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The present article is concerned with the use of approximations in the calculation of

the many-body density of levels ρmb(E,N) of a system with total energy E, com-

posed by N bosons. In the mean-field framework, an integral expression for ρmb,

which is proper to be performed by asymptotic expansions, can be derived. However,

the standard second order steepest descent method cannot be applied to this integral

when the ground-state is sufficiently populated. Alternatively, we derive a uniform

formula for ρmb, which is potentially able to deal with this regime. In the case of the

one-dimensional harmonic oscillator, using results found in the number theory liter-

ature, we show that the uniform formula improves the standard expression achieved

by means of the second order method.
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I. INTRODUCTION

The many-body density of states ρmb(E,N) is the function that represents the number

of possibilities of sharing the total energy E of a physical system among its N particles. Its

evaluation for a general Hamiltonian is not an easy task, but it becomes considerably simpler

in the mean-field approximation. The reason for such a simplicity is because the computation

of the many-body density of states, in this case, reduces to the problem of finding the

number of ways into which the energy E can be shared among the N particles occupying

the individual levels of the mean-field potential. Then, the single-particle spectrum ρsp(ǫ)

of this potential becomes the basic ingredient to evaluate ρmb.

Considering this framework, by using standard methods of statistical mechanics, a link

between ρmb and ρsp can be easily delineated and an integral expression for the many-body

density of states is straightforwardly achieved. Assuming, additionally, that values for E

and N are sufficiently large, which points out to a connection with the thermodynamical

limit, the integral representation of ρmb becomes proper to be performed by means of the

saddle point method (or steepest descent method)1. In this scenario, if one considers that

there is only one saddle point isolated from other critical points, like extremes of the path of

integration or singularities, the calculation simply consists in evaluating contributions of its

neighborhood. In general, a second order expansion of the integrand around the saddle point

is enough to accomplish this task, so that a final formula ρ(2)

mb for the many-body density

of states is easily reached. Essentially, such a formalism has been satisfactorily used in the

description of both bosonic2 and fermionic3,4 systems.

A critical discussion concerning the evaluation of ρ(2)

mb leads us to conclude that this

approach fails when the saddle point goes to zero. It can be asserted because, in this case,

the saddle point approaches to a singularity of the integrand. When it happens, however,

the method used to perform the integral can still be improved in order to avoid undesired

effects. Actually, a uniform approximation1 can be derived, which correctly contemplates

this particular situation. Roughly speaking, the new method consists in establishing a

convenient mapping between the original (and complicated) integrand and a simpler one,

where the integration process is workable. Our goal here is to study this scenario, deriving

a uniform approximation ρunmb for the many-body density of states.

In order to check the accuracy of the uniform formula, we apply the formalism to non-
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interacting bosons confined to the one-dimensional harmonic oscillator (1D-HO). The reason

for that is the close relation between ρmb(E,N), for this case, and the well-known problem

of integer partition. As the single-particle levels are equidistant, by taking E also as an

integer, such a physical quantity becomes precisely the number of ways into which E can be

expressed as a sum of, at most, N partitions. In number theory literature, it was solved by

Erdos and Lehner in 19415, in the asymptotic limit of large values of E and N . Also, for an

unrestricted number of partitions, which can be achieved by taking N → ∞ and fixed E,

this problem had already been solved by Hardy and Ramanujan6 about one hundred years

ago.

As we show here, the uniform approximation satisfactorily improves the equivalent result

given by ρ(2)

mb, for the 1D-HO case, large N and E, but E ≫ N . However, there is an

important discrepancy present in the pre-exponential term of ρunmb: the E-dependence is a

power law, as well as the Erdos and Lehner formula, but their exponents do not match. We

then demonstrate that this difference vanishes with an additional consideration. Actually,

the first result is achieved by providing the single-particle spectrum by means of the Thomas-

Fermi method7, which basically consists in evaluating the classically allowed phase-space

region for a given energy ǫ, associating it to ρsp(ǫ). If we replace this method by a proper

use of the Dedekind function8 and its properties, we recover the Erdos and Lehner formula,

except for minor differences involving numerical factors.

This paper is organized as follows. In Sect. II, we introduce the formalism in which

ρmb is linked to ρsp by means of an integral representation for ρmb. In Sect. III, we briefly

evaluate the many-body density of states using the second order saddle point method, while,

in Sect. IV, the uniform formula ρunmb is derived. In Sect. V, we apply our formalism to cases

where ρsp is assumed to be given by the Thomas-Fermi method in order to perform a

comparison (Sect. VI) with other results found in the literature. Finally, in Sect. VII, we

present our concluding remarks.

II. INTEGRAL EXPRESSION FOR ρmb

In this section we present the formalism that we will use to introduce approximations in

the level density of Bose gases. It simply consists in finding an integral representation for ρmb,

depending just on E, N , and the single particle spectrum ρsp, where the only assumption is
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that particles interact via a mean-field potential. The integral expression enables the use of

the saddle point method1 to solve it.

The density of states ρmb(E,N) of a system composed of N particles with total energy

E can be written as

ρmb(E,N) =
∑

ν

δ(N −Nν) δ(E − Eν)

=
∑

ν

eu(N−Nν)ev(E−Eν)δ(N −Nν) δ(E −Eν),
(1)

where the sum runs over all possible configurations ν, each of them specified by the total

energy Eν and number of particles Nν . The two exponential functions inserted in the last

equality, although irrelevant here, will help us to prevent possible nonphysical divergences.

Using an integral representation for the delta functions, Eq. (1) becomes

ρmb(E,N) =
1

(2πi)2

∫

Cβ

dβ

∫

Cα

dα es(β,α), (2)

where

s(β, α) = −β[ω(β, α)− E] + αN. (3)

The path of integration Cβ is a straight line that runs from v− i∞ to v+ i∞, while Cα runs

from u− i∞ to u+ i∞. We have also defined the new variables

β = v + ia and α = u+ ib, (4)

and the functions

ω(β, α) = − 1

β
lnZ(β, α) and Z(β, α) =

∑

ν

e−βEν−αNν . (5)

In Eqs. (1) and (2), u and v are arbitrary real numbers. They can be conveniently chosen by

demanding the convergence of the sum in the last expression. In the present approximation,

for each configuration ν, the term e−βEν−αNν may be written in terms of the single-particle

energy levels ǫi of the mean-field potential, and their respective numbers of occupation. By

counting each possible configuration explicitly, we find

Z(β, α) =

∞
∏

i=0

(1− e−(α+βǫi))−1 (6)

and, therefore,

ω(β, α) =
1

β

∞
∑

i=0

ln(1− e−(α+βǫi)) =
1

β

∫

∞

ǫ0

ρsp(ǫ) ln(1− e−(α+βǫ)) dǫ, (7)
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where the single-particle density of states ρsp(ǫ) is the following sum of delta functions,

ρsp(ǫ) =
∞
∑

i=0

δ(ǫ− ǫi). (8)

Equations (6) and (7) were obtained by assuming that |e−(α+βǫi)| < 1. Considering, without

lost of generality, that ǫ0 = 0, one concludes that this inequality is satisfied by imposing:

u > 0 and v > −u/ǫi. If one also considers the case where ǫi → ∞ (for some i), one gets

that both u and v should be positive numbers.

At last, we show derivatives of Eq. (7) that will be useful later,

N (β, α) ≡ ∂[βω]

∂α
=

∫

∞

ǫ0

ρsp(ǫ)

eα+βǫ − 1
dǫ (9)

and

E(β, α) ≡ ∂[βω]

∂β
=

∫

∞

ǫ0

ǫ ρsp(ǫ)

eα+βǫ − 1
dǫ. (10)

A comparison of Eqs. (3), (7), (9) and (10) with thermodynamical functions suggests that

we can identify ω, N , E and s as, respectively, the grand-canonical potential, mean number

of particles, mean energy, and entropy. It can be done provided that β and α be identified

as 1/(kBT ) and −µ/(kBT ), respectively, where kB is the Boltzmann constant, T the tem-

perature, and µ the chemical potential. We point out that such identification seems to be in

conflict with the fact that, in the present formalism, β and α are not constant; they are inte-

gration variables of Eq. (2). However, as we will see in the following, in the thermodynamical

limit, the region of the (β, α)-complex space relevant to evaluate the line integral (2) is the

vicinity of the saddle point (β0, α0) of the integrand. Thus, to claim the aforementioned

correspondence, functions should be evaluated at (β0, α0) = (1/[kBT ],−µ/[kBT ]).

Formally, the integral representation of ρmb is given by Eqs. (2) and (7), which establish

the connection between ρmb and ρsp. Solving integral (2) will be the goal of the next sections,

where new approximating assumptions will be used.

III. THERMODYNAMICAL LIMIT AND THE SADDLE POINT METHOD

We now return to integral (2), which will be performed in the thermodynamical limit

using the saddle point (or steepest descent) method1. Formally, such a limit is achieved by

supposing that |s(β, α)/λ| ∼ 1, where λ is a large positive real number, and the method is

asymptotically accurate as λ → ∞. Physically, the limit arises when E and N are large
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quantities. In practice, under this condition the complex argument s produces very rapid

oscillations in the integrand of Eq. (2) along any generic path in the (β, α)-complex space,

so that evaluating the integral with these curves becomes an impossible task. Interestingly,

however, integrating along the steepest descent paths emerging from a saddle point is pos-

sible, as stated by the method. Following its prescription, if one can exclude contributions

from other potential critical points, as extremals of the integration curve or non-analytical

points, the relevant contribution to the path integral (2) comes exclusively from the vicinity

of the saddle point (β0, α0) defined by

E(β0, α0) = E and N (β0, α0) = N. (11)

Then, expanding Eq. (2) up to second order around the saddle point produces

ρ(2)

mb(E,N) =
es(β0,α0)

(2πi)2

∫

C′

dβ dα e
1
2
δ2s, (12)

where

δ2s =
(

δα δβ
)

D(β0, α0)





δα

δβ



 , (13)

with δα = (α− α0), δβ = (β − β0), and

D(β0, α0) =





∂2s
∂α2

∂2s
∂α∂β

∂2s
∂β∂α

∂2s
∂β2





∣

∣

∣

∣

∣

∣

(β0,α0)

. (14)

The new path of integration C ′ arises from the deformation of the original one, procedure

that should be done in order to include the saddle point (β0, α0) in the contour of integra-

tion. Besides, in the vicinity of this point, C ′ must coincide with the steepest descent path

passing through (β0, α0). A rigorous application of the method demands a justification of

the deformation, which may be done by using the Cauchy’s Integral Theorem. However,

given the difficulties to accomplish this task in a general scenario, as usual, we just assume

that this step can be performed.

By evaluating the gaussian integral, Eq. (12) becomes

ρ(2)

mb(E,N) =
1

2π

es(β0,α0)

√

| detD(β0, α0)|
, (15)

which establishes how the density of states depends on the two parameters, β0 and α0, whose

relation with E and N is given by Eq. (11). We remind that the subject presented in the

present and previous sections can be found in the literature2,9, as well as its analogue for

fermions3,4.
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IV. UNIFORM FORMULA

An important requirement needed to the above application of the steepest descent method

is the assumption that the considered saddle point be isolated from other ones and singular-

ities as well. Indeed, it is assumed that there is just one saddle point in the present work so

that we do not have to deal with the potential problem of their coalescence. On the other

hand, when we write the integrand of Eq. (2) as

es(β,α) =
eβE+αN

∏

∞

i=0 (1− e−(α+βǫi))
, (16)

we realize that it diverges whenever α+βǫi = ±2nπi, for n = 0, 1, 2, . . .. In particular, since

that ǫ0 = 0, when α0 → 0, independently of the value of β0, Eq. (15) fails due to the influence

of the non-analyticity at α = 0. In the present section we perform a uniform approximation

on ρmb, seeking to avoid just this source of problem. In this sense, we will assume that the

saddle point (β̃0, α̃0) of the new approach is such that the function [1− e−(α̃0+β̃0ǫi)] does not

vanish for every excited state ǫi. This is the simplest improvement we can do. Summarizing,

as the saddle point α0 may lie near the amplitude critical point α = 0, the second order

approximation is said to be non-uniform with respect to α0, giving rise to inaccurate results

when α0 → 0. To avoid it, a uniform approximation1 can be useful, which will be developed

in the following. It is important to mention that Holthaus and Kalinowski10 considered

similar techniques to evaluate other statistical functions for many-boson systems, also taking

into account the effects of this singularity.

Since the approximation (15) breaks down when the ground state starts to be sufficiently

occupied [see Eqs (9) and (10)], we will give it a special treatment, which consists in writing

the integrand of Eq. (2) as

es(β,α) =
ese(β,α)

1− e−α
, (17)

where

se(β, α) = −β[ωe(β, α)− E] + αN (18)

and ωe(β, α) is given by Eq. (7), replacing ρsp(ǫ) by

ρ(e)sp (ǫ) ≡
∞
∑

i=1

δ(ǫ− ǫi). (19)

In terms of se(β, α), Eq. (2) becomes

ρmb(E,N) =
1

(2πi)2

∫

Cβ

∫

Cα

dβ dα
ese(β,α)

1− e−α
=

1

2πi

∫

Cα

dα
Iβ(α)

1− e−α
, (20)
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where we define

Iβ(α) =
1

2πi

∫

Cβ

dβ ese(β,α). (21)

A. Integration on β

Integral Iβ can be easily performed by means of the second order steepest descent method,

provided that we take the thermodynamical limit in the same way as discussed in the

beginning of Sect. III. A priori, the saddle point β̃α of integral (21) needs to be sufficiently

far from poles of the integrand, namely, |1 − e−(α+β̃αǫi)| cannot vanish for any value of α

belonging to Cα. The saddle point β̃α = β̃α(α) is given by

(

∂se
∂β

)∣

∣

∣

∣

β=β̃α

= 0 =⇒ E = Ee(β̃α, α), (22)

where

Ee(β, α) ≡
∫

∞

ǫ1

ǫ ρ
(e)
sp (ǫ)

eα+βǫ − 1
dǫ. (23)

Considering in addition that the function (∂2se/∂β
2)|β=β̃α

does not vanish, and assuming

that the original path of integration can be deformed onto steepest descent paths of β̃α, we

easily find

Iβ(α) ≈ I
(2)
β (α) ≡

[

2π
(

∂2se/∂β
2
)∣

∣

β=β̃α

]−1/2

exp
{

se(β̃α, α)
}

. (24)

For the next calculations, it will be useful to define

σ(α) ≡ se(β̃α[α], α)−
1

2
ln

[

(

∂2se
∂β2

)∣

∣

∣

∣

(β̃α[α],α)

]

, (25)

so that Eq. (20) becomes

ρmb(E,N) ≈ 1

(2π)3/2i

∫

Cα

dα
eσ(α)

1− e−α
. (26)

B. Integration on α – implicit change of variable

To solve integral (26), we first look for the saddle point α̃0 of the exponent σ(α),

(

∂σ

∂α

)∣

∣

∣

∣

α=α̃0

= 0. (27)
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It is easy to show that the pair (β̃0 ≡ β̃α[α̃0], α̃0), up to the leading order in λ, is given by

E = Ee(β̃0, α̃0) and N = Ne(β̃0, α̃0), (28)

with

Ne(β, α) ≡
∫

∞

ǫ1

ρ
(e)
sp (ǫ)

eα+βǫ − 1
dǫ. (29)

Within this new approach, we point out that β̃0 and α̃0 can no longer be directly related

to the inverse of temperature and chemical potential, respectively, except when the popu-

lation of the ground state can be disregarded in comparison with N , namely, when e−α̃0 is

sufficiently small.

Equation (26) clearly shows that the application of the saddle point method fails when

α̃0 → 0. In order to overcome this problem by means of a uniform formula, we implicitly

define a change of variable α = α(t), with inverse t = t(α), through the map

σ(α) = φ(t), with φ(t) ≡ λ

(

−t2

2
− γt + χ

)

. (30)

The saddle point of φ(t) is t0 = −γ. The first condition for a proper mapping is the

equivalence of saddle points, namely, α(t0) = α̃0, which produces

σ(α̃0) = φ(t0) =⇒ σ(α̃0) = λ

(

γ2

2
+ χ

)

. (31)

The second convenient condition is mapping the pole α = 0 onto the origin t = 0, namely,

t(0) = 0. Thus,

σ(0) = φ(0) =⇒ σ(0) = λχ. (32)

Therefore, γ and χ, in terms of the original function σ(α), are given by

√
λγ = ±{2[σ(α̃0)− σ(0)]}1/2 ≡ ± [2∆σ]1/2 and λχ = σ(0). (33)

There is still one point to solve: which branch on the definition of γ should be chosen?

To answer this question, we should solve Eq. (30) finding an expression for t(α). Applying

this expression to the point α = 0, we conclude that γ = +
√

γ2, otherwise we will not find

t(0) = 0.

Then, by changing variables, integral (26) becomes

ρmb(E,N) ≈ 1

(2π)3/2i

∫

Ct

(

eφ(t)

t

)

G(t) dt, (34)
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where Ct is the image of Cα under the implicit transformation (30), and

G(t) =
t

1− e−α(t)

dα

dt
. (35)

To give continuity and evaluate Eq. (34), we need an explicit formula for G(t). At this point,

we conveniently write

G(t) = G(0) + At + t(t + γ)H0(t), (36)

where

A =
√
λ

(

G(0)−G(−γ)√
λγ

)

≡
√
λ Ā. (37)

Functions G(0) and G(t0) = G(−γ) are deduced in the Appendix A:

G(0) = 1 and G(t0) = −i
[2∆σ]1/2[σ(2)(α̃0)]

−1/2

1− e−α̃0
, (38)

where we have defined σ(2)(α) ≡ d2σ/dα2. The third term of Eq. (36), which contains H0(t),

will be disregarded1 because, by replacing it on Eq. (34), it gives origin to terms of order

λ−1 in comparison with the result that we will derive here [Eq. (43) below]. Thus, defining

W (CT )
r (z) ≡

∫

CT

T r exp

{

−T 2

2
− zT

}

dT, (39)

we have

ρunmb(E,N) =
eσ(0)

(2π)3/2i
W

(CT )
−1

(

[2∆σ]1/2
)

+
Ā eσ(0)

(2π)3/2i
W

(CT )
0

(

[2∆σ]1/2
)

, (40)

where CT is the image of Ct under the transformation t = T/
√
λ, meaning that CT is the

same as Ct except for a scaling factor. By its turn, Ct, as already said, is the image of Cα

under transformation (30). According to Bleistein and Handelsman1, there are only two

independent choices for CT . One path is a loop around the origin, while the other does

not encircle it. As our original contour of integration is a straight line, namely, it does not

encircle the origin, we assume that CT is also so. In this case, we have

W
(CT )
0 (z) =

√
2π ez

2/2 and W
(CT )
−1 (z) = −iπ erfc

[−iz√
2

]

, (41)

where erfc(z) is the complementary error function

erfc(z) =
2√
π

∫

∞

z

e−ζ2dζ = 1− 2√
π

k=∞
∑

k=0

(−1)kz2k+1

k!(2k + 1)
. (42)
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Using these last results on Eq. (40), we finally have

ρunmb(E,N) = − eσ(0)

2
√
2π

erfc
(

−i
√
∆σ
)

− Ā eσ(α̃0)

2πi
. (43)

This expression, in principle, should be uniformly good for all values of α̃0, and its relative

error is of order λ−1. It is worth to remind that Ā is of order λ−1/2 while the pre-exponential

factor present in the first term is independent of λ. Equation (43) and its consequent

expressions constitute the first contribution of the present work. In the following, we will

discuss two limits: α̃0 → 0, the regime which our approach intends to improve; and α̃0 ≫ 1,

where Eq. (43) is expected to approach Eq. (15).

C. Limit α̃0 → 0

A simpler expression for the uniform formula (43) can be achieved by considering the

formal limit α̃0 → 0. In order to do that, previous results should be derived. First, according

to Eq. (A8), we conclude that ∆σ is of order α̃2
0:

∆σ = −1

2
σ
(2)
0 α̃2

0

[

1 +
2

3

σ
(3)
0

σ
(2)
0

α̃0 +
1

4

σ
(4)
0

σ
(2)
0

α̃2
0 +O(α̃3

0)

]

, (44)

where σ
(k)
0 ≡ (dkσ/dαk)|α=0. In this section we will face some functions like this, which may

involve powers of the large number λ times powers of α̃0. Then, we precisely define the limit

α̃0 → 0 by additionally assuming that λ α̃0 = O(α̃0).

By combining Eq. (44) with the expansion

(

d2σ

dα2

)∣

∣

∣

∣

α=α̃0

= σ
(2)
0

[

1 +
σ
(3)
0

σ
(2)
0

α̃0 +
1

2

σ
(4)
0

σ
(2)
0

α̃2
0 +O(α̃3

0)

]

, (45)

we find

Ā =
1−G(t0)√

2∆σ
=

A+ Bα̃0 +O(α̃2
0)

[σ
(2)
0 ]1/2

, (46)

where A and B are explicitly given by

A =
i

2

(

1− 1

3

σ
(3)
0

σ
(2)
0

)

and B =
i

12



1− 3

(

1

2

σ
(4)
0

σ
(2)
0

+
σ
(3)
0

σ
(2)
0

)

+
5

2

(

σ
(3)
0

σ
(2)
0

)2


 . (47)

Thus, according to expansion (42) we write

erf
(

−i
√
∆σ
)

= 1−
√

2

π
[σ

(2)
0 ]1/2α̃0 [1 +O(α̃0)] +O

(

α̃3
0

)

, (48)
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and finally

ρunmb(E,N) = − eσ(0)

2
√
2π

{[

1− i

√

2

π

A
[σ

(2)
0 ]1/2

]

−
√

2

π

[

σ
(2)
0 + iB
[σ

(2)
0 ]1/2

]

α̃0 +O
(

α̃2
0

)

}

. (49)

If one just keeps the correction terms on α̃0 up to leading order, we find

ρunmb(E,N ; α̃0 → 0) = −Ceσ(0)
2
√
2π

, (50)

whose relative error is of order α̃2
0. Here, we have also defined C = c0 e

−(c1/c0)α̃0 , which

exclusively contains the dependence on α̃0, and

c0 = 1− i

√

2

π

A
[σ

(2)
0 ]1/2

and c1 =

√

2

π

σ
(2)
0 + iB
[σ

(2)
0 ]1/2

. (51)

D. Limit α̃0 ≫ 1

In contrast to the last section, here we will consider the case where α̃0 is large. In this

limit, to find an expression for Eq. (43), it is equivalent and easier to formally consider the

limit |∆σ| → ∞. As well as in the previous section, it is important to clarify the role of λ in

our manipulations; we will assume that λ/∆σ = O(∆σ−1). A further assumption adopted

here, which will be proved true in the next section, is considering ∆σ = |∆σ|.
We start by presenting the following expansion, valid when |z| → ∞,

erfc(z) =

[

1−
√
z2

z

]

+
e−z2

√
πz

[

1 +O
(

1

z2

)]

. (52)

Using it, we find

erfc
(

−i
√
∆σ
)

=
i e−∆σ

√
π∆σ

[

1 +O
(

1

∆σ

)]

, (53)

which, together with

Ā =
1

[2∆σ]1/2
+ i

[σ(2)(α̃0)]
−1/2

1− e−α̃0
(54)

produces

ρunmb(E,N) = −eσ(α̃0)

2π

{

[σ(2)(α̃0)]
−1/2

1− e−α̃0
+O

(

1√
∆σ

)}

. (55)

Finally, by keeping only the leading order we find

ρunmb(E,N ; α̃0 ≫ 1) = − eσ(α̃0)

2π[σ(2)(α̃0)]1/2
, (56)

whose relative error is of order ∆σ−1.

12



E. Back to original variables

In order to discuss the last results [Eqs. (43), (50), and (56)], it is better to write them

using the original variables. We then define β̃∗

0 according to Ee(β̃∗

0 , 0) = E, so that

σ(0) = se(β̃
∗

0 , 0)−
1

2
ln

[

∂2se
∂β2

∣

∣

∣

∣

(β̃∗

0 ,0)

]

and Ā =
1

[2∆se]1/2
+ i

[S
(2)
e ]−1/2

1− e−α̃0
, (57)

where we defined

∆se ≡ se(β̃0, α̃0)− se(β̃
∗

0 , 0)−
1

2
ln





(

∂2se
∂β2

∣

∣

∣

∣

(β̃0,α̃0)

)(

∂2se
∂β2

∣

∣

∣

∣

(β̃∗

0 ,0)

)−1


 ,

σ(2)(α̃0) = S(2)
e ≡

{

(

∂2se
∂β2

)−1 [
∂2se
∂α∂β

∂2se
∂α∂β

− ∂2se
∂α2

∂2se
∂β2

]

}∣

∣

∣

∣

∣

(β̃0,α̃0)

.

(58)

Notice that the connection between σ(2)(α̃0) and S
(2)
e has been established in Appendix B,

Eq. (B6). We finally write Eqs. (43), (50), and (56) as

ρunmb(E,N) =

∣

∣

∣

∣

∣

∣

[

(

∂2se
∂β2

)∣

∣

∣

∣

(β̃∗

0 ,0)

]−
1
2
ese(β̃

∗

0 ,0)

2
√
2π

{

erfc
(

−i
√

∆se

)

+ iĀ

√

2

π
e∆se

}

∣

∣

∣

∣

∣

∣

,

ρunmb(E,N ; α̃0 → 0) =
C ese(β̃

∗

0 ,0)

2
√
2π

∣

∣

∣

∣

∣

∂2se
∂β2

∣

∣

∣

∣

(β̃∗

0 ,0)

∣

∣

∣

∣

∣

−1/2

,

ρunmb(E,N ; α̃0 ≫ 1) =
ese(β̃0,α̃0)

2π

∣

∣

∣

∣

∣

∂2se
∂α∂β

∂2se
∂α∂β

− ∂2se
∂α2

∂2se
∂β2

∣

∣

∣

∣

(β̃0,α̃0)

∣

∣

∣

∣

∣

−1/2

,

(59)

where the modulus operation was arbitrarily used to assure the physical meaning of the

expressions; notice that a minus sign could simply arise by performing the integration with

an inverse path, situation that is not controlled by the present general application of the

method. The third equation is the same as Eq. (15), except for the definition of the saddle

points and the fact that s was replaced by se. However, the differences vanish in the adopted

limit, because α̃0 ≫ 1 implies se(β, α) → s(β, α). This conclusion is expected and validates

the assumptions that we used in the last section, since that, in the considered limit, the

saddle point is far from the singularity, condition required to derive Eq.(15). Concerning the

13



term C in the expression of ρunmb(E,N ; α̃0 → 0), we did not rewrite it in terms of the original

variables due to the difficulties to deal with it. We will return to this point opportunely.

In the next section, we will perform a first needed step to submit ρunmb(E,N ; α̃0 → 0) to

tests, which consists in using semiclassical methods to introduce in the theory information

about the single-particle spectrum, and, consequently, have an explicit formula for s and se.

V. SMOOTH APPROXIMATION

The quantities s and se are the main functions for the calculation of the expressions ρ(2)

mb

and ρunmb, respectively. However, to evaluate them, we still need to know the single-particle

spectrum. To provide such information, an option is to introduce another approximation in

the theory, which is working with the semiclassical single-particle level density ρ̄sp, instead of

the exact one. It can be achieved by means of the Thomas-Fermi method7, which basically

consists in computing the volume of the classically allowed phase space (q,p), measured in

unities of the ‘quantum cell’ (2π~)fd. We have

ρ̄sp(ǫ) =
1

(2π~)fd

∫

dfdq dfdp δ[H(q,p)− ǫ], (60)

where the integral should span the whole phase space. H(q,p) is the Hamiltonian of the

equivalent classical problem and fd is the spatial dimension. The function ρ̄sp(ǫ) is known

as the smooth part (or continuous approximation) of ρsp(ǫ), and its inverse can be identified

as the mean spacing between two neighboring levels, around ǫ. In general, the last integral

leads to power series of ǫ.

A. Second order approximation ρ̄(2)

mb

We will assume the simplest form of the semiclassical single-particle spectrum: ρ̄sp(ǫ) =

cǫγ , where c is a positive real constant. However, to represent a physical system we must

have γ > −1, because the step function written in the smooth approximation,

n̄sp(ǫ) ≡
∫ ǫ

ρ̄sp(ǫ
′)dǫ′ =

c

γ + 1
ǫγ+1 + 1, (61)

has to be monotonically crescent. Notice that a unitary constant is included in the last

formula to satisfy n̄sp(0) = 1, which contemplates the ground state ǫ0 = 0 in the expression.
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Using these ideas, Eq. (7) becomes

ω(β, α) ≈ ω̄(β, α) ≡ 1

β

∫

∞

0

ρ̄sp(ǫ) ln(1− e−(α+βǫ)) dǫ. (62)

As |e−(α+βǫ)| < 1, we use geometrical series in order to expand

d

dǫ
ln(1− e−(α+βǫ)) =

β

eα+βǫ − 1
= β

∞
∑

l=1

e−l(α+βǫ), (63)

so that integrating Eq. (62) by parts furnishes

ω̄(β, α) = −cΓ(γ + 1)Lγ+2(e
−α)

βγ+2
, (64)

where Γ and L are, respectively, the Gamma and Polylogarithmic functions,

Γ(ν + 1) =

∫

∞

0

xνe−xdx and Lν(χ) =

∞
∑

l=1

χl

lν
. (65)

For a fixed γ, remembering that |e−α| < 1, we realize that the function Lγ+2(e
−α) has its

maximum value at α → 0. In such a case, Lγ+2(1) becomes the Riemann zeta function

ζ(γ + 2), which converges for γ > −1. In addition, the Gamma function Γ(γ + 1) also

converges for γ > −1.

Function s(β, α) [see Eq. (3)] can then be approached by

s̄(β, α) ≡ cΓ(γ + 1)Lγ+2(e
−α)

βγ+1
+ βE + αN, (66)

whose derivatives can be directly found,

∂2s̄

∂β2
=

c(γ + 2)Γ(γ + 2)Lγ+2(e
−α)

βγ+3
,

∂2s̄

∂α∂β
=

cΓ(γ + 2)Lγ+1(e
−α)

βγ+2
=

∂2s̄

∂β∂α
,

∂2s̄

∂α2
=

cΓ(γ + 1)Lγ(e
−α)

βγ+1
,

(67)

where we used the relations

∂Lν(χ)

∂χ
=

Lν−1(χ)

χ
and Γ(ν + 1) = νΓ(ν). (68)
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Equations (9) and (10) can be analogously evaluated, so that the saddle point (β0, α0)

becomes determined by

Ē(β0, α0) ≡
∫

∞

0

ǫ ρ̄sp(ǫ)

eα0+β0ǫ − 1
dǫ =

cΓ(γ + 2)Lγ+2(e
−α0)

βγ+2
0

= E,

N̄ (β0, α0) ≡
∫

∞

0

ρ̄sp(ǫ)

eα0+β0ǫ − 1
dǫ =

cΓ(γ + 1)Lγ+1(e
−α0)

βγ+1
0

= N.

(69)

By manipulating these equations we can eliminate β0 from them so that α0 can be written

in terms of the pair (E,N) by means of

Fγ(α0) ≡
Lγ+1(e

−α0)

[Lγ+2(e−α0)]
γ+1
γ+2

= d, where d ≡
(

(γ + 1)γ+1

cΓ(γ + 1)

Nγ+2

Eγ+1

)
1

γ+2

. (70)

Once Eq. (70) is solved for α0, the value of β0 is determined by

β0 =

(

cΓ(γ + 2)Lγ+2(e
−α0)

E

)
1

γ+2

=

(

cΓ(γ + 1)Lγ+1(e
−α0)

N

)
1

γ+1

. (71)

Since all ingredients needed to build ρ(2)

mb are given by the above expressions, two comments

are in order. First, we realize that the conjunction of the approximated formulas (15) and

(61) does not manifest an important behavior when α → 0. If we just replace Eq. (66)

on Eq. (2) one verifies that the singular behavior evident on integral (20) in the limit

α → 0 simply disappears. This problem clearly comes from the fact that the semiclassical

approximation ρ̄sp leads to a non-accurate thermodynamical function s in such a limit.

Second, an inspection in the right hand side of Eq. (70) shows that α0 is, in principle,

completely determined if one knows d, that is, the mean-field potential, the number of

particles N , and the total energy E. Extrapolating the validity limit of ρ(2)

mb, we may notice

that d can assume values from 0 to +∞. On the other hand, Fγ(α0) assumes values from 0

to ∞, only when −1 < γ ≤ 0. For γ > 0, however, we have

0 < Fγ(α0) <
ζ(γ + 1)

ζ(γ + 2)
γ+1
γ+2

≡ dmax
γ , (72)

where the lower bound refers to α0 → +∞, while the upper bound to α0 → 0. Then, it is

clear that, when γ > 0, a (real) saddle point (β0, α0) will only exist if d < dmax
γ . Out of this

range, the approximation in the present form cannot be applied.

Finally, evaluation of ρ(2)

mb can be formally concluded, provided that Eq. (70) has a solution.

We simply write

β0(α0) = (γ + 1)
[

Lγ+2(e
−α0)

]
1

γ+2

(

N

dE

)

. (73)
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Apart from this explicit dependence on α0, Eq. (15) can be finally written as

ρ̄(2)

mb(E,N ;α0) =
1

G

√

1
2
Lγ+2(e−α0)

2πE
exp

{

(γ + 2)
[

Lγ+2(e
−α0)

] 1
γ+2

N

d
+ α0N

}

, (74)

where

G ≡ 1√
2

∣

∣

∣

∣

γ + 2

γ + 1
Lγ(e

−α0)− d2
[

Lγ+2(e
−α0)

]
γ

γ+2

∣

∣

∣

∣

1/2

. (75)

Equation (74) is the final expression when formulas (15) and (61) are considered. As dis-

cussed above, for γ > 0, it can only be applied if d < dmax
γ . Otherwise, no real saddle point

(β0, α0) will exist in the integrand of Eq. (2), with s replaced by s̄.

B. Uniform approximation ρ̄unmb

Using the same assumption of the last section, namely, ρ̄sp(ǫ) = cǫγ , we rewrite ωe(β, α)

as

ωe(β, α) ≈ ω̄e(β, α) ≡
(

n̄sp(ǫ) ln(1− e−(α+βǫ))

β

)∣

∣

∣

∣

∞

ǫ1

−
∫

∞

ǫ1

n̄sp(ǫ) dǫ

eα+βǫ − 1
, (76)

where ǫ1 = [(γ + 1)/c]
1

γ+1 , once we have n̄sp(ǫ1) = 2. Then, the main ingredient se to

calculate ρ̄unmb can be written as

s̄e(β, α) ≡ βE + αN +
c

βγ+1

∞
∑

l=1

e−lαΓ(γ + 1; lβǫ1)

lγ+2
, (77)

where Γ is the incomplete Gamma function

Γ(ν + 1; z) =

∫

∞

z

xνe−xdx. (78)

Another important term can be straightforwardly derived,

s̄(ββ)e (β, α) ≡ ∂2s̄e
∂β2

=
c ǫγ+2

1

β
L0(e

−(α+βǫ1)) +
c(γ + 2)

βγ+3

∞
∑

l=1

e−lαΓ(γ + 2; lβǫ1)

lγ+2
. (79)

From Eq. (77), we can also write

Ēe(β, α) ≡
∫

∞

ǫ1

c ǫγ+1 dǫ

eα+βǫ − 1
=

c

βγ+2

∞
∑

l=1

e−lαΓ(γ + 2; lβǫ1)

lγ+2
,

N̄e(β, α) ≡
∫

∞

ǫ1

c ǫγ dǫ

eα+βǫ − 1
=

c

βγ+1

∞
∑

l=1

e−lαΓ(γ + 1; lβǫ1)

lγ+1
.

(80)
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From them, we can find the prescription to calculate β̃α, and consequently β̃∗

0 , as well as the

saddle point (β̃0, α̃0):

Ēe(β̃α, α) = E, Ēe(β̃∗

0 , 0) = E, Ēe(β̃0, α̃0) = E, and N̄e(β̃0, α̃0) = N. (81)

Differentiating the first of these equations and using the fact that δE = 0, we find

f(α) ≡ ∂β̃α

∂α
= − c β̃

−(γ+1)
α

(γ + 2)Ēe(β̃α, α) + cǫγ+2
1 L0(e−(α+β̃αǫ1))

∞
∑

l=1

e−lαΓ(γ + 2; lβ̃αǫ1)

lγ+1
, (82)

which is fundamental to evaluate the correction C present in Eq. (59). To evaluate C, it is
also convenient to have an expression for σ(α). According to Eq. (25) and using the first of

Eqs. (81), we may approach it by

σ̄(α) ≡
(

γ + 2

γ + 1

)

β̃αE + αN − L1(e
−(α+β̃αǫ1))− 1

2
ln
[

s̄(ββ)e (β̃α, α)
]

. (83)

VI. ONE-DIMENSIONAL HARMONIC OSCILLATOR

Now we are in position to apply the approximated formulas to a concrete test. The

system of bosons confined to a one-dimensional harmonic oscillator (1D-HO) is ideal to play

this role. Indeed, as this is the case where the energy levels are equidistant, the calculation

of ρmb becomes identical to the problem of integer partition, which belongs to the field

of number theory and has some analytical studies reported in the literature. This purely

mathematical issue consists in finding the number of ways into which an integer E (to make

direct reference with our problem) can be expressed as a sum of, at most, N other integer

numbers. Our reference result in this context will be the formula due to Erdos and Lehner5,

which is also valid only in the asymptotic limit of large values of E and N . Our approach is

equivalent to this when c = 1 and γ = 0, which characterize the 1D-HO spectrum. We will

also have to assume large E and N , but also E ≫ N .

A. Second order approximation ρ̄(2)

mb – 1D-HO

Returning to Eq. (70), we will look for values of α0 with the restriction d = N2/E → ∞.

Equation (70) becomes

L1(e
−α0)

√

L2(e−α0)
≡ − ln(1− e−α0)

√

L2(e−α0)
=

N√
E
, (84)
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implying that α0 ≈ e−N
√

ζ(2)/E , if we simply use L2(e
−α0) ≈ ζ(2) = π2/6. Equation (84)

allows us to write d as function of α0. If one replaces such a result in Eq. (74), one may

expand it as

ρ̄(2)

mb(E,N ;α0 → 0) =
1

2πE

√

1

2
ζ(2)α0 [1 +O(α0)] exp

{√
E
[

2
√

ζ(2) +O(α0)
]}

(1D− HO),

(85)

where now we approach L2(e
−α0) = ζ(2) + α0 lnα0 +O(α0) and L0(e

−α0) = 1
α0

[1 +O(α0)].

Finally, keeping only the leading correction in α0 ≈ e−N
√

ζ(2)/E , the many-body density of

states becomes

ρ̄(2)

mb(E,N ;α0 → 0) = R̄







√

1
2
ζ(2)

2πE
e2
√

ζ(2)E







(1D− HO), (86)

with R̄ = e−
N
2

√

ζ(2)
E . The result of Erdos and Lehner5, in the extremal limit N → ∞, which

is also known as Hardy and Ramanujan formula6, is the expression seen inside the brackets

of Eq. (86). Actually, the dependence on N was included just in R̄, which clearly does not

tend to 1 when N → ∞. It shows that approximation (74) is ill-defined in the case α0 → 0,

or, equivalently, N2 ≫ E. At last, for completeness, we note that, to be consistent with the

work of Erdos and Lehner, the expression for R̄ in Eq. (86) should be

REL = exp

{

−
√

E

ζ(2)
e−N

√
ζ(2)/E

}

. (87)

B. Uniform approximation ρ̄unmb – 1D-OH

For the case of the harmonic oscillator, Eqs. (77) and (80) become

s̄e(β, α) = βE + αN +
1

β
L2(e

−(α+β)),

Ēe(β, α) =
1

β2

[

L2(e
−(α+β)) + βL1(e

−(α+β))
]

,

N̄e(β, α) =
1

β
L1(e

−(α+β)).

(88)

Then, β̃∗

0 should satisfy

1

β̃∗
0

2

[

L2(e
−β̃∗

0 )− β̃∗

0 ln(1− e−β̃∗

0 )
]

= E. (89)

19



A simple analysis of this equation shows that the quantity inside the brackets assumes values

from ζ(2) to 0, when β̃∗

0 is varied from 0 to +∞. Therefore, as E is large, we conclude that

the equality is satisfied for β̃∗
0 ≪ 1, so that we can perform the straightforward expansions

s̄e(β̃
∗

0 , 0) = β̃∗

0E +
1

β̃∗
0

L2(e
−β̃∗

0 ) =
ζ(2)

β̃∗
0

+ ln β̃∗

0 − 1 +

(

1

4
+ E

)

β̃∗

0 +O(β̃∗2

0 ),

s̄
(ββ)
e (β̃∗

0 , 0) =
1

β̃∗
0

L0(e
−β̃∗

0 ) +
2

β̃∗3

0

[

L2(e
−β̃∗

0 ) + β̃∗

0L1(e
−β̃∗

0 )
]

= 2
ζ(2)

β̃∗3

0

[

1 +O(β̃∗

0)
]

,
(90)

and also

σ
(2)
0 =

1

β∗
0
2 [1 +O(β∗

0)] , σ
(3)
0 = − 1

β∗
0
3 [1 +O(β∗

0)] , and σ
(4)
0 =

2

β∗
0
4 [1 +O(β∗

0)] ,

(91)

so that, concerning C, we have

c0 =

(

1 +
1

3
√
2π

)

[

1 +O(β̃∗

0)
]

and c1 =
25

24

√

2

π

1

β̃∗
0

[

1 +O(β̃∗

0)
]

. (92)

To derive Eqs. (90)-(92), we used

s̄
(ββ)
e (β, α) =

1

β
L0(e

−(α+β)) +
2

β3

[

L2(e
−(α+β)) + βL1(e

−(α+β))
]

,

f(α) = − 1

β̃α

L1(e
−(α+β̃α)) + β̃αL0(e

−(α+β̃α))

2Ēe(β̃α, α) + L0(e−(α+β̃α))
,

σ̄(α) = 2β̃αE + αN − L1(e
−(α+β̃α))− 1

2
ln
[

s̄(ββ)e (β̃α, α)
]

.

(93)

At this point, we can already write

ρ̄unmb(E,N ; α̃0 → 0) =
C

2
√
2π

{

2
ζ(2)

β̃∗3

0

[

1 +O(β̃∗

0)
]

}−1/2

β̃∗

0e
ζ(2)

β̃∗

0
−1+( 1

4
+E)β̃∗

0+O(β̃∗
2

0 )
(1D− HO),

(94)

with

C =

(

1 +
1

3
√
2π

)

[

1 +O(β̃∗

0)
]

exp

{

−
(

25

24

√

2

π

3
√
2π

1 + 3
√
2π

)

α̃0

β̃∗
0

[

1 +O(β̃∗

0)
]

}

. (95)

To conclude, we just need to solve α̃0 and β̃∗

0 . Expanding Eq. (89) around β̃∗

0 = 0, we find

ζ(2)

β∗
0
2 − 1

β̃∗
0

+
1

4
+O(β̃∗

0) = E =⇒ β̃∗

0 =

√

ζ(2)

E
− 1

2E
+O(E−3/2), (96)

so that

ρ̄unmb(E,N ; α̃0 → 0) =
C

2e
√
2π

√

ζ(2)3/2

2E5/2
e2
√

Eζ(2)
[

1 +O(E−1/2)
]

(1D−HO). (97)
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The saddle point satisfies

1

β̃2
0

[

L2(e
−(α̃0+β̃0))− β̃0 ln(1− e−(α̃0+β̃0))

]

= E and − ln(1− e−(α̃0+β̃0))

β0

= N. (98)

The last equation simply implies that α̃0 = −β̃0 − ln[1− e−β̃0N ], which, replaced on the first

equation, results in

L2(1− e−β̃0N)

β̃2
0

= E −N =⇒ β̃0 ≈
√

ζ(2)

E

[

1− N

E

]−1/2

, (99)

where we approach L2(1− e−β̃0N) ≈ ζ(2), that is consistent with the assumptions N2 ≫ E

and E ≫ N . By inserting the last result in Eq. (97) and disregarding the term N
E
above, we

find

ρ̄unmb(E,N ; α̃0 → 0) = R̄un







√

1
2
ζ(2)

2πE
e2
√

ζ(2)E







(1D− HO), (100)

where

Run =
f1

E1/4
exp

{

−f2

√

E

ζ(2)
e−N

√
ζ(2)/E

}

. (101)

The quantities f1 and f2 are quantities containing only numerical terms, amounting to

f1 ≈ 1.23 and f2 ≈ 0.73. Except for these numerical factors, that would need to be one to

agree with Erdos and Lehner formula, two other mismatches have to be commented. First,

to derive Eq. (100), we had to consider E > N , otherwise no real saddle point β̃0 would exist.

In addition, the condition E ≫ N was needed to reproduce result (87). Second, the term

E−1/4 could not appear in the formula. However, as we will discuss in the following, such a

problem can be solved if we improve the way in which information about the single-particle

spectrum is furnished, which indicates that the cause of this problem lies on the smooth

approximation and not on ρunmb(E,N ; α̃0 → 0).

VII. FINAL REMARKS

In this paper, we consider a chain of approximating assumptions to develop an expression

for ρmb(E,N). The first of them is to consider that the bosons are confined to a mean-field

self-consistent potential, allowing us to write many-body spectrum in terms of the single-

particle one. Second, we assume the thermodynamical limit, regime in which the integral

representation of ρmb is proper to be approached by asymptotic expansion methods. For
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the 1D-HO, for instance, it is shown that the well-known second order saddle point method,

which gives origin to ρ(2)

mb, is not accurate when N2/E → 0, condition reasonably true in

the thermodynamical limit, because the saddle point approaches to a singular point of the

integrand. We apply, therefore, another method to perform the integral and get a uniform

formula ρunmb for the many-body density of states. Obviously, such a formula is demonstrated

to be reduced to ρ(2)

mb when the saddle point is far from the mentioned singularity. By

restricting only to the cases where the effects of the singularity are present, what can be

considered our third assumption, we finally arrive to an expression for ρunmb(E,N ; α̃0 → 0),

Eq. (59).

With the uniform formula in hand, another approximation should be done in order to

submit it to tests using the 1D-HO. This potential is specially useful for this issue, because

of its connection with the problem of integer partition, which has solid analytical results for

our reference. This fourth approximation inserted in the theory, in fact, refers to the way in

which information about the single-particle spectrum is given. The natural choice is to use

the Thomas-Fermi method, where ρsp usually becomes a power series. When it is done, one

shows that the uniform formula ρunmb really improves ρ(2)

mb for the 1D-OH case. However, the

dependence on E of the pre-exponential factor does not match our reference result. In the

following, we argue that the origin of this problem is not on ρunmb(E,N ; α̃0 → 0), but in the

Thomas-Fermi approximation. Indeed, if one writes

se(β, α) = −
∞
∑

k=1

ln(1− e−(α+βk)) + βE + αN (1D− HO), (102)

the value of se(β̃
∗
0 , 0) can be calculated without the Thomas-Fermi approximation. Using

the Dedekind eta function and its properties, we have8,11

∞
∑

k=1

ln
[

1− e−β̃∗

0k
]

= −ζ(2)

β̃∗
0

+
1

2
ln

[

2π

β̃∗
0

]

+O(β̃∗

0). (103)

Using these last two equations just to write se(β̃
∗
0 , 0), the expression for ρ̄unmb(E,N ; α̃0 → 0)

assumes the same form as Eq. (100), except for Run, which becomes

R′

un = f3 exp

{

−f2

√

E

ζ(2)
e−N

√
ζ(2)/E

}

. (104)

where f3 ≈ 1.04. It then demonstrates that the uniform formula considerably improves ρ(2)

mb,

given its agreement with the Erdos and Lehner formula. At last, it should be commented
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that Tran et al11 also derived approximations for ρmb using a different (but similar) route.

In their work, the Thomas-Fermi method is not used to provide information about the

single-particle spectrum. Their choice is dealing with spectra given by a power-law ǫi = ir,

performing the sum present in the definition of s using methods that here were applied to

Eq. (103). Although it avoids the discrepancy generated by the Thomas-Fermi method, its

disadvantage resides on the fact that finite N corrections can be easily found only for r = 1

(1D-HO case).
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Appendix A: Jacobian at the critical points

Our task here is finding expressions for G(0) and G(t0), where G(t) is given by Eq. (35).

The function G(t) involves the term t/(1− e−α(t)), which becomes undetermined by directly

replacing t = 0. Thus, we apply the L’Hospital’s rule on it obtaining

lim
t→0

(

t

1− e−α(t)

)

= lim
t→0

(

1

dα/dt

)

. (A1)

Therefore,

G(0) = lim
t→0

{

t

1− e−α(t)

dα

dt

}

= 1. (A2)

In order to find an expression for G(t0), we differentiate Eq. (30), finding

dσ

dα

dα

dt
=

dφ

dt
=⇒ dα

dt
= −λ(t + γ)

dσ/dα
, (A3)

Again, to find the value of the last equality when t = t0 = −γ we need to apply the

L’Hospital’s rule,

lim
t→t0

(

dα

dt

)

= lim
t→t0

(

− λ

(d2σ/dα2) (dα/dt)

)

, (A4)
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implying that

lim
t→t0

(

dα

dt

)2

= − λ

(d2σ/dα2)|α=α̃0

. (A5)

Therefore,

G(t0) = ± i t0
1− e−α̃0

[

λ

(d2σ/dα2)|α=α̃0

]1/2

, (A6)

where the choice of the sign can be done by imposing that

lim
t0→0

G(t0) = G(0) = 1. (A7)

To accomplish this task, we expand Eq. (33) around α̃0 = 0,

t0
√
λ = −γ

√
λ = −

√

2[σ(α̃0)− σ(0)]

= −i

{

σ
(2)
0 α̃2

0

[

1 +
2

3

σ
(3)
0

σ
(2)
0

α̃0 +
1

4

σ
(4)
0

σ
(2)
0

α̃2
0 +O(α̃3

0)

]}1/2

,
(A8)

where we use the notation σ
(k)
0 ≡ (dkσ/dαk)|α=0. To find the last expression, we point out

that we eliminate the term σ
(1)
0 from the expansion because it vanishes when α̃0 → 0. To

do so, we use
(

dσ

dα

)∣

∣

∣

∣

α=α̃0

= σ
(1)
0 + σ

(2)
0 α̃0 +

1

2
σ
(3)
0 α̃2

0 +O(α̃3
0) = 0. (A9)

Then, using Eq. (A8) we finally get

lim
t0→0

G(t0) = lim
α̃0→0

{

± i t0
√
λ

α̃0 +O(α̃2
0)

[

1

(d2σ/dα2)|α=α̃0

]1/2
}

= ±1, (A10)

implying that the plus sign should be chosen in Eq. (A6).

Appendix B: Derivatives of σ(α) in terms of se(β, α)

In this appendix, we will write derivatives of σ(α) in terms of derivatives of se(β, α),

where β = β(α). For a generic point (β, α), up to leading order on λ, we have

dσ

dα
=

∂se
∂β

∂β

∂α
+

∂se
∂α

(B1)

and
d2σ

dα2
=

∂

∂β

[

∂se
∂β

∂β

∂α

]

∂β

∂α
+

∂

∂α

[

∂se
∂β

∂β

∂α

]

+
∂2se
∂β∂α

∂β

∂α
+

∂2se
∂α2

, (B2)
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where the first two terms of the right hand side can be written as

∂2se
∂β2

(

∂β

∂α

)2

+
∂se
∂β

(

∂2β

∂β∂α

∂β

∂α
+

∂2β

∂α2

)

+
∂2se
∂α∂β

∂β

∂α
. (B3)

Remembering that to find β(α) we impose ∂se/∂β = 0, we conclude that, under this con-

straint,

dσ

dα
=

∂se
∂α

(B4)

and also that Eq. (B3) is zero, namely,

∂2se
∂β2

(

∂β

∂α

)2

+
∂2se
∂α∂β

∂β

∂α
= 0 =⇒ ∂β

∂α
= −

∂2se
∂α∂β

∂2se
∂β2

. (B5)

Therefore,

d2σ

dα2
=

∂2se
∂α∂β

∂2se
∂α∂β

− ∂2se
∂α2

∂2se
∂β2

∂2se
∂β2

. (B6)
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