈0|σj . (6)

We proceed by introducing the following intuitive and
convenient specific case for this mapping:

MU (ρ) =
1

2

(
1 +

1

j

3∑
i=1

〈Ji〉ρσi

)
, (7)

where Ji (i = 1, 2, 3) are the 3 Cartesian angular mo-
mentum components. They are the generators of SU(2)
rotations around x, y, and z axis, in the d-dimensional
Hilbert space H(d). The denominator j is the largest
eigenvalue of Ji, i.e., it is such that d = 2j + 1. Finally,
〈Ji〉ρ = Tr[ρJi] denotes the expectation value of Ji.

The mapping MU given by Eq. (7) can be shown to
be a valid mapping defined from Eq. (1), by exhibit-
ing the corresponding Ai operators of Eq. (4). We note
that the Ai operators can be expressed in a simple form
with the help of the two bosonic annihilation opera-
tors a and b corresponding to the Schwinger represen-
tation: J+ = a†b, J− = b†a, where J± = J1 ± iJ2, and
J3 = 1

2 (a†a − b†b) with the restriction a†a + b†b = 2j.
By a straightforward calculation the operators Ai realiz-
ing the isometry U through Eqs. (4) and Eqs. (5) can be

shown to be [6]:

A0 =
1

2
√

2

(
a√
j

+
a†√
j + 1

)
, A3 =

1

2
√

2

(
a√
j
− a†√

j + 1

)
,

A1 =
1

2
√

2

(
b√
j
− b†√

j + 1

)
, iA2 =

1

2
√

2

(
b√
j

+
b†√
j + 1

)
.

(8)

We emphasize that this mapping is practical, as the 3
expectation values 〈Ji〉ρ can be easily measured. In ad-
dition, it conserves the rotational invariance. Indeed,
suppose that we perform a rotation R~n(α) by an angle
α around a given vector ~n. Then, ρ is transformed as

ρ′ = e−iα
~J · ~nρeiα ~J · ~n. It is not difficult to show that ρ′

is mapped to the rotated qubit :

MU (e−iα
~J · ~nρeiα ~J · ~n) = e−iα~σ · ~n/2MU (ρ)eiα~σ · ~n/2. (9)

The invariance displayed in Eq. (9) is a consequence of
the simple vectorial relations:

〈R−1
~n (α)

[
~J
]
〉ρ ·~σ = 〈 ~J〉ρ′ ·σ = 〈 ~J〉 ·R~n(α) [~σ] , (10)

where ~J is the vector whose 3 components are the 3 op-

erators Ji, for i = 1, 2, 3, and R−1
~n (α)

[
~J
]

is the corre-

sponding vector in the rotated frame. Since SO(3) and
SU(2) are isomorphic, we can apply all possible unitaries
to the mapped qubit by rotating the original angular mo-
mentum correspondingly.

Now, we consider the case of a 2-qudit state ρ in
B(H(d1) ⊗ H(d2)) and use the mapping MU1U2

, where
each Ui(i = 1, 2) implements a mapping as the one given
by Eq. (7). The resulting mapping MU1U2 can then be
written explicitly as follows:

MU1U2(ρ) =
1

4

[
1 +

1

j(d1)

3∑
i=1

〈J (d1)
i ⊗ 1〉ρσi ⊗ 1

+
1

j(d2)

3∑
i=1

〈1⊗ J (d2)
i 〉ρ1⊗ σi+

+
1

j(d1)j(d2)

3∑
i,j=1

〈J (d1)
i ⊗ J (d2)

j 〉ρσi ⊗ σj

 ,
(11)

where J
(dk)
i is the i-th (i = 1, 2, 3) angular momentum

component on the dk-dimensional Hilbert space H(dk)

(k = 1, 2), with dk = 2j(dk) + 1.
An important property of this particular mapping is

that the partial transpose (PT) of a 2-qudit state is
mapped to the PT of its corresponding 2-qubit state,
i.e., MU1U2(ρT2) = MU1U2(ρ)T2 , where T2 is the PT
with respect to the second party. This follows directly
from the fact Tr[AT2B] = Tr[ABT2 ] for A and B acting
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on H(d1) ⊗ H(d2) and that the transpose of the compo-
nents of the angular momentum operator fulfills JT1 = J1,
JT2 = −J2, and JT3 = J3. As a result, taking into ac-
count positivity preservation, a 2-qudit state which re-
mains positive after a partial tranpose (a PPT state) is
mapped to a PPT 2-qubit state [7]. Moreover, it leads
to an operationally easy to implement entanglement wit-
ness based on second order correlations. This is achieved
by using the following substitutions:

〈σi ⊗ 1〉MU1U2
(ρ) =

〈J (d1)
i ⊗ 1〉ρ
j(d1)

≡ r1
i ,

〈1⊗ σi〉MU1U2
(ρ) =

〈1⊗ J (d2)
i 〉ρ

j(d2)
≡ r2

i ,

〈σi ⊗ σj〉MU1U2
(ρ) =

〈J (d1)
i ⊗ J (d2)

j 〉ρ
j(d1)j(d2)

≡ Tij ,

(12)

which are direct consequences of Eq. (11). Therefore we
consider the following form for the general mapped state:

MU1U2
(ρ) =

1

4

[
1 + ~r1.~σ ⊗ 1 + ~r2.1⊗ ~σ +

3∑
i=1

Tiiσi ⊗ σi

]
,

(13)
where we assume that the rotations needed to diagonalize
Tij have been performed. We have introduced the vectors

~rj (j = 1, 2), which have as components the rji (i =
1, 2, 3) defined in Eq. (12), after the mentioned needed
rotations.

Once we have the form of Eq. (11) or Eq. (13), the
best entanglement witness that we can use is the Peres-
Horodecki criterion [2] relying on the positiveness of the
partial transpose. This criterion can be simplified by
considering the geometric picture which was developed
in Ref. [8]. In this paper, it was shown that for the

states of the form given by Eq. (13), the vector ~T =
{T11, T22, T33} ∈ R3 must lie within a tetrahedron with
vertices {(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)}, to
fulfill the positiveness requirement. Each of the 4
vertices of this tetrahedron is reached when the 2-
qubit state is one of the four Bell-states |Φ±〉 =
|00〉±|11〉√

2
, |Ψ±〉 = |01〉±|10〉√

2
. In this picture, the sep-

arable states are those for which the vector ~T =
{T11, T22, T33} ∈ R3 lies within the octahedron with ver-
tices {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. This last property
can be put in the following more compact form: for any
separable state of the form given by Eq. (13), ~T verifies
the inequality:

|T11|+ |T22|+ |T33| ≤ 1. (14)

Using the definitions given by Eq. (12), Eq. (14) can be
re-expressed as a 2-qudit entanglement criterion:
For any separable state ρ acting on H(d1) ⊗ H(d2), the

vector {〈J (d1)
i ⊗J (d2)

i 〉ρ : i = 1, 2, 3} verifies the following

inequality:∣∣∣〈J (d1)
1 ⊗ J (d2)

1 〉ρ
∣∣∣+ ∣∣∣〈J (d1)

2 ⊗ J (d2)
2 〉ρ

∣∣∣+
+
∣∣∣〈J (d1)

3 ⊗ J (d2)
3 〉ρ

∣∣∣ ≤ j(d1)j(d2). (15)

Therefore, all states that violate inequality (15) lie out-
side the octahedron and are thus entangled. This 2-qudit
entanglement criterion has the advantage of being very
simple to test experimentally. One can notice that there
are no 2-qudit states that are mapped to any of the 2-
qubit Bell states [6]. Therefore, the vertices of the tetra-
hedron do not belong to the image of our mapping.

To have an insight about the efficiency of our crite-
rion to detect entanglement, we apply it to two known
families of qudit states that have been extensively stud-
ied in Refs. [9–12]. From now on, we suppose that the
two qudits are of the same dimension, that is d1 = d2 ≡
d = 2j + 1. First, we recall the family of d2 maximally
entangled 2-qudit states |Ωkl〉(k, l = 0, 1, · · · , d− 1) that
generalize the four 2-qubit Bell states [9–12]:

|Ωkl〉 = Wkl ⊗ 1|Ω00〉, with |Ω00〉 =
1√
d

d−1∑
m=0

|m,m〉,(16)

where the d2 Wkl operators acting on the first qudit are
the Weyl operators defined as

Wkl|m〉 = e
i2πk(m−l)

d |(m− l)mod d〉. (17)

These 2-qudit Bell states Pkl = |Ωkl〉〈Ωkl| are locally
maximally mixed states, that is, by taking their partial
trace one obtains the maximally mixed state 1

d . It is
interesting to notice that they are mapped by Eq. (13)
to a locally maximally mixed 2-qubit state. Indeed, we
have:

~r1
kl =

〈 ~J ⊗ 1〉Pkl
j

= ~0 and ~r2
kl =

〈1⊗ ~J〉Pkl
j

= ~0.

For such states, our simple criterion Eq. (15) is as strong
as the PPT criterion applied to states given by Eq. (13)
and detects all entangled locally maximally mixed states
that are detected by the latter. We can thus say that ev-
ery maximally entangled 2-qudit state |Ωkl〉 is detected
by our criterion Eq. (15), even though these states are
not mapped to 2-qubit Bell states [6]. Instead, they
are mapped to mixed states that are locally maximally
mixed, that is, a convex sum (statistical mixture) of 2-
qubit Bell states.

We proceed by exploring the statistical mixtures of
maximally entangled 2-qudit pure states that can be de-
tected by our criterion Eq. (15). We start by applying
our criterion to the so called Werner states which form a
good description of the effects of phase and depolarizing
noise in maximally entangled states [10, 13]:

ρα = α|Ω00〉〈Ω00|+
1− α
d2

1, with
−1

d2 − 1
≤ α ≤ 1. (18)
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The bounds for the parameter α are such that ρα is posi-
tive. It is known [13] that ρα is entangled iff 1

d+1 < α ≤ 1.
A straightforward application of our criterion Eq. (15)
to ρα gives that if αj (j + 1) > j2 then ρα is entan-
gled. Therefore, our criterion can detect all the entangled
states ρα for α ∈ [ j

(j+1) , 1]. Recalling that d = 2j+ 1, we

realize that entangled states with 1
2(j+1) < α ≤ j

(j+1) are

not detected.
As a more specific example, we now consider the 3-

parameter family of 2-qudit states:

ρα,β,γ =
1− α− β − γ

(2j + 1)2
1 + αP00

+
β

2j

2j∑
i=1

Pi0 +
γ

2j + 1

2j∑
i=0

Pi1, (19)

where the Pkl are the projectors on the |Ωkl〉 states. This
family of states is a generalization to arbitrary dimen-
sional qudits of the 2-qutrit states originally introduced
in Refs. [10–12] to study bound entanglement. Density
matrices as given in Eq. (37) are interesting because their
eigenvalues and those of their partial transpose can be
explicitly expressed as a function of the parameters α, β
and γ [6]. This allows to locate the set of PPT ρα,β,γ
in the space spanned by α, β, and γ. To ensure positiv-
ity, the parameters α, β, and γ, must verify the following
inequalities [6]:

1− α− β − γ
(2j + 1)2

≥ 0 , α+
1− α− β − γ

(2j + 1)2
≥ 0

β

2j
+

1− α− β − γ
(2j + 1)2

≥ 0,
1− α− β + 2jγ

(2j + 1)2
≥ 0.

These inequalities define the interior of a tetrahedron.
Now, applying our criterion Eq. (15), we obtain that all
separable states ρα,β,γ given by Eq. (19) are such that:

|(j + 1)(α+ β) + (j − 2)γ|+ (j + 1) |2α− β/j|
3j

≤ 1.

(20)
All states ρα,β,γ for which the inequality Eq (38) is vio-
lated are entangled.

In order to have an idea about the efficiency of crite-
rion Eq. (15), we have calculated the eigenvalues of the
PT of ρα,β,γ and thus obtained explicit conditions on

α, β, and γ for ρT2

α,β,γ to be positive [6]. In Fig. 1, we
present the tetrahedron of positive states ρα,β,γ given by
Eq. (37) in parameter space for the cases j = 1 (Fig. 1.a)
and j = 2 (Fig. 1.b). The set of PPT states are depicted
in blue, so the remaining volume of the tetrahedron corre-
sponds to entangled states. We have represented in red
the states that are detected by our criterion Eq. (15).
We see clearly that it detects a significative part of the
entangled states parametrized by Eq. (37). Nevertheless,
comparing Fig. 1.a and Fig. 1.b, we note that this volume
decreases when j increases from j = 1 to j = 2. However,

(a) (b)

FIG. 1. Geometrical representation of states ρα,β,γ [Eq. (37)]
in parameter space for (a) 2j + 1 = 3 and (b) 2j + 1 = 5. All
physical states lie inside the tetrahedron whereas the PPT
states lie inside the blue region [a cone for the 2-qutrit case
(a)]. Red regions depict entangled states detected using our
criterion Eq. (15), whereas the yellow region hosts the non
detected entangled states by this criterion.

different criteria which present a better scaling with di-
mension for this particular family of states can be found
by changing the isometry U in Eq. (4) (or equivalently
changing the corresponding Ai operators in Eq. (8), used
to map each qudit to a qubit).

Until now, we only have considered the entanglement
of two qudits. Now, we adress the problem of detecting
entanglement in a large N qudits system. An interest-
ing consequence of our mapping is that it can be easily
extended to map a system of N qudits to a system of N
qubits. Indeed, by applying Eq. (7) individually to each
qudit, the separability among the parties is preserved. If
we denote Lα = Jα

j (α = 1, 2, 3) and L0 = 1, then the N -
qubit mapped state corresponding to the N -qudit state
ρ can be written as

M⊗NU (ρ) =
1

2N

∑
~k∈{0,1,2,3}N

〈⊗Ni=1Lki〉ρ ⊗Ni=1 σki .(21)

An immediate consequence is that for any ~k ∈
{0, 1, 2, 3}N , we have

〈⊗Ni=1Lki〉ρ = 〈⊗Ni=1σki〉M⊗NU (ρ). (22)

By using this property to compute first and second order
correlations, we can provide an alternative derivation of
the spin squeezing inequalities detecting N -qudit entan-
glement from the N -qubit ones introduced in Ref. [14]. It
was shown in Ref. [15] that all separable N -qubit states
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satisfy the following inequalities:

〈Ŝ2
1 〉+ 〈Ŝ2

2 〉+ 〈Ŝ2
3 〉 ≤

N (N + 2)

4
,

(∆Ŝ1)2 + (∆Ŝ2)2 + (∆Ŝ3)2 ≥ N

2
,

〈Ŝ lsq
α 〉+ 〈Ŝ lsq

β 〉 − (N − 1)(∆̃Ŝγ)2 ≤ N(N − 1)

4
,

〈Ŝ lsq
α 〉 − (N − 1)[(∆̃Ŝβ)2 + (∆̃Ŝγ)2] ≤ N(N − 1)

4
.

(23)

where Ŝα = 1
2

∑N
i=1 σ

i
α is the collective spin operator

in direction α. The indexes (α, β, γ) may assume any
permutation of (1, 2, 3) and the following definitions have
been used:

(∆Ŝα)2 ≡ 〈Ŝ2
α〉 − 〈Ŝα〉2,

〈Ŝ lsq
α 〉 ≡ 〈 14

∑N
i 6=j=1 σ

i
α ⊗ σjα〉,

(∆̃Ŝα)2 ≡ 〈Ŝ lsq
α 〉 − 〈Ŝα〉2.

(24)

Using Eq. (22), we obtain, starting from the N -qubit in-
equalities Eqs. (23), the inequalities satisfied by all sep-
arable N -qudit states (N spins j). This is achieved with
the following substitutions [14]:

Ŝα →
1

2j
Ĵα, Ŝ lsq

α →
1

4j2
Ĵ lsq
α . (25)

where Ĵα =
∑N
i=1 J

i
α and Ĵ lsq

α = 1
4

∑N
i 6=j=1 J

i
α ⊗ Jjα.

Therefore, the relation between the entanglement crite-
rion for N -qubit and N -qudit systems, which was already
considered in Ref. [14], can be thought as a simple con-
sequence of the particular mapping explicitly given by
Eqs. (8) or equivalently by Eq. (7). As a consequence,
we have shown that the qudit entanglement revealed by
the qudit spin squeezing inequalities can always be recast
as qubit-like, or dichotomic, spin squeezing. Thus, qudit
spin squeezing inequalities do not evidence entanglement
of higher dimension than the qubit squeezing ones. Fi-
nally, we notice that by choosing different Ai operators
in Eq. (4) we can expect to find new multipartite qudits
entanglement criteria.

In conclusion, we have presented a general scheme to
map qudits to qubits that can be used to define crite-
ria to detect some type of entanglement between qudits.
We have applied this general scheme to provide a spe-
cific entanglement criterion based on the measurement
of qudit–qudit correlations.

In addition, our results provide a way to classify multi-
partite qudit entanglement according to its detectability
through dichotomization. Finally, it opens the interest-
ing question of what are the specific entanglement types,
if any other than bound entanglement, that fail to be
detected by our method.
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such that

MU (ρ) =

3∑
i,j=0

〈Aj†Ai〉ρ σi|0〉〈0|σj (26)

is equal to Eq. (7) of main text which we recall here:

MU (ρ) =
1

2

(
1 +

1

j

3∑
i=1

〈Ji〉ρσi

)
. (27)

In order for U to be an isometry U†U = 1, we have the
following conditions:

A†0A0 +A†1A1 +A†2A2 +A†3A3 = 1,

A†1A0 +A†0A1 + iA†2A3 − iA†3A2 = 0,

A†2A0 +A†0A2 − iA†1A3 + iA†3A1 = 0,

A†3A0 +A†0A3 + iA†1A2 − iA†2A1 = 0,

(28)

wich are equivalent to Eq. (5) of main text. Comparing
Eq. (27) and Eq. (26), we get

− iA†2A3 + iA†3A2 +
A†1A3 +A†3A1

2
+
iA†0A2 − iA†2A0

2
=
J1

2j
,

iA†1A3 − iA†3A1 +
A†2A3 +A†3A2

2
+
−iA†0A1 + iA†1A0

2
=
J2

2j
,

− iA†1A2 + iA†2A1 +A†3A3 +A†0A0 −
1
2

=
J3

2j
.

(29)

If we defineA03 =
√
j (A0 +A3) andA12 =

√
j (A1 + iA2),

the set of equations Eqs. (29) can be simplified using the
set of conditions Eqs. (28) to

A†03A03 =
j + J3

2
, A†12A12 =

j − J3

2
, A†03A12 =

J1 + iJ2

2
.

These equations can be simplified with the help of the
two bosonic annihilation operators a and b corresponding
to the Schwinger representation of the qudit; J+ = a†b,
J− = b†a and J3 = 1

2 (a†a − b†b) with the restriction
a†a+ b†b = 2j where J± = J1 ± iJ2. We finally get:

A†03A03 =
a†a

2
, A†12A12 =

b†b

2
, A†03A12 =

a†b

2
.

It is straightforward to show that the operators Ai de-
fined by Eq. (8) of the main text verify the conditions
of Eqs. (28) and Eqs. (29). Thus, we have proved the
validity of mapping (27). We note that the requirement
for U to be an isometry and not a unitary operator is
crucial in the present case. Indeed, the operators Ai do
not fulfill the conditions for U to be unitary.

BELL STATES ARE NOT REACHED

We proceed to show that none of the four 2-qubit Bell
states belongs to the image of the mapping given by

Eq. (11) of the main text. This can be proved by con-
tradiction: consider that there exists a state ρ such that
MU1U2(ρ) is one of the Bell states, say |Ψ+〉〈Ψ+|. For
this state we have:

Tr
[
|Ψ+〉〈Ψ+|σ3

]
= 1,

Tr
[
|Ψ+〉〈Ψ+|σ2

]
= −1, Tr

[
|Ψ+〉〈Ψ+|σ1

]
= 1. (30)

From Eq. (30) and Eq. (11) of the main text, we find

〈J (d1)
3 ⊗J (d2)

3 〉ρ = j(d1)j(d2) which in turn implies that the
state ρ must be a pure state of the form α|j(d1), j(d2)〉+

β|−j(d1),−j(d2)〉 with |α|2 + |β|2 = 1. For such states
the other values of 〈σi〉MU1U2

(ρ) for i = 1 or i = 2 are

zero and not 1 or -1, indeed 〈J (d1)
1 ⊗ J (d2)

1 〉ρ = 〈J (d1)
2 ⊗

J
(d2)
2 〉ρ = 0 for d1 > 2 or d2 > 2. The same reasoning

can be made for each Bell state.

3-PARAMETER FAMILY OF 2-QUDIT STATES

Preliminaries

First, we recall the family of d2 maximally entangled
2-qudit states |Ωkl〉(k, l = 0, 1, · · · d− 1) that generalizes
the four 2-qubit Bell states as introduced in Ref. [16]:

|Ωkl〉 = Wkl ⊗ 1|Ω00〉 with |Ω00〉 =
1√
d

d−1∑
m=0

|m,m〉,(31)

where the d2 Wkl operators acting on the first qudit are
the Weyl operators defined as:

Wkl|m〉 = wk(m−l)|(m− l)mod d〉, where w = e2πi/d.(32)

These operators verify the following orthogonality rela-
tion in the Hilbert-Schmidt norm:

Tr
[
W †klWmn

]
= d δkmδln. (33)

These 2-qudit Bell states Pkl = |Ωkl〉〈Ωkl| are locally
maximally mixed state, that is, their partial trace gives
the maximally mixed state 1

d .

Using the following relation [16]:

|j〉〈k| = 1

d

d−1∑
l=0

wljWj(k−j), (34)

each state Pkl can be written in the basis Wkl ⊗Wmn as
follows [16, 17]:

Pkl =
1

d2

d−1∑
m,n=0

wml−knW †−m−n ⊗W
†
m−n. (35)
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The operators J3, J+, J− can also be written in the Weyl
basis:

J3 =

2j∑
l=0

ηlzWl0,

J+ =

2j∑
l=0

ηlpw
−lWl,−1 , J− =

2j∑
l=0

ηlpWl,1, (36)

where we have defined

ηlz =

2j∑
m=0

m− j
2j + 1

w−ml,

ηlp =

2j∑
m=0

√
j(j + 1)− (m− j)(m− j + 1)

2j + 1
w−ml.

From Eqs. (35), (36), and (33), we get

〈J3 ⊗ J3〉|Ωkl〉 = Tr [PklJ3 ⊗ J3] =

2j∑
m=0

ηmz η
−m
z wml,

〈J+ ⊗ J+〉|Ωkl〉 = Tr [PklJ+ ⊗ J+] = w−k
2j∑
m=0

ηmp η
−m
p wml,

〈J+ ⊗ J−〉|Ωkl〉 = Tr [PklJ+ ⊗ J−] = 0.

Now, we have the tools that enable us to study the three-
parameter family of 2-qudit states with d = 2j+1 defined
in the main text:

ρα,β,γ =
1− α− β − γ

(2j + 1)2
1 + αP00

+
β

2j

2j∑
i=1

Pi0 +
γ

2j + 1

2j∑
i=0

Pi1. (37)

For these states we have

〈J3 ⊗ J3〉ρα,β,γ =
j(j + 1) (α+ β) + j(j − 2)γ

3
,

〈J1 ⊗ J1〉ρα,β,γ =
j(j + 1) (α− β/2j)

3
,

〈J2 ⊗ J2〉ρα,β,γ = −j(j + 1) (α− β/2j)
3

,

so that the criterion∣∣∣〈J (d1)
1 ⊗ J (d2)

1 〉ρ
∣∣∣+
∣∣∣〈J (d1)

2 ⊗ J (d2)
2 〉ρ

∣∣∣
+
∣∣∣〈J (d1)

3 ⊗ J (d2)
3 〉ρ

∣∣∣ ≤ j(d1)j(d2)

introduced in the main text for separable states ρα,β,γ
can be brought to the following form:

|(j + 1)(α+ β) + (j − 2)γ|+ (j + 1) |2α− β/j|
3j

≤ 1. (38)

Positivity and partial transpose of ρα,β,γ

From the definition in Eq. (37), ρα,β,γ is already in its
diagonal form and we can easily identify its eigenvalues

and eigenvectors. The eigenvalues are:
1− α− β − γ

(2j + 1)2
+

γ

2j + 1
with degeneracy 2j + 1,

1− α− β − γ
(2j + 1)2

+
β

2j
with

degeneracy 2j,
1− α− β − γ

(2j + 1)2
+ α with degeneracy 1,

and
1− α− β − γ

(2j + 1)2
with degeneracy (2j + 1)(2j − 1). To

ensure the positivity of ρα,β,γ , each of these eigenvalues
must be positive, hence we obtain the positivity condi-
tions stated in the main article:

1− α− β − γ
(2j + 1)2

≥ 0, α+
1− α− β − γ

(2j + 1)2
≥ 0,

β

2j
+

1− α− β − γ
(2j + 1)2

≥ 0,
1− α− β + 2jγ

(2j + 1)2
≥ 0.

As for the partial transpose (PT) of ρα,β,γ , it was shown

in Ref. [17] that for a state of the form ρ =
∑2j
k,l=0 CklPkl,

its partial transpose can be written as:

ρTB =
⊕2j

m=0
Bm : B†m = Bm, (39)

where, the matrix elements of Bm are defined as [17]:

〈s|Bm|t〉 =
1

2j + 1

2j∑
k=0

Cs,s+t−mw
k(s−t) : s, t = 0, · · · , 2j.

(40)
It was also shown [17] that for integer values of j, all
matrices Bm are unitarily equivalent, while for j half-
integer, there are two classes of unitarily equivalent ma-
trices, the class of Bm for even m and the class for odd
m.

In what follows, we will restrict ourselves to the case of
j integer and we will calculate the elements of the matrix
B0. The case of half-integer j can be easily obtained
based on the calculation of the matrix B0.

From Eqs. (37) and (40), we find that the matrix B0

has the following form:

B0 =



b00 0 · · · · · · · · · 0
0 b11 0 · · · 0 κ
... 0

. . .
... 0

...
...

. . .
...

0 0
... b2j−1,2j−1 0

0 κ 0 · · · 0 b2j,2j


, (41)
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with

b00 = 〈0|B0|0〉 =
1− α− β − γ

(2j + 1)2
+
α+ β

2j + 1
,

bj+1,j+1= 〈j + 1|B0|j + 1〉 =
1− α− β − γ

(2j + 1)2
+

γ

2j + 1
,

bk,k = 〈k|B0|k〉 =
1− α− β − γ

(2j + 1)2
: k ∈ {0, · · · , 2j} \ {0, j + 1},

κ = 〈s|B0|t〉 =
α− β/2j

2j + 1
: s+ t = 0 and s 6= t,

〈s|B0|t〉= 0 : s 6= t ands+ t 6= 0.

The characteristic polynomial of B0 can be easily com-
puted which allows to calculate the eigenvalues of B0. As
ρTBα,β,γ is the direct sum of matrices Bm that are unitar-
ily equivalent to B0, then the eigenvalues of B0 are also
those of ρTBα,β,γ . We distinguish 2 cases: for j = 1 and
j > 1. For j = 1, the eigenvalues are:

1 + 2j(α+ β)− γ
(1 + 2j)2

,

1

2

(
γ

1 + 2j
− 2(−1 + α+ β + γ)

(1 + 2j)2
−

√
(−2jα+ β)2 + j2γ2

j2(1 + 2j)2

)
,

1

2

(
γ

1 + 2j
− 2(−1 + α+ β + γ)

(1 + 2j)2
+

√
(−2jα+ β)2 + j2γ2

j2(1 + 2j)2

)
with degeneracy 3 each. Whereas for j > 1, the eigen-
values are:

1 + 2j(α+ β)− γ
(1 + 2j)2

,

−β − 2j(−1− 2jα+ 2β + γ)

2j(1 + 2j)2
,
β − 2j(−1 + 2(1 + j)α+ γ)

2j(1 + 2j)2
,

1

2

(
γ

1 + 2j
− 2(−1 + α+ β + γ)

(1 + 2j)2
−

√
(−2jα+ β)2 + j2γ2

j2(1 + 2j)2

)
,

1

2

(
γ

1 + 2j
− 2(−1 + α+ β + γ)

(1 + 2j)2
+

√
(−2jα+ β)2 + j2γ2

j2(1 + 2j)2

)
with degeneracy 2j + 1, (2j + 1)(j − 1), (2j + 1)(j − 1),
(2j+1), and (2j+1) correspondingly. Thus by imposing
positivity on the above eigenvalues, we get the set of
conditions for the state ρα,β,γ to be PPT. This is how we
compute the blue region on figure 1 (a) and (b) in the
main text.
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